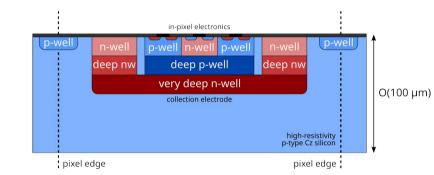
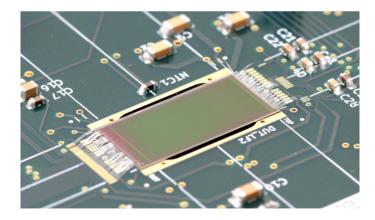


ELMA WORKSHOP

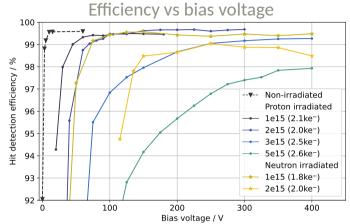
ENERGY RESPONSE OF MONOPIX2 SENSOR SERIES

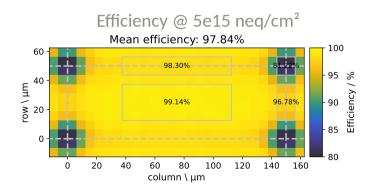

Lars Schall on behalf of the Monopix teams



LF-Monopix2

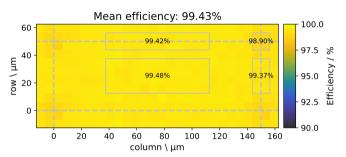
- 150 nm LFoundry CMOS technology
- Large collection electrode design
- Substrate resistivity >2 kΩcm
- Large scale 1x2 cm² chip
 - 100 μm thick sensor
 - Approx. 6000 e MIP charge MPV
 - Backside processing and metallization
 - 150x50 μm² pixel pitch
 - 6-bit ToT information @ 40 MHz
 - 4-bit in-pixel threshold tuning
- Fast column drain readout architecture (FE-I3 like)



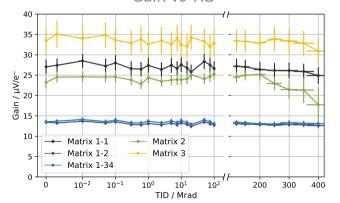


LF-Monopix2 NIEL irradiation

- Electron beam tests at DESY
- NIEL irradiated samples up to 5e15 neq/cm² available
 - Non-irradiated breakdown voltage >460 V
- Reach full depletion and >99% hit-detection efficiency up to 3e15 neq/cm²
- 5e15 neq/cm² still close to 98% mean efficiency
 - Pixel corners around 81%
 - Verified better performance for lower threshold
- This is more than 3 times the initially targeted NIEL fluence!



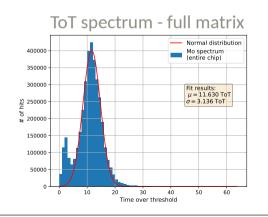
LF-Monopix2 X-ray irradiation

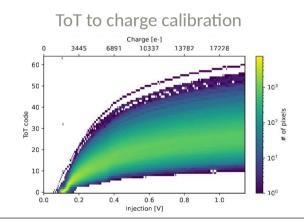

- Tested TID tolerance up to 400 Mrad
 - Fully functional at highest dose
 - Very good efficiency after 400 Mrad
 - Constant gain up to 200 Mrad

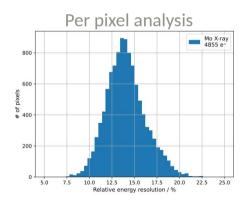
TID Fluence [Mrad]	Threshold [e ⁻]	Threshold Disp. [e ⁻]	ENC [e ⁻]
0	2055	91	92
100	1983	108	122
400	1865	142	140

Efficiency @ 400 Mrad

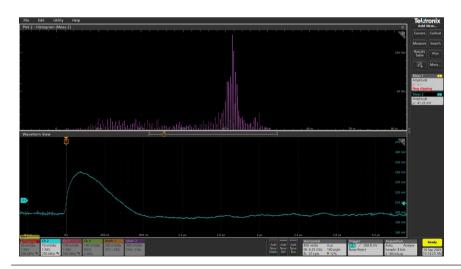
Gain vs TID

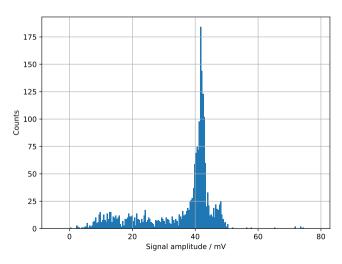



LF-Monopix2 Energy resolution incl. full FE


- Source measurements with Mo X-ray source (K_alpha @ 17480 eV)
- Assume linear response across relevant energy range: (4855 THR) e⁻ / 11.6 ToT = 244 e⁻ /ToT
- Relative energy resolution
 - FWHM * 244 e⁻ / 4855 e⁻ = 36.6%

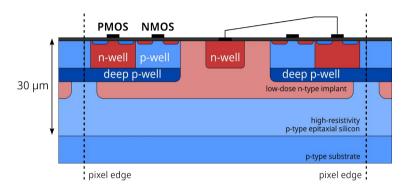
ToT response strongly pixel dependent \rightarrow Analyze on per pixel basis: 14% = 680 e⁻¹

