

Dario Barberis¹, Tomas Davidek², Ian Dyckes¹, Claudia Gemme³, Laura Jeanty⁴, Ondrej Kovanda⁴, Alexis Mulski⁵, Simone Pagan Griso¹, Simone Ravera³, Martina Ressegotti³, Leonardo Rossi⁵, Nathan Young4

dE/dx - Measurements with ATLAS hybrid pixel

ELMA Workshop on "Energy loss measurements with MAPS" Trieste, 10-11 September 2025

- 1 -Lawrence Berkley Lab
 - 2 Prague CU
 - 3 INFN Genova
- 4 Oregon University 5 - Harvard University

ATLAS Pixel Detector

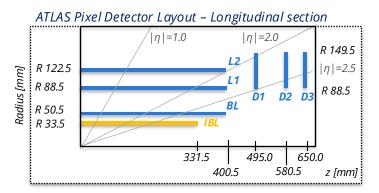
Charge measurements & Calibration – dE/dx

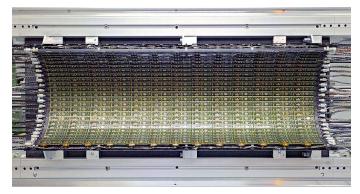
Handling radiation damage

One application of dE/dx in ATLAS

Little bit off-topic from MAPS ... My favourite collection of topics that you may find interesting!

ATLAS Pixel & IBL Detector



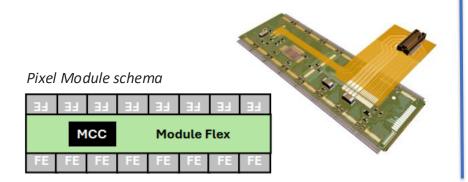

Pixel Detector - Operating since 2008

- Three barrel layers, radii 50.5, 88.5, 122.5 mm
 - Staves: B-Layer, Layer-1, Layer-2
- Three end-cap disks (per side)
 - D1, D2, D3

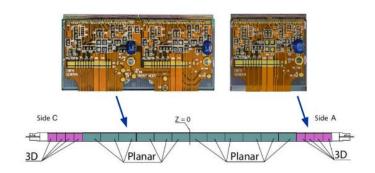
IBL Detector - Operating since **2015**

- Additional 4th barrel layer, at radius 33.5 mm
- Installed during LS0 to cope with increased lumi in Run 2/3

Pixel Disk - 2007


IBL Insertion in ATLAS - 2014

ATLAS Pixel & IBL Detector


Pixel Detector - 2008

- Hybrid modules
 - 16 FEs per module in 250 nm technology (FEI3)
 - 1 planar sensor n-in-n per module, 250 μm thick
 - Expected 20ke for a MIP before irradiation
 - Dynamic range up to 200ke
 - · No overflow mechanism
 - Rad Hard: 50 Mrad and ~ 1e15 n_{eq} / cm²

IBL - 2015

- Hybrid modules
 - FE technology 130 nm CMOS (FEI4)
 - Planar sensors 200 μm thick, low |η| (2 FEs)
 - Expected 16ke for a MIP before irradiation
 - 3D sensors 230 μm thick, high |η| (1 FE)
 - Dynamic range up to 30ke
 - Overflow mechanims 1 Bit in the data stream
 - Rad Hard: 250 Mrad and ~ 5e15 n_{eq} / cm²

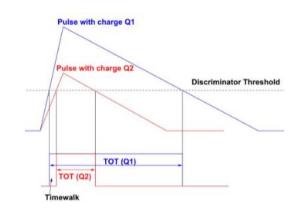
ATLAS Pixel Detector

Charge measurements & Calibration – dE/dx

Handling radiation damage

One application of dE/dx in ATLAS

ATLAS modules - Charge collection


ATLAS FEs able to measure of Time-over-Threshold (ToT)

 Time that the signal generated by the crossing charged particle hang above the discriminator threshold

Almost **linear relation** between charge released by the crossing particle and ToT

- Global register 8 bits
- Single pixel registers 4 bits– for fine tuning

BEFORE DATA TAKING		→ DATA TAKING →	DATA PROCESSING (OFFLINE)		
ToT-Charge Calibration via injection circuit	Calibration saved to Config. Database	ToT is readout in the data stream 8 bits for Pixel 4+1(Ovf) bits for IBL	ToT-to-Charge conversion using Config Database	Charge info are saved in ATLAS dataframe	

