Presentation for admission to the 3rd year

PhD Program of National Interest in "Technologies for fundamental research in Physics and Astrophysics" (Curriculum: Detectors, Lasers and Optics)

Dr. Tommaso Croci

PhD TECH-FPA, XXXIX cycle, A.Y. 2024/2025

tommaso.croci@phd.unipd.it

INFN Perugia Unit

tommaso.croci@pg.infn.it

Perugia, 19/09/2025

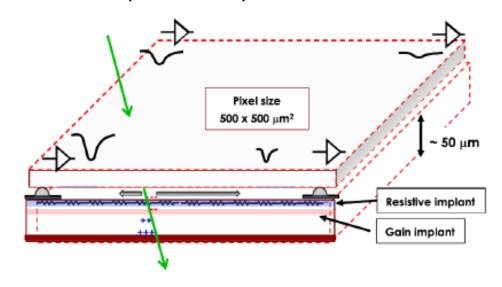
<u>Outline</u>

- Research topic, objectives and overall planning
- Research activities and achievements
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)
- Courses, exams and other training activities
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)

Outline

- Research topic, objectives and overall planning
- Research activities and achievements
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)
- Courses, exams and other training activities
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)

Research topic


- Development of **methodologies** and **numerical models** for the study, design, and optimisation of **innovative radiation-hard silicon particle detectors** for **4D tracking** in future **high-energy physics experiments**, e.g. Future Circular Collider (FCC) at CERN, Geneva, Switzerland.
- Target: silicon sensor-based 4D tracking detectors for future colliders (*)
 - □ high **temporal** (~10-20 ps) and **position** (10 µm) **resolution**
 - ☐ large area coverage (~m²)

19/09/2025

- □ low power budget (0.1-0.2 W/cm²)
- □ low material budget (100 µm or less)
- \Box high radiation tolerance (> 10¹⁷ 1 MeV n_{eq}/cm²)

(*) "The 2021 ECFA detector research and development roadmap", ECFA Detector R&D Roadmap Process Group, DOI: 10.17181/CERN.XDPL.W2EX

 LGAD-based DC-coupled Resistive Silicon Detectors (DC-RSD)

Objectives & overall planning (1/2)

• Development of methodologies and numerical models for the study, design, particle detectors optimisation of **innovative radiation-hard silicon** for 4D tracking in future high-energy physics experiments, e.g. Future Circular Collider (FCC) at CERN, Geneva, Switzerland.

Objectives → Activities

- ☐ Development of Technology-CAD (TCAD) simulation methodologies and models for particle sensors and radiation-induced damage effects at extreme fluences (10^{16} - 10^{17} 1 MeV n_{eq} cm⁻²) \rightarrow TCAD simulation
- ☐ Electrical characterisation and beam test of the available sensor samples by means of proper test equipment and accelerator centre facilities, before and after irradiation \rightarrow Experimental measurements
- \square Irradiation of the available sensor samples by means sources and irradiation facilities \rightarrow Irradiation
- ☐ Calibration and validation of the developed TCAD simulation methodologies and models based on the agreement between simulation and experimental data \rightarrow **Model validation**
- ☐ Dissemination of the research activities at conferences, through the publication of articles and the production of the **final thesis** → **Dissemination**

T. Croci, PhD TECH-FPA, INFN Perugia Unit

Objectives & overall planning (2/2)

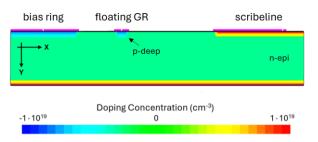
• Development of **methodologies** and **numerical models** for the study, design, and optimisation of **innovative radiation-hard silicon particle detectors** for **4D tracking** in future **high-energy physics experiments**, e.g. Future Circular Collider (FCC) at CERN, Geneva, Switzerland.

