

PhD course of National Interest in Technologies for
Fundamental Research in Physics and Astrophysics

Annual Report

PhD Student : Saim Ali​
Cycle and a.a : 39th, 2023/24
Supervisor: Dr. Fabio Roberto Vitello, Dr. Eva Sciacca

Title: Analysis of astrophysical phenomena using efficient and parallelized
models on HPC computing systems.

Aims and objectives:
The aim of the research is efficiently processing and analyzing large astrophysical datasets.
The cosmological simulations and Astrophysics generates massive datasets from
simulations like the DEMNUni suite, which model the universe's evolution. A
single-threaded process struggles with massive datasets due to speed and memory
limitations. Parallel computing using MPI, openMP and openACC overcomes this with
dividing the task into multi processing and multi threading and taking data in chunks
efficiently.

Research Project:
The project uses VisIVO Server, an open source platform specifically designed for
astrophysical data visualization and analysis. The three main components are: VisIVO
Importer, VisIVO Filter and VisIVO Viewer.
The VisIVO Server provides a variety of filters, with my research focusing on the Point
Distribute Filter. This filter generates a table representing a volume derived from selected
fields of the input table, distributed using the NGP (Nearest Grid Point), CIC
(Cloud-In-Cell, by default), or TSC (Triangular Shaped Cloud) algorithms. The filter
exclusively accepts the VBT (VisIVO Binary Table) data format for processing.
CIC (Clouds-in-cells method): The Point Distribute Filter employs three interpolation
algorithms: Cloud-In-Cell (CIC), Triangular Shaped Cloud (TSC), and Nearest Grid
Point (NGP). I parallelize the CIC algorithm for efficient data distribution and interpolation
by mapping positions, computing weights, and distributing density across grid points.​
​

The data for this research is provided in Gadget format from DEMNUni simulations. These
simulations use the Tree Particle Mesh-Smoothed Particle Hydrodynamics (TreePM-SPH)
code GADGET-3. The DEMNUni suite consists of large-scale cosmological N-body
simulations, referred to as the "Dark Energy and Massive Neutrino Universe" (DEMNUni).
They track the evolution of Cold Dark Matter (CDM) and Hot Dark Matter (HDM) neutrino
particles, treating them as two separate collisionless species.

Research Progress: To enhance the efficiency of the Point Distribute Filter, a strategy for
parallelization using MPI (Message Passing Interface), and openMP was developed in the
Ist year and openACC in 2nd year with full implementation in the 2nd year with fully
functional code by the second year of my PhD.

Here is the detailed parallelization using MPI, openMP and openACC.

1. Data Distribution with MPI (Feb to April 2025)

The parallelization with MPI is designed as a highly effective distributed reading model,
where multiple processes simultaneously read their own non overlapping chunks of data.
The code is separating argument parsing (ParametersParser) from the core filter logic
(within startFilter). MPI is used to enable parallel execution across multiple processes. This
implementation strategically centralizes initial checks and data distribution on Rank 0 to
ensure consistency and efficiency in a distributed memory environment. Process Rank 0
handles all parameter parsing, and it can stop the entire process early if critical issues like a
missing input file are detected.

The MPI_Bcast is used for filename length, filename data, and exit_flag. It efficiently
propagates critical state information (validated parameters or error conditions) from Rank 0
to all other processes. The specific data reading logic within VSTable or the op.execute()
method, is designed to read only their assigned chunk from the input file. This prevents
redundant file opening and parsing by individual processes, which would be highly
inefficient in a distributed reading model. The multiple MPI_Barrier calls synchronization,
ensuring all processes have reached a specific stage (e.g. after initial parameter check, after
filename distribution, after final table validation) before proceeding to the next phase of
computation.

2. Data Collection and Reduction (may to june 2025):

The code achieves scalability by using a more advanced two-stage reduction strategy.
Instead of multiple MPI reduce calls on each grid point, it consolidates the entire grid of

data into a single, optimized highly collective MPI reduce operation. This ensures that MPI
reduce calls are made only once after thread level reduction is completed by each process.
Following the main computational loop, each process gathers the results from its local
threads, summing contributions there into a single, contiguous buffer. The second stage uses
MPI for a global reduction across processes using one MPI reduce call. This operation
aggregates the contributions from all processes into a single, final result on the root process,
which is then used to update the main data structure.