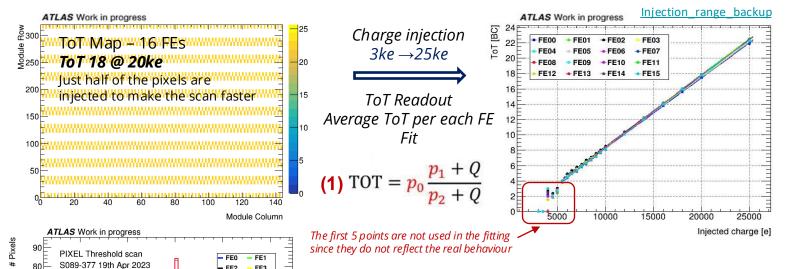
Pixel Detector ToT Calibration & Config. Database

Pixel ToT

L0_B03_S2_A7_M0

ToT Distribution

ToT 18 @ 20ke


70

50 F

30 F

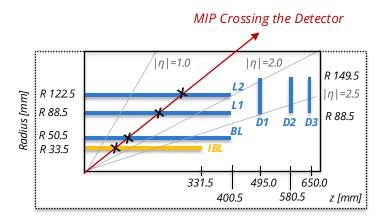
20

Calibration is performed via charge injection circuit

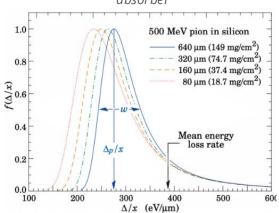
- Mean value of ToT is plotted per each $FE \rightarrow Fit$
- Not enough space in Config DB to save a calibration at pixel-level!!

Calibration, based on average FE ToT, per each FE

- Fit parameters saved to config DB at FE-level
- Offline: from ToT to Charge with inverse function of (1)


Per each cluster on a track we can calculate the cluster **dE/dx**

- **dE** from the ToT-Charge conversion
- dx from the track local incidence angle + thickness of the pixel sensor


On average 4 independent measurement of cluster dE/dx

Truncated mean (dE/dx)_{trunc} of cluster on track dE/dx

- · Good estimatore of MPV
- Drop the highest value of the cluster dEdx + mean of remaining
- Robust against statistical fluctuations.

Landau distributions for thin silicon absorber

highest measurement on track

0.5

0.4

0.5

0.4

0.7

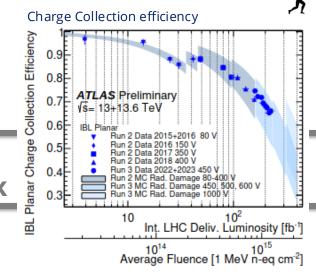
0.8

0.9

0.9

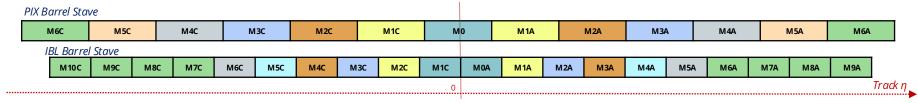
0.1

Truncated mean dropping the


ATLAS Pixel Detector

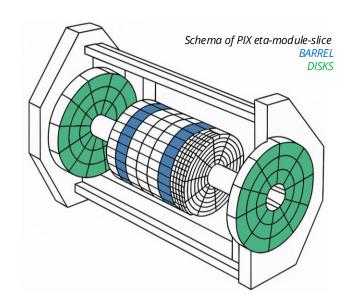
Charge measurements & Calibration – dE/dx

Handling radiation damage


ATLAS has already collected more than 400 fb⁻¹ since beginning of Run-1 Detectors are subjected to Radiation Damage that has a complicated dependece on the position of the modules in the detector (distance from i.p., material etc...)