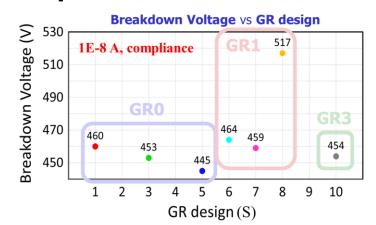
Activities	M6	M12	M18	M24	M30	M36
TCAD simulation						
Experimental measurements						
Irradiation						
Model validation						
Dissemination						

M6-M12 (1st A.Y.), M18-M24 (2nd A.Y.), M30-M36 (3rd A.Y.), A.Y. (academic year).

Outline

- Research topic, objectives and overall planning
- Research activities and achievements
 - □ 2nd academic year
 - ☐ 3rd academic year (planning)
- Courses, exams and other training activities
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)

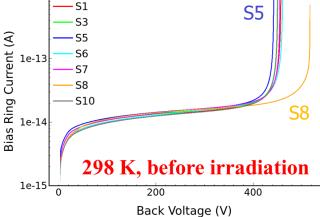


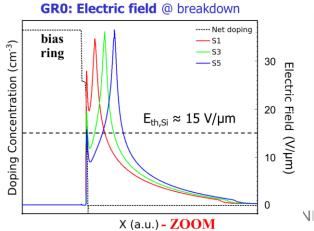

Research activities and achievements (1/6)

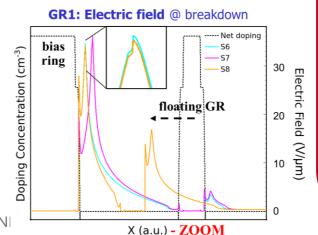
TCAD simulation – 2nd academic year

 Guard Ring (GR) protection structures in thin p-i-n and LGAD silicon detectors on **n-doped substrates**. [T. Croci et al., NIM, A 1080 (2025) 170753]

Layout of a GR structure (e.g. GR1)