The entire reduction operation is not the bottleneck but the computational loop of the CIC.
This has been confirmed by recording runtimes of corresponding sections of the code. The
code scalability is not optimal, but it is still reasonable with increasing number of threads
due to file I/O (input output) being done on each iteration specifically, the getcolumn() and
putcolumn() functions. It however accomplishes reasonable scalability with an increasing
number of MPI processes as the file I/O operations do not hinder process level
concurrency.

3. Parallel Processing with OpenMP (july to august 2025): ​
The data is first divided among multiple MPI processes, where each process is assigned a
unique chunk of data to read and process (start_chunk to end_chunk). Inside each MPI
process, the #pragma omp parallel for directive is defined to further parallelize the main
computation loop into multithreading. This directive tells the OpenMP runtime to distribute
the iterations of the for loop among the available threads. The OpenMP parallelization is
implemented within the if(m_cic) block, leveraging shared-memory parallelism to
accelerate the computation by utilizing the multiple cores of a modern CPU.
omp_get_thread_num() returns a unique integer ID for the current thread that is executing
the code. These IDs are assigned sequentially, starting from 0 up to the total number of
threads.

Now finally I parallelized the code with the Hybrid Model (MPI and openMP) to get better
scalability, and efficiency but still I did not achieve the high scalability of the execution time
of the code as compared to the serial code.

​
4. OpenAcc (Open Accelerators)(sep to oct 2025): By replacing OpenMP with OpenACC
pragmas #pragma acc parallel, computations can be executed on the GPUs. I Installed the
OpenAcc on my Personal Computer and I am working on the implementation as I have not
yet acheived the scalability of the code with openACC, but hopefully at the end of my 2nd
year I will be able to achieve the required scalabilty.

Here is the link to my GitHub repository which contains code parallelized with MPI and
OpenMP.

https://github.com/itxsaimali/VisIVOServer-PointDistribute-miniapp/tree/Parallel-code

​
Challenges and action taken: During the implementation I faced a lot of challenges like:

1.​ I had to develop a hybrid model with MPI and openMP which was so challenging for
me then on the suggestions of my supervisors I divided the task in this way that first
implements MPI and then openMP.

2.​ First I was using block-reading logic, which was not efficient and fruitful. Then I
switched to a distributed reading model with each process reading data
independently.

3.​ I faced difficulties in the chunk mechanism when I tested the code with large data
sets. The number of rows was not sufficient, so

4.​ I worked on the code to fix the issue that every process only read its own chunk of
data.

5.​ There was duplication in a parallel environment and a lack of basic validation like
parse and check parameters, filename and create a VSTable object, which was not
allowed then I fixed that issue with validated parameters from Rank 0 to all other
processes.

6.​ The major issue that i am facing is the scalability of the execution time for MPI,
openMP, and openACC, which is yet not achieved with high scale, still i am working
on it to get it as soon as possible.​

List of attended courses and passed exams

1. Machine learning for Physics, 3 CREDITS Exam done

2. High energy physics detectors in space, 2,5 CREDITS Exam done

3. Deep network and structure learning 2 CREDITS Exam done​

4. Machine learning programming for Physics, 3 CREDITS Exam done

https://github.com/itxsaimali/VisIVOServer-PointDistribute-miniapp/tree/Parallel-code

List of attended conferences, workshops and schools.

1.​ Course on computing and HPC for Astronomy and Astrophysics

(24 June 2024 to 5 July 2024 - Bologna, https://indico.ict.inaf.it/event/2785/)

2.​ TECH-FPA PhD Retreat 2025​

Gran Sasso National Laboratory (LNGS) of the National Institute for Nuclear

Physics (INFN) L'Aquila, Italy (17/02/2025 – 21/02/2025)

3.​ INAF Workshop on Astro Statistic 2024​

 National Institute for Astrophysics, Catania Italy (07/10/2024 – 09/10/2024)

4.​ Parallel Programming with MPI and OpenMP

Johannes Gutenberg-Universität Mainz, Germany. (01/04/2025 – 04/05/2025)

5.​ Italian Language and Culture Course - A2, 2024/2025​

 University of Catania, ItalStra

List of published papers/proceedings.

Thesis title (even temporary)

Analysis of astrophysical phenomena using efficient and parallelized models on HPC

computing systems.

Date, 01/10/2025 Signature

The supervisors Signature :

https://www.italstra.unict.it/it