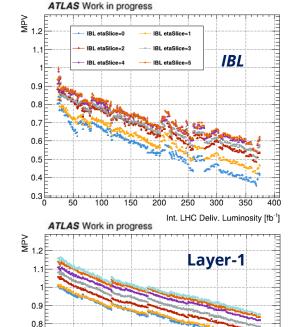
One application of dE/dx in ATLAS

Eta Module Slice – An idea to study local Radiation Damage



How we build an etaModuleSlice (Barrel):

- η Symmetry: We group modules that are mirrored in eta on the stave [IBL 3D all together – out of tracking]
 - EtaModule 0 in PIX barrel is left alone, odd number of modules on a stave
- *Φ Symmetry*:
 - Per each layer we group modules sharing the same position on the stave


How we build an etaModuleSlice (Disks):

- We group together all the modules on the same disk
- We group together Side A & C disks

Clusters MPVs trends - 2015 / 2024

L1 etaSlice=1

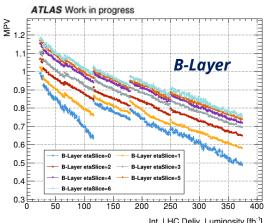
L1 etaSlice=3

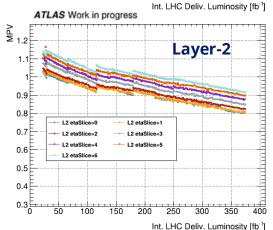
I 1 etaSlice=5

Int. LHC Deliv. Luminosity [fb-1]

0.7

0.6


0.5


L1 etaSlice=0

L1 etaSlice=2

I 1 etaSlice=4

L1 etaSlice=6

As expected radiation damage is more and more severe close to the interaction point

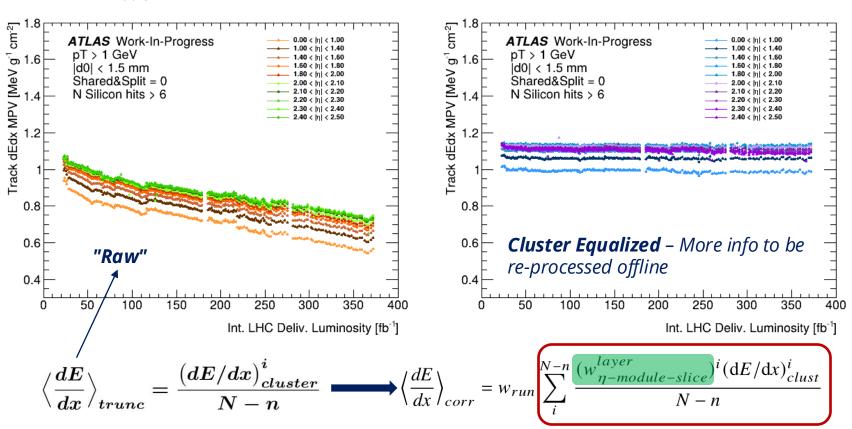
Example (*layer dependency*)

At central eta (eta-module-slice 0) the MPV degradation in 2024 respect to 2015 is:

- IBL ~ 55%
- B Layer ~ 50%
- Layer 1 ~ 30%
- Layer 2 ~ 20%

Example (**eta dependency**)

MPV degradation in B-Layer:


- Eta-module-slice-0 ~ 50%
- Eta-module-slice-2 ~ 35%
- Eta-module-slice-6 ~ 25%

Occasional jumps in the trend (e.g. at around 120 fb⁻¹) indicate changes to the Pixel detector main working point conditions, such as threshold and bias voltage, mainly happening during technical shutdowns.

Using $(dE/dx)_{trunc}$ for physics analysis – More in <u>BACKUP</u>

To use $(dE/dx)_{trunc}$ we need uniform and stable response over time Equalisation!

ATLAS Pixel Detector

Charge measurements & Calibration – dE/dx

Handling radiation damage

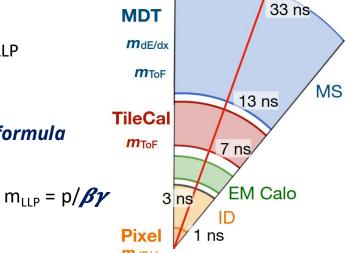
One application of dE/dx in ATLAS

An application of dEdx in ATLAS - <u>BACKUP</u>

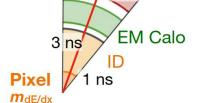
Credits to S. Nechaeva <u>Indico</u>

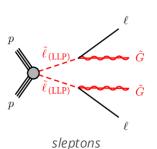
Direct search of *Long-Lived charged Particeles* (LLPs)