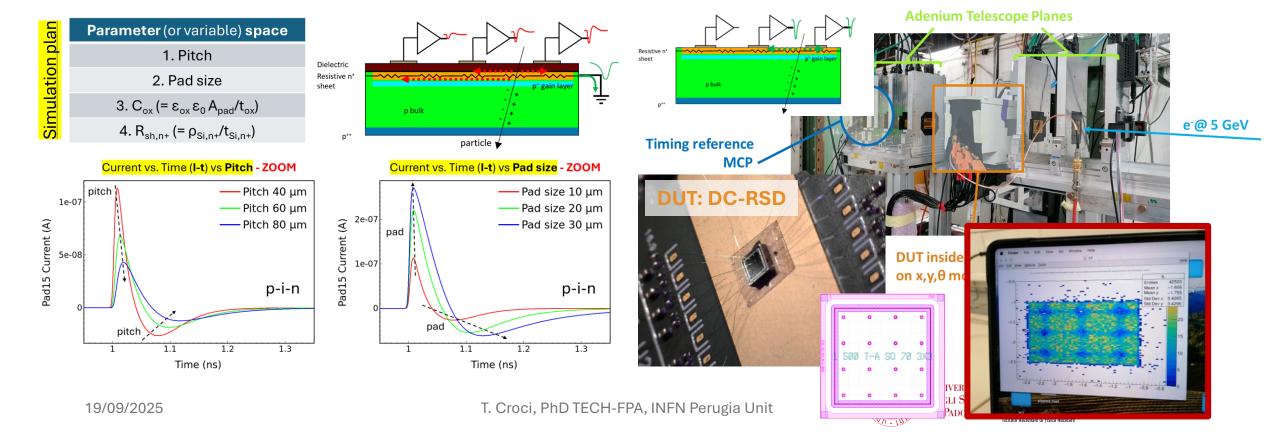






 $GR0 \approx GR1 \approx GR3$ **S5 worst** GR design **S8 best** GR design

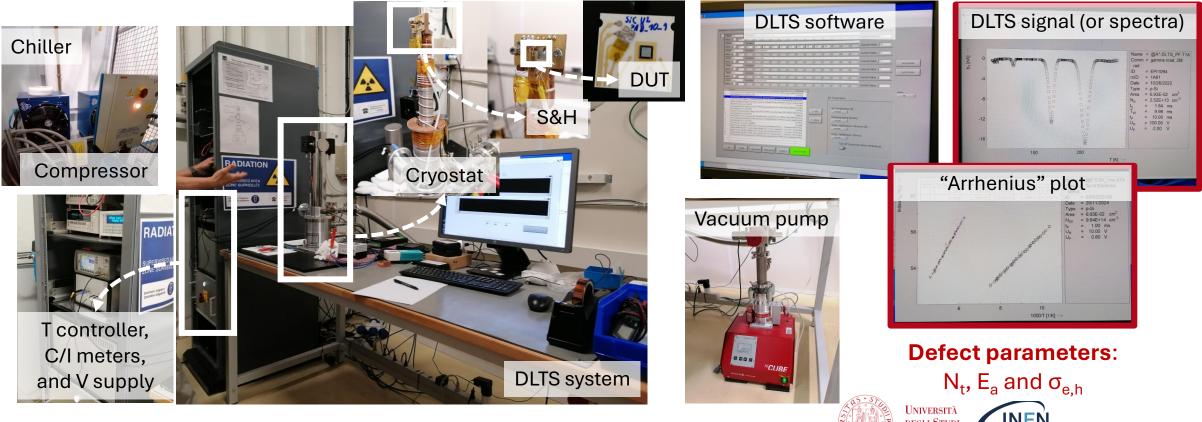
Current-Voltage vs **GR design** 1e-12 S1 **S5**



"NLGAD" R&D batch, FBK (ongoing production)

Research activities and achievements (2/6)

TCAD simulation and Beam Test – 2nd academic year


- LGAD-based AC-coupled Resistive Silicon Detector (**RSD**) architectures ("RadHard AC-LGAD" R&D production).
- Resistive **Beam test** of LGAD-based DC-coupled chitectures RSD ("DC-RSD1" R&D production) at duction). DESY, Hamburg, Germany (9-16 Dec '24).

Research activities and achievements (3/6)

Experimental measurements – 2nd academic year

• **Defect spectroscopy**: setup, training and measurements at Deep Level Transient Spectroscopy (**DLTS**) system – SSD Lab, CERN EP-DT group (April-September '25).

DI PADOVA

Research activities and achievements (4/6)

TCAD simulation – 2nd academic year

• Development of a TCAD simulation framework capable of reproducing the DLTS measurement results – SSD Lab, CERN EP-DT group (April-September '25).

Research activities and achievements (5/6)

Dissemination – 2nd academic year

Presentation at conference:

□ *Poster*: "Enhancing guard-ring protection structures for the next generation of radiation-hard thin silicon particle detectors", 17th Vienna Conference on Instrumentation - VCI2025, 17-21 February 2025, Vienna University of Technology, Wien, Austria.

• **Publications** (Corresponding Author):

- <u>T. Croci</u> et al., "Enhancing guard-ring protection structures for the next generation of radiation-hard thin silicon particle detectors", Nuclear Inst. and Methods in Physics Research A, Volume 1080, **November 2025**, 170753. DOI: 10.1016/j.nima.2025.170753.
- T. Croci et al., "Measurements and TCAD simulations of guard-ring structures of thin silicon sensors before and after irradiation", Nuclear Inst. and Methods in Physics Research A, Volume 1069, **December 2024**, 169801. DOI: 10.1016/j.nima.2024.169801.

