# The ARCADIA Depleted Monolithic Active Pixel: X-ray characterization and industrial applications

S. Ciarlantini<sup>1,2</sup>, C.Bonini<sup>2,3</sup>, D.Chiappara<sup>2,3</sup>, P.Giubilato<sup>2,3</sup>, S.Mattiazzo<sup>2,3</sup> D.Pantano<sup>2,3</sup>, C. Pantouvakis<sup>2,3</sup>, M. Rignanese<sup>2,3</sup>, J. Wyss<sup>2,4</sup>, A. Zingaretti<sup>2,3</sup>

<sup>1</sup>University of Padova, Centro di ateneo di Studi e Attività Spaziali CISAS

<sup>2</sup>INFN, Padova Section

<sup>3</sup>University of Padova, Department of Physics and Astronomy G.Galilei

<sup>4</sup>University of Cassino and Southern Lazio, DICEM



#### **ARCADIA R&D at INFN**







#### Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays



- CMOS sensor design and fabrication platform on LFoundry
   110nm technology
- Scalable FDMAPS architecture with very low power
- Custom Back Side Implantation process allow to develop fully-depleted thick sensors (up to 500  $\mu m$ )

Different R&D in the same platform

- ARCADIA Main Demonstrator 3 (MD3) full chip
- Pixel and strip test structures down to 10um pitch
- MADPIX multi-pixel active demonstrator chip for fast timing
- Small scale matrix prototypes (low power, fast timing, etc.)

#### **ARCADIA R&D at INFN**







Fully Depleted Monolithic Active Pixel Sensor (FD-MAPS)

- Signal collection only via drift mechanism
- Depletion starts from the p+ back-side region
- Voltages needed for sensor depletion and read-out electronics are separated



#### **ARCADIA MD3**







Matrix  $512 \times 512$  pixels

divided in 16 sectors (32 pixels wide)

clockless

Pixel pitch

25 µm

Thickness

200 µm

Readout

Data-push





Digital output No analogue information (energy, ToT) accessible

### ARCADIA MD3 applications









high rate mode: sectors send data in parallel

low rate mode: sectors send data to one transceiver

→ low power consumption O(10 mW/cm²)



**Medical** (proton CT)

#### **Future leptonic colliders**

Tracking performances tested with a Test Beam @ Fermilab with 120 GeV protons



Stay tuned for new results!





### MD3 characterization: X-ray





Fluorescence is a source of very monochromatic X-ray. It can be exploited to calibrate the sensor.

#### Setup:

- X-ray tube with Tungsten anode used at 40kV and 50 mA
- Target of different materials at 45°
- 16×16 pixel array tested





### MD3 characterization: fluorescence





Hit rate vs threshold: the electronic cloud released by X-ray diffuses in silicon leading to charge sharing, therefore the fit model is modified with respect to test pulse s-curve [4].



### MD3 characterization: fluorescence





Hit rate vs threshold: the electronic cloud released by X-ray diffuses in silicon leading to charge sharing, therefore the fit model is modified with respect to test pulse s-curve [4].



### MD3 characterization: calibration





Comparison of s-curve for all targets from fluorescence and from  $^{55}$ Fe source. The rate is normalized to have the s-curve middle point ( $t_0$ ) at rate equals to 1.



#### MD3 characterization: rate





Rate response is evaluated as function of the current of the X-ray tube. Results for cluster rate on full matrix @80kV X-ray tube voltage.



 $13.757 \pm 0.005 \, MHz/cm^2$ 

Linearity of cluster rate verified up to 14 MHz/cm<sup>2</sup>

#### MD3 characterization: rate





Rate response is evaluated as function of the current of the X-ray tube.

Results for cluster rate on full matrix @80kV X-ray tube voltage.





Saturation due to DAQ limits at firmware level

### X-ray industrial applications



X-rays are widely used in industry for several applications

#### Precise Dimensional Metrology



**Quality Detection** 



Sawmill industry



[5, 6]

Porosity study



Defect Analysis



#### Food industry







Imaging performances of ARCADIA are tested with multi-material objects







More quantitative analysis: profile plot of the intensity

























glass and metal can be distinguished from intensity variation





Quality control in industry exploits the Computer Tomography 3D imaging tecnique





- X-ray tube setting: 40kV -2mA
- Cu absorber (91% attenuation)
- Stepper motor to rotate the sample



S. Ciarlantini – ELMA Workshop

Quality control in industry exploits the Computer Tomography 3D imaging tecnique

- Sample rotated by 3.6° each step
- Discrete CT image made of 50 radiographs











step 1 step 2 step n

S. Ciarlantini – ELMA Workshop

Quality control in industry exploits the Computer Tomography 3D imaging tecnique

Reconstruction of 3D image recombining the 2D radiographs (projections).





#### Conclusions





#### X-ray characterization

thresholds calibrated in the [4, 9] keV energy range

■ The linearity of cluster rate has been shown

#### **Industry applications**

- Successful 2D imaging of different objects
- Proof of material discrimination from the intensity profile
- Successful 3D reconstruction without any conversion layer (e.g. scintillator) used



S. Ciarlantini – ELMA Workshop

# Thank you for your attention

#### References

- [1] Da Rocha Rolo, Manuel, et al. "ARCADIA Fully-Depleted CMOS MAPS development with LFoundry 110nm CIS." Frontiers in Sensors 6 (2025): 1603755.
- [2] Corradino, Thomas, et al. "Design and characterization of backside termination structures for thick fully-depleted MAPS." Sensors 21.11 (2021): 3809.
- [3] NIM A 699 (2013) 205-210
- [4] Kraft, P., et al. "Performance of single-photon-counting PILATUS detector modules." Synchrotron Radiation 16.3 (2009): 368-375.
- [5] DOI: 10.13140/RG.2.2.16987.28960
- [6] https://www.biometic.com/it/soluzioni-ispezione-alimentare/ispezione-raggi-x-3d-mito
- [7] https://www.microtec.eu/it/prodotti/ct-log

1603755.

Timing application

Passive structures for electrical characterization

X-ray application (multi photon counter)

Debugging implemented power management IPs

Space-borne applications

Tracking and dosimetry

More info in Da Rocha Rolo, Manuel, et al. "ARCADIA Fully-Depleted CMOS MAPS development with LFoundry 110nm CIS." Frontiers in Sensors 6 (2025):



Test Beam preliminary results: cluster size and efficiency vs threshold (VCASN)





Average efficiency: 99.23 %

The electronic cloud released by X-ray diffuses in silicon leading to charge sharing. More charge sharing when illuminating from the back side



Fine tuning of the sectors Background Reference using <sup>55</sup>Fe source to obtain uniform response



Cluster size (number of pixel) for 80kV X-ray tube photons



Clustering algorithm applied with

- Time proximity threshold: 5 timestamps
- Spatial proximity threshold: 2 pixel

Majority of single and double pixel clusters

Cluster rate of 32x32 pixel array @80kV X-ray tube voltage. Linearity verified up to 60 MHz/cm<sup>2</sup>



X-ray imaging of metallic wire





200  $\mu m$  thickness resolved with 8 pixel resolution of 25  $\mu m$ 

X-ray imaging of wood stick