Stable or Metastable


The signal is a potentially slow (0.3 < β < 0.8) highly ionising LLP

Each of the tracks will have up to 4 mass measurements:


- m_{dEdx} Pixel
- m_{dEdx} Muon
- m_{TOF} TileCal
- m_{TOF} Muon


By from calibrated Bethe-Bloch formula

B from Time Of Flight

Charged LLP

The search is **model-independent** and will allow to set the limits on the production cross-section of charged BSM particles within a given mass and lifetime range

Conclusions

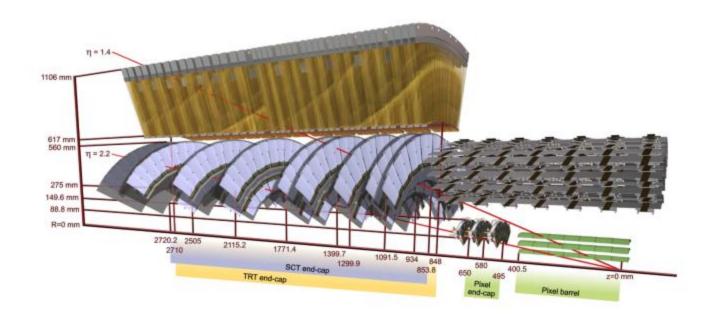
Pixel & IBL operating in ATLAS since 2008 / 2015, playing crucial role in the ATLAS tracking/vertexing

Measure of the **charge release by a charged particle via ToT** with 8 bits / 4bits in Pixel / IBL dedicated in the readout chain

Calibration of ToT-Charge at FE-level due to space limitation in the Configuration DB

(dE/dx)_{trunc} as a good estimator of a charged particle MPV

Proposed a *new* local equalisation of the track dEdx via correction at cluster level before evaluating $(dE/dx)_{trunc}$


dE/dx as a metrics for BSM searches in ATLAS via Bethe-Block calibrated relation

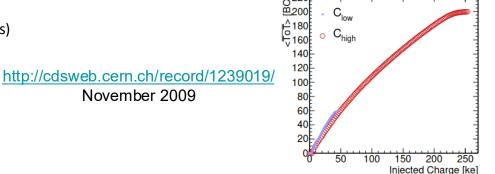
Backup

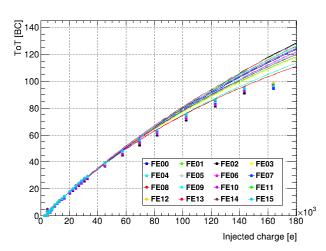
ATLAS Inner Detector

From the online ToT calibration to the Offline reconstruction

ToT Calibration in the Pixel Detector (B-layer, Barrel, Disks)

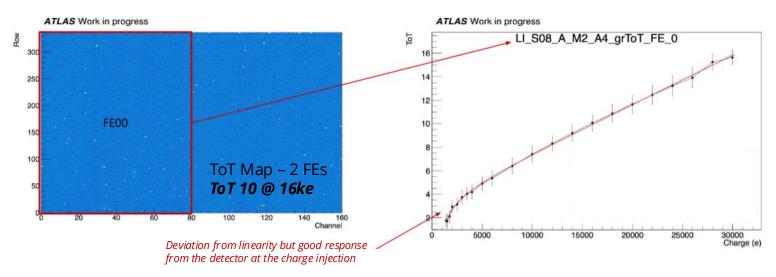
It is done in two steps:


- Low-Charge-Calibration (C_{low})
 - Injection from 3 ke to 25 ke
- High-Charge Calibration (Chigh)
 - Injection from 3 ke to 200 ke


The **ONLINE calibration** ToT vs Injected_charge is done at **PIXEL level**. [One calibration per each pixel]

While the **OFFLINE calibration** is stored in the database at **FE level**. [One calibration per each FE]

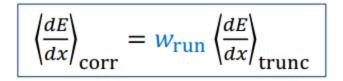
The parameters of the fitted curves (charge_vs_ToT) are saved into the database


• The best parameters of the fitting function are derived only from the Low-Charge-Calibration results (Hence up to 25 ke).