Publications (Co-Author):

- A. Fondacci, <u>T. Croci</u> et al., "Compensated LGAD optimisation through van der Pauw test structures", Nuclear Inst. and Methods in Physics Research A, Volume 1080, **November 2025**, 170800. DOI: <u>10.1016/j.nima.2025.170800</u>.
- ☐ F. Moscatelli, A. Morozzi, <u>T. Croci</u> et al., "TCAD modeling of bulk and surface radiation damage effects in silicon devices", Journal of Instrumentation, Volume 20, **September 2025**, C09006. DOI: <u>10.1088/1748-0221/20/09/C09006</u>.
- A. Fondacci, <u>T. Croci</u> et al., "Design and optimisation of radiation resistant AC- and DC-coupled resistive LGADs", Journal of Instrumentation, Volume 20, **June 2025**, C06016. DOI: <u>10.1088/1748-0221/20/06/C06016</u>.
- A. Morozzi, A. Fondacci, <u>T. Croci</u> et al., "Thin silicon sensors for extreme fluences: a doping compensation strategy", Nuclear Inst. and Methods in Physics Research A, Volume 1069, **December 2024**, 169904. DOI: <u>10.1016/j.nima.2024.169904</u>.
- A. Fondacci, <u>T. Croci</u> et al., "TCAD investigation of Compensated LGAD sensors for extreme fluence", Nuclear Inst. and Methods in Physics Research A, Volume 1068, **November 2024**, 169811. <u>DOI: 10.1016/j.nima.2024.169811</u>.

T. Croci. PhD TECH-FPA. INFN Perugia Unit

Research activities and achievements (6/6)

Dissemination – 2nd academic year

□ Publications (Co-Author):

- A. R. Altamura et al., "Radiation-resistant thin LGADs for enhanced 4D tracking", Nuclear Inst. and Methods in Physics Research A, Volume 1081, **January 2026**, 170799. DOI: 10.1016/j.nima.2025.170799.
- R. Arcidiacono et al., "Innovative DC-coupled resistive silicon detector for 4D tracking", Nuclear Inst. and Methods in Physics Research A, Volume 1080, November 2025, 170796. DOI: 10.1016/j.nima.2025.170796.
- M. Da Rocha Rolo et al., "ARCADIA Fully-Depleted CMOS MAPS development with LFoundry 110nm CIS", Frontiers in Sensors, Volume 6, August 2025, 1603755. DOI: 10.3389/fsens.2025.1603755.
- V. Sola et al., "Thin LGAD sensors for 4D tracking in high radiation environments: state of the art and perspective", Frontiers in Sensors, Volume 6, August 2025, 1648102. DOI: 10.3389/fsens.2025.1648102.
- L. Lanteri et al., "Characterization of the FBK-LGAD devices manufactured at an external foundry for large-volume productions", Journal of Instrumentation, Volume 20, July 2025, C07039, DOI: 10.1088/1748-0221/20/07/C07039.
- M. Centis Vignali et al., "Development and wafer-level characterization of the first production of DC-RSD sensors at FBK", Journal of Instrumentation, Volume 20, July 2025, C07037. DOI: 10.1088/1748-0221/20/07/C07037.
- M. Durando et al., "Thin LGADs as radiation-resilient sensors for 4D tracking", Journal of Instrumentation, Volume 20, **July 2025**, C07028. DOI: 10.1088/1748-0221/20/07/C07028.
- M. Ferrero et al., "Compensated LGAD an innovative design of thin silicon sensors for very high fluences", Journal of Instrumentation, Volume 20, July 2025, C07023. DOI: 10.1088/1748-0221/20/07/C07023.
- M. Menichelli et al., "Hydrogenated Amorphous Silicon Charge-Selective Contact Devices on a Polyimide Flexible Substrate for Dosimetry and Beam Flux Measurements", Sensors, Volume 25, February 2025, 1263. DOI: 10.3390/s25041263.
- G. Mazza et al., "Cleopatra: a 12-channel recycling integrator ASIC for the readout of hydrogenated amorphous silicon detectors in radiotherapy dosimetry", Journal of Instrumentation, Volume 20, January 2025, C01034. DOI: 10.1088/1748-0221/20/01/C01034.
- R. S. White et al., "Characterisation of the FBK EXFLU1 thin sensors with gain in a high fluence environment", Nuclear Inst. and Methods in Physics Research A, Volume 1068, **November 2024**, 169798. DOI: 10.1016/j.nima.2024.169798.

