Presentation for admission to the 2° year

PhD program of National interest 'Technology for Fundamental Research in Physics and Astrophysics' (Curriculum Detectors)

Dr. Federico Cittadini

PhD TFPA, XL cycle, A.Y. 2024/25 federico.cittadini@phd.unipd.it

INFN Sec. Perugia federico.cittadini@pg.infn.it

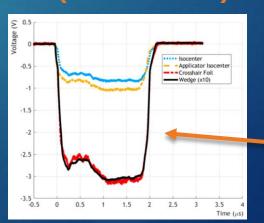
Outline

- Research topic
- Objectives and Performed research activity
- Future activities and Overall planning
- Courses, exams, training activities and academic achievements

Research topic

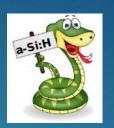
Research and development of a solid-state sensor acting as dosimeter for radiotherapy application, both for conventional and FLASH clinical beams.

Conventional radiotherapy technique

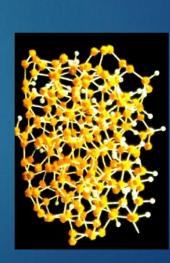

- □ Dose delivered in many sessions
- Session time ≈ 10 min
- Dose rate ≈ 6 Gy/min
- Damaging of healthy tissues

PROBLEM: conventional dosimeters **saturate** under a FLASH clinical beam...

(POSSIBLE) SOLUTION: HASPIDE dosimeter!


FLASH radiotherapy

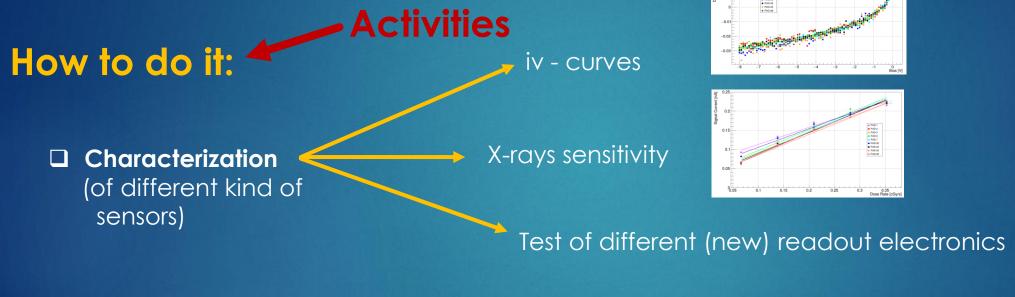
- ☐ Same dose delivered in only one pulse!
- Session time ≈ tenths of a second
- Dose per pulse ≈ 20 40 Gy
- Duration of a pulse $\approx \mu s$
- Less side-effects (FLASH EFFECT)

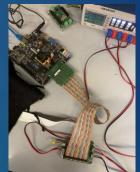

TIME and INTENSITY are fundame ntal

HASPIDE experiment

The INFN HASPIDE project aims to use thin layers of a-Si:H (Hydrogenated Amorphous Silicon) material as ionizing radiation detector.

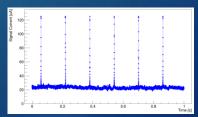
- Disordered semiconductor high radiation hardness
- \Box E_{gap} \approx 1,75 eV \Longrightarrow low dark current
- Well-developed deposition technology (used for photovoltaic panels)
- Hydrogen introduced for defects passivation (dangling bonds)
- □ Thin layers of intrinsic a-Si:H ($\approx 1 20 \mu m$) deposited on polymide thin





Objective

Prove, through measurements and data analysis, that a-Si:H sensors are good candidate as


dosimeters under FLASH beams

Perform measuremets in FLASH/quasi-FLASH accelerators (e.g., Torino, Pisa, Foligno) and standard clinical beams (Careggi)

Planned research activity (2° Year)

Characterization of new kind of sensors and comparison (EPFL vs Sapienza)

Comparison bewtween different eletronics (Keithley vs TetrAmm vs Cleopatra)

Beam tests (Torino, Trento, Pisa)

Learn how to use a pulse simulator (new CAEN object) to test different electronics with the same detector signal.

Overall Planning

1° YEAR

Sensors charcterization

Beam test

Data analysis

2° YEAR

Sensors characterization

Beam test

Data analysis

Readout electronics analysis

3° YEAR

Comparison among sensors

Comparison among electronics

Results

Thesis

Training Activities

Courses

- 1. Photodetection: Scintillators and Silicon Photomultiplier (2 cfu) passed
- 2. Detectors for ionizing radiation (1 cfu, UniPg course) passed
- Spectroscopic fine characterization of Nanosystems and advanced materials (1 cfu, UniPg course)
 passed
- 4. Solid State Detectors (2 cfu) attended

> Schools

- Attendence of TECH-FPA PhD Retreat 2025 (17-21 February, LNGS)
- Submission to attend EDIT School at CERN (3-13 March 2026)

Others Training Activities

- 1. Tutoring in Physics for pharmacy degree course
- 2. Presentation of a seminar at UniCam, Camerino, for bachelor degree students in Physics

Other Activities

Conferences

- 1. Oral presentation at IPRD25, Siena (15-19 September 2025)
- 2. Oral presentation at SIF, Palermo (22-26 September 2025)

Publications

- 1. "Hydrogenated Amorphous Silicon Charge-Selective Contact Devices on a Polyimide Flexible Substrate for Dosimetry and Beam Flux Measurements", Sensors, 19 February 2025
- 2. Conference proceeding (IPRD25), to be published in JINST

THANKS FOR THE ATTENTION