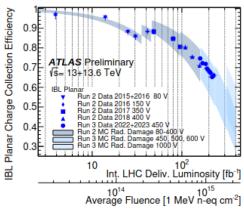
IBL Detector ToT Calibration & Config. Database

Calibration is performed via charge injection circuit (1.5ke \rightarrow 30ke)

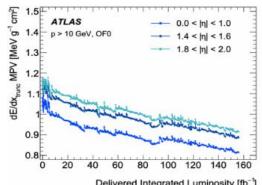
Calibration is done pixel-by-pixel


Calibration, based on average FE ToT, per each FE – NOT linear at low injected charge

- Hard to define a fit function
- Look-Up-Table is saved to Config DB: linear interpolation to save ToT-Charge relation


Reminder of dE/dx corrections – Run 2

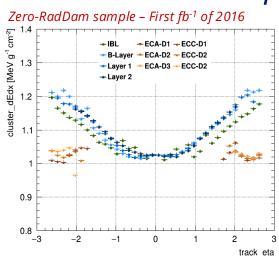
Run 2 strategy


- Raw (dE/dx)_{trunc} from AOD must be corrected for
 - *Radiation damage* → deterioration of charge collected
 - Detector condition changes (e.g. bias voltage, theshold...)
- Derived run-specific SFs \rightarrow equalize $\langle dE/dx \rangle_{trunc}$ MPV over all runs
 - Also equalize over n
 - Binned corrections in IBL overflow status
- Only have access to track-level (dE/dx)_{trunc} in AOD
 - Do not have dE/dx of each cluster

Charge Collection efficiency

Run 2 Scale Factors (SFs)

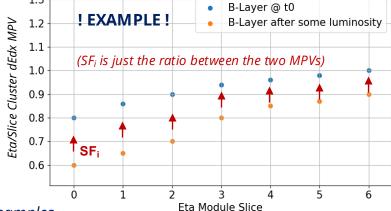
How to deal with radiation damage?


Radiation Damage is getting worse, especially for inner layers

- (dE/dx)_{trunc} more likely to drop measurements for outer layers
- (dE/dx)_{trunc} has complicated dependence on exact layers hit
- Would be better to equalize dE/dx at cluster level, before taking the truncated mean
 - Separate SF for each run and eta-module-slice (average over phi)
 - Local SF to correct for radiation damage per layer and local position
 - Run Sf to correct the residual dependency of the track dE/dx in eta
- Requires access to *pixel clusters* → special datasets → *IDTIDE*
 - Enabling new metrics (e.g dE/dx RMS) and refined cluster definition

$$\left\langle \frac{dE}{dx} \right\rangle_{corr} = w_{run} \sum_{i}^{N-n} \frac{(w_{\eta-module-slice}^{layer})^{i} (dE/dx)_{clust}^{i}}{N-n}$$

Scale Factors computation - Details



Strategy to compute scale factors:

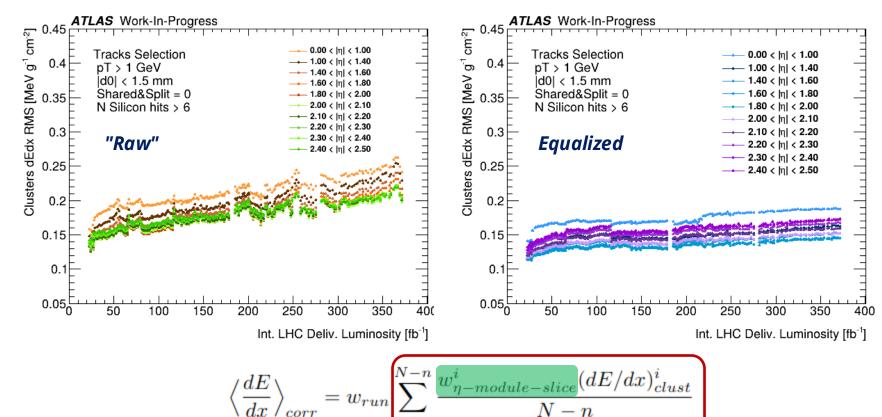
- 1. Define the *initial value at which to equalise* (More in <u>Backup</u>)
 - Zero Radiation damage sample "t0" First fb-1 collected in 2016
- 2. Per each Run & layer we build the cluster dEdx distribution of each etaModuleSlice
- 3. We fit the distribution to find the MPV
 - Using langaus function already by the LAR group (<u>Indico</u>)