Outline

- Research topic, objectives and overall planning
- Research activities and achievements
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)
- Courses, exams and other training activities
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)

Research activities and achievements (1/2)

3rd academic year (planning)

- TCAD simulation
 - ☐ Set-up and validation of the TCAD simulation and design workflows, both before and after irradiation, focused on
 - GR protection structures in thin p-i-n and LGAD silicon detectors on n-doped substrate
 - LGAD-based RSD architectures under different occupancy conditions.
 - ☐ Assessment and benchmarking of the TCAD-based DLTS simulation framework for defect spectroscopy in silicon particle detectors.
- Experimental measurements
 - ☐ Electrical characterization and study of the "popcorn" noise of the different GR design strategies for thin p-i-n and LGAD detectors on n-type substrate ("NLGAD" R&D production), both before and after irradiation.

T. Croci, PhD TECH-FPA, INFN Perugia Unit

Research activities and achievements (2/2)

3rd academic year (planning)

- Dissemination
- ☐ Presentations at conferences/workshops:
 - "4th DRD3 week on Solid State Detectors R&D", **10-14 Nov 2025**, CERN, Geneva, Switzerland.
 - "21st Trento Workshop on Advanced Silicon Radiation Detectors" TREDI2026 (work in progress),
 Feb 2026, Perugia, Italy.
 - ... (intentionally left blank)
- ☐ **Publications** (Corresponding Author):
 - Article: "A TCAD-based DLTS simulation framework for defect spectroscopy in silicon particle detectors".
 - Article: "Guard-Ring protection structures for radiation-hard thin silicon particle detectors: design, test, and performance".
 - ... (intentionally left blank)
- ☐ Production of the final PhD thesis

Outline

- Research topic, objectives and overall planning
- Research activities and achievements
 - ☐ 2nd academic year
 - ☐ 3rd academic year (planning)
- Courses, exams and other training activities
 - □ 2nd academic year
 - ☐ 3rd academic year (planning)

Courses, exams and other training activities (1/2)

2nd academic year

Courses and exams:

- ☐ "Machine Learning Programming in Physics", 1 Oct-5 Nov 2024, INFN and University of Bari, course held online, 2.5 CFU.
- ☐ "Design of readout integrated circuits for particle detectors", **4-19 Nov 2024**, INFN and University of Bari, course held online, 2.5 CFU.
- □ "Numerical simulation of electronic devices with TCAD tools for HEP applications", 9-11 Jun 2025, INFN and University of Perugia, course held in presence, 2.5 CFU.

Workshops:

- "2nd DRD3 week on Solid State Detectors R&D", 2-6 Dec 2024, CERN, Geneva, Switzerland.
- ☐ "6th Allpix Squared User Workshop", **7-9 May 2025**, online attendance.

Seminar:

□ "Advanced UK Instrumentation Training 2025", 6 May-27 Jun 2025, lectures held online.

Courses, exams and other training activities (2/2)

3rd academic year (planning)

Schools:

- ☐ "Events" of the TECH-FPA National PhD course (national days/guided tours)
- ☐ ... (intentionally left blank)

Workshops:

"4th DRD3 week on Solid State Detectors R&D", 10-14 Nov 2025, CERN, Geneva, Switzerland.

T. Croci, PhD TECH-FPA, INFN Perugia Unit

- □ "21st Trento Workshop on Advanced Silicon Radiation Detectors" TREDI2026 (work in progress), Feb 2026, Perugia, Italy.
- ☐ ... (intentionally left blank)

Seminars:

☐ ... (intentionally left blank)

THANKS FOR YOUR ATTENTION!