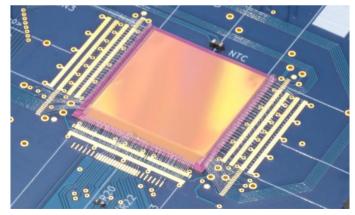




LF-Monopix2 Energy resolution analog

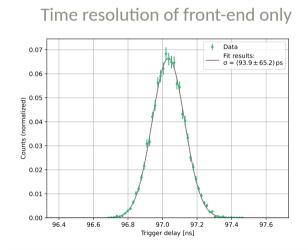
- Single pixel oscilloscope measurement, signal after CSA, little statistics
 - Same Mo x-ray target → See K_alpha and K_beta lines
 - K_alpha1 = 17479 eV, K_alpha2 = 17374 eV, K_beta = 19608 eV
- Relative energy resolution → roughly 2 mV / 42 mV = 4.5%

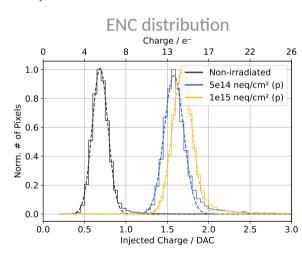


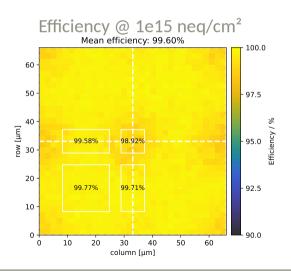


TJ-Monopix2

- 180 nm TowerSemi CMOS technology
- Small collection electrode design
- Substrate resistivity >1 kΩcm
- Large scale 2x2 cm² chip
 - 30 μm Epi layer or 100 μm Cz material
 - 2200 to 3000 e⁻ MIP charge MPV
 - 33x33 μm² pixel pitch
 - 7-bit ToT information @ 40 MHz
 - 3-bit in-pixel threshold tuning
- Fast column drain readout architecture (FE-I3 like)

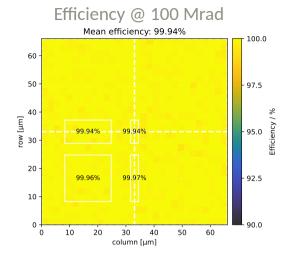


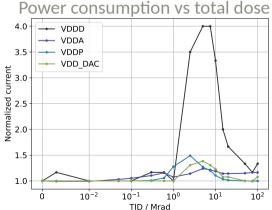




TJ-Monopix2 Beam tests

- Front-end time resolution <100 ps for MIP regime
 - Dominant sensor contribution of 1.5 ns → Long drift distance from pixel corner
- NIEL irradiated up to 1e15 neq/cm² → increase in ENC with fluence, still low
 - Very high hit-detection efficiency >99.5%

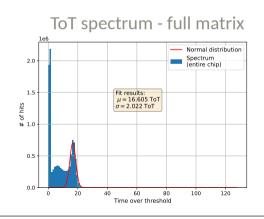


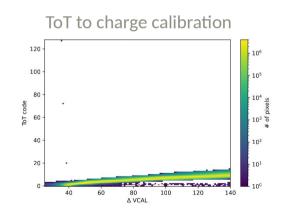


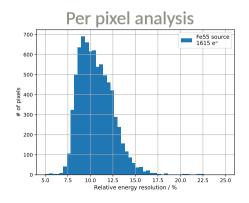
TJ-Monopix2 X-ray Irradiation

- Irradiated up to 100 Mrad total ionizing dose
 - Peak in power consumption around 1 10 Mrad
 - highest relative increase for digital domain
 - Periphery biggest absolute contributor
- Typical threshold reachable after 100 Mrad and annealing
 - Very good hit-detection efficiency

TID Fluence [Mrad]	Threshold [e ⁻]	Threshold Disp. [e ⁻]	ENC [e ⁻]
0	230	5	6
100	245	5	13



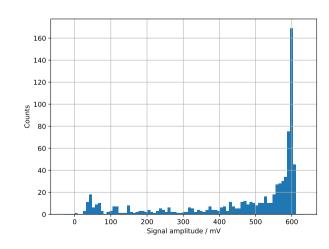



TJ-Monopix2 Energy resolution incl. full FE

- Fe55 source measurements (K_alpha @ 5890 eV)
- Relative energy resolution of full chip: 25%
 - Per pixel response: around 10%

- Dominated by digitization!
- Most of 7-bit ToT range is not used, difficult to adjust ToT response
- Limited injection range up to ca. 1600 e⁻ complicates ToT-energy calibration





TJ-Monopix2 Energy resolution analog

- Very limited statistics from only one analog test pixel available
 - Signal after pre-amplifier measured with oscilloscope (Fe55 source)
 - Initial sensor signal also available as test pixel, but not yet measured
- Relative energy resolution → less than 15 mV / 600 mV = 2.5%

Conclusion

- Both Monopix2 chips are not optimized for dE/dx measurements
 - No possibility to tune ToT response and large deviations between pixels
- LF-Monopix2:
 - 14% rel. energy resolution of full readout chain
 - Roughly 4.5% rel. energy resolution for pre-amplifier output signal
 - Dynamic range: 2 ke⁻ to >10 ke⁻ (upper limit not tested)
- TJ-Monopix2:
 - Around 10% rel. energy resolution of full readout chain
 - Less than 2.5% rel. energy resolution for pre-amplifier output signal
 - Limited dynamic range of 250e⁻ up to 3 ke⁻

Thank you for your attention!

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No. 675587-STREAM, 654168 (AIDA-2020) and 101004761 (AIDA-Innova)

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.

Backup