- Scale Factors "SF_i"
- Unique per each run/layer/eta-module-slice
- Ratio between the two MPVs

Note: the statistics in IDTIDE datasets is not huge

- Gruop together several dataset of different Runs to have ~ 1 fb⁻¹ samples
- Will assign to all the runs in the 1 fb-1 sample the same Scale Factors

Datasets production

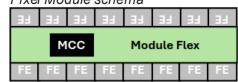


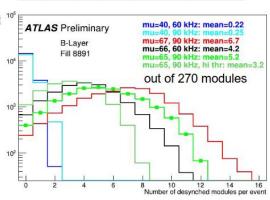
Required datasets

- To derive module-specific scale factors, we need *datasets* with **cluster info** from every run
 - Pixel clusters are not transported to nominal AODs (only kept in raw)
- Plan: use IDTIDE DAODs for deriving dE/dx corrections and Bethe-Bloch calibrations only
- Nathan developed an ntupler to make small trees from IDTIDE DAODs including clusters dE/dx
- Dario adapted Nathan's code to produce datasets for all runs including clusters dE/dx
 - Ntuples for the module calibration from DAOD_IDTIDE datasets for data15/16/17/18/22/23 completed successfully (Run 2 + Run 3)
 - DAOD_IDTIDE in **2024**: they have *not produced at Tier-0 since August 2024*, when the legacy triggers were disabled but not checked. So for most of 2024, we need to *wait for the Winter reprocessing* of all data. NOW is ongoing.
- We can now read the datasets and fit the dE/dx distributions to get the MPV and derive SFs

Cluster on track RMS Scaled - 2015 / 2024

Intra-module desynchronization


- A pixel module is made by multiple FEs and one controller (MCC)
- If conditions get too harsh, a single FE can desynchronize, leading to unusable events from the module until the next ATLAS-Event-Counter-Reset (ECR), every 5 seconds.
- **Increasing the threshold could help** beceause it decreases the number of digital hits inside the FE chip.
- Constrains:
 - bandwith, hit-on-track efficiency and radiation damage.

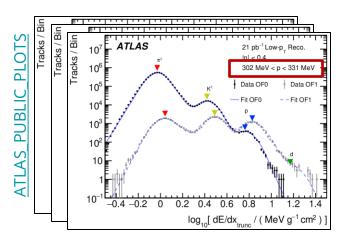

With increased machine performance, frontend limitations start to play a more significant role (next slides)

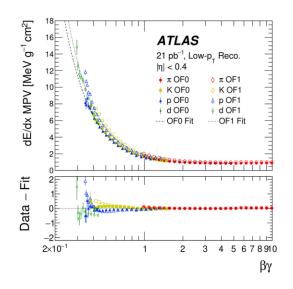
Pixel Threshold [electrons]

Layer	2015	2016	2017	2018	2022	2023/202 4
IBL	2500	2500	2500	2000	1500	1500
B-Layer	3500	5000	5000	4300*	3500*	4700
Layer 1/2	3500	3500	3500	3500	3500	4300
Disks	3500	3500	4500	3500	3500	4300

Pixel Module schema

*Only at low |η|. Higher in forward/backward regions.


Increased Threshold in 2023


2022 < μ > ~ 54 2023 < μ > ~ 62

25

An application of dEdx in ATLAS

Calculate the mass of hypotetical particle via:

Convert $(dE/dx)_{trunc}$ to $\beta \gamma$ via calibrated relation

Calibrate with low mass SM hadrons need low pT \rightarrow ATLAS special runs with tracks reconstruction down to 100 MeV

- Plot $log((dE/dx)_{trunc})$ in narrow p-slices \rightarrow can identify $\pi \pm$, $k \pm$, $p \pm$
 - Peak dEdx MPV for $\beta \gamma = \pi \pm$, k \pm , p \pm

Repeat for many p-slice and fit with empirical function