Dr. Tommaso Croci

PhD TECH-FPA, XXXIX cycle, A.Y. 2024/2025

tommaso.croci@phd.unipd.it

INFN Perugia Unit

tommaso.croci@pg.infn.it

Perugia, 19/09/2025

<u>BACKUP</u>

Dr. Tommaso Croci

tommaso.croci@phd.unipd.it / tommaso.croci@pg.infn.it

Current position within the PhD TECH-FPA

- ☐ Hosting institution: National Institute for Nuclear Physics (INFN), Perugia Unit
- ☐ Supervisors: Dr. *Arianna Morozzi*, Prof. *Daniele Passeri*, Prof. *Pisana Placidi*
- ☐ Curriculum: Detectors, Lasers and optics
- ☐ A.Y.: 2024/2025

T. Croci, PhD TECH-FPA, INFN Perugia Unit

Dr. Tommaso Croci

tommaso.croci@phd.unipd.it / tommaso.croci@pg.infn.it

Università degli Studi di Padova

- - electronics.

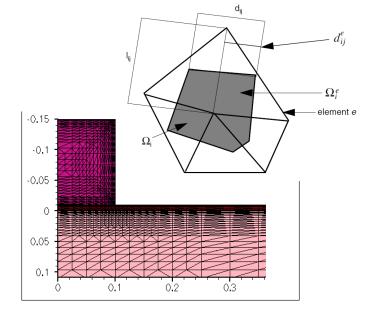
 ☐ TCAD simulation and design (Synopsys Sentaurus)
 - DC-coupled Resistive Silicon Detector (DC-RSD): development of a hybrid approach (TCAD + Spice), design and optimization in terms of spatial resolution and reconstruction of the particle impact positions.
 - Low-Gain Avalanche Diode (**LGAD**): design and optimization of the gain layers of thin LGAD detectors and the related guard-ring protection structures (radiation hardness and high voltage operations).
 - □ Development and validation of the surface and bulk radiation damage numerical model ("University of Perugia" TCAD model)
 - **Experimental measurements** (i.e., electrical characteristics and response to radiation stimuli laser and β source) in **laboratory** of p-i-n and LGAD devices, before and after irradiation.
 - ☐ VLSI design, simulation and verification (Cadence Virtuoso, Synopsys Custom Compiler)
 - Monolithic Active Pixel Sensors (MAPS) in 110 nm LFoundry CMOS technology
 - integrated 10 µm-pitch Active Pixel Sensor (APS) arrays in standard CMOS technology (LFoundry 110 nm).
 - □ PCB design (KiCAD EDA) of an acquisition system (based on the Arduino platform) for the measurement of analog signals generated by active pixel test structures.

Technology-CAD (TCAD) simulations

■ **TCAD simulation tools** solve fundamental, physical partial differential equations, such as diffusion and transport equations for discretized geometries (finite element meshing).

This deep physical approach gives TCAD simulation predictive accuracy.

Synopsys© Sentaurus TCAD


$$\nabla \cdot (-\varepsilon_S \nabla \phi) = q \ (N_D^+ - N_A^- + p - n)$$
 Poisson

$$\frac{\partial n}{\partial t} - \frac{1}{q} \nabla \cdot \vec{J}_n = (Un)$$

$$\frac{\partial p}{\partial t} + \frac{1}{q} \nabla \cdot \vec{J}_p = (Up)$$

Electron continuity

Hole continuity

$$(U_{n,p}=G-R)$$

Simulation setup

Physical models

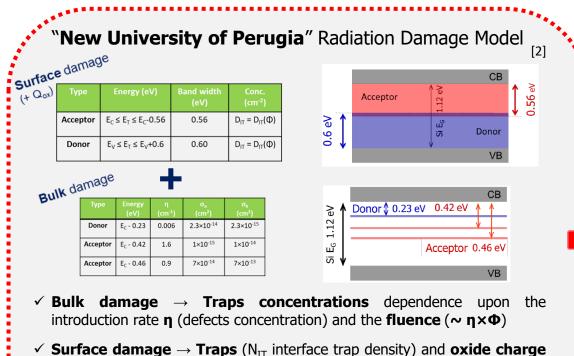
- ✓ Standard drift-diffusion model
 - => Fermi-Dirac statistics
- ✓ Generation/Recombination rate
 - => Shockley-Read-Hall (SRH)
 - => Band-To-Band Tunneling (BTBT)
 - => Auger
 - => Massey impact ionization model
- ✓ Carriers mobility variation
 - => doping and field dependent
- ✓ Bandgap narrowing model
 - => OldSlotboom
- ✓ Physical parameters
 - $=> s_0 = 0$ cm/s (surface recomb. velocity)
 - $=> \tau_n = \tau_p = 1E-3 \text{ s (e-/h+ recomb. lifetime)}$

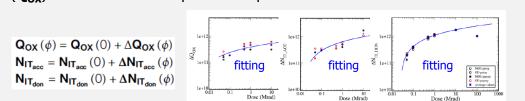
Radiation damage model

- ✓ "New University of Perugia"
 - => combined **surface** and **bulk** damage scheme

bulk

	energy (eV)	intr. rate (cm ⁻¹)	eXsect (cm²)	hXsect (cm²)
Donor	E _c -0.23	0.006	2.3e-14	2.3e-15
Acceptor	E _c -0.42	1.6	1.0e-15	1.0e-14
Acceptor	E _C -0.46	0.9	7.0e-14	7.0e-13


anrface


	Acceptor-like	Dono	r-like	
Energy (eV)	$E_{C} - 0.56 \le E_{T} \le E_{C}$	$E_V \le E_T \le I$	$E_V \le E_T \le E_V + 0.60$	
Width (eV)	0.56	0.6	0.60	
D _{IT} (eV ⁻¹ cm ⁻²)	$D_{IT_{acc}}(\phi)$	$D_{IT_{don}}(\phi)$		
D _Π (eV ⁻¹ cm ⁻²) N _Π (φ) (cm ⁻²)	$N_{IT_{acc}}(0) + \Delta N_{IT_{acc}}(\phi)$	$N_{IT_{don}}(0) + \Delta N_{IT_{don}}(\phi)$		
σ _{electrons} (cm ²)	1.00×10^{-16}	1.00 ×		
σ _{holes} (cm ²)	1.00×10^{-15}	1.00×10^{-16}		
	Pre-irradiation values			
			$Q_{OX}(0) = 8.0 \times 10^{+10}$ $N_{\Pi_{acc}}(0) = 7.0 \times 10^{+09}$	

Extension of the "UNIPG" Rad. Dam. TCAD Model

(c) ΔN_{IT_DON}

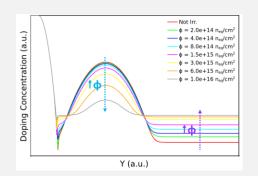
"PerugiaModDoping"

(a) ΔQ_{OX}

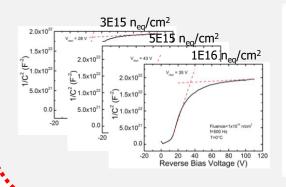
(b) $\Delta N_{IT\ ACC}$

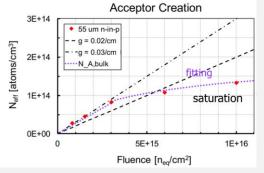
(Q_{OX}) **concentrations** dependence upon the **fluence** as follow:

Torino analytical parameterisations

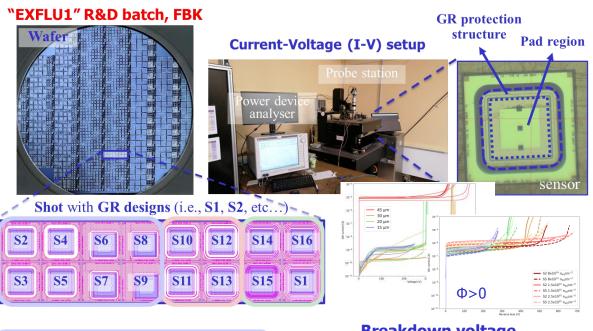

• Gain Layer (Acceptor Removal)

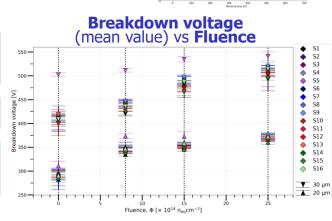
$$N^{\text{peak}}_{A,GL}(\Phi) = N_{A,GL}(0) \cdot e^{-c \cdot \Phi}$$


- Bulk (Acceptor Creation)
- \checkmark if $0 < \Phi \le 3e15 \, n_{eq}/cm^2$

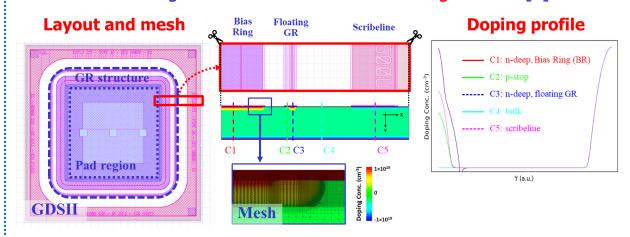

$$N_{A,bulk}(\Phi) = N_{A,bulk}(0) + g_c \cdot \Phi$$

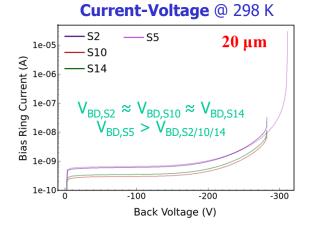
 \checkmark if $\Phi > 3e15 n_{eq}/cm^2$

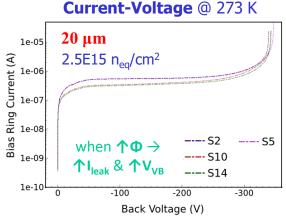



Optimisation studies of Guard-Ring (GR) protection structures

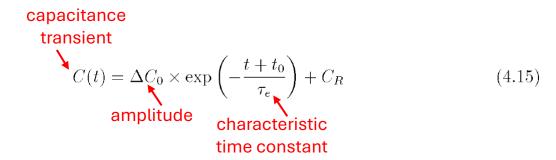
for thin p-type substrates (45, 30, 20 and 15 μ m) up to high fluences (2.5×10¹⁵ 1 MeV n_{eq}/cm²)


■ Extensive test campaign on the different GR structures contained in the "EXFLU1" R&D batch (FBK)




- ✓ GR0: no floating GRs, varying
 - o *edge* region size
 - o void region size (i.e., scribeline)
 - metal overhang
- ✓ GR1: 1 floating GR, varying
 - floating GR position
- GR3: 3 floating GRs, using one or both of:
 - o single *n-deep* implant
 - o single *p-stop* implant

Ad-hoc TCAD modelling of the different GR design strategies, accounting for the radiation-induced damage effects [1]



GR0 \approx **GR1** \approx **GR3**, & **S5** best GR design

C-DLTS transient analysis (1/)

(from Michael Moll's PhD thesis, Ch. 4, Para. 4.4, pp. 81-88)

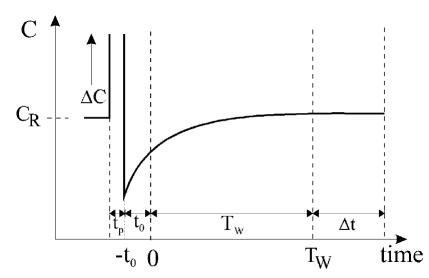


Figure 4.8: Time axis used for analysis of capacitance transients. A delay period t_0 has to be included due to the pulse overload recovery of the capacitance bridge.

Questions:

- How the defect parameters (i.e. concentration, activation energy and cross section) are obtained from the measured capacitance transients?
- How the DLTS spectra are generated?

Assumptions: exponential behaviour for the capacitance transient (Eq. 4.15) and definition of the time axis as displayed in Fig. 4.8

Methods for analysing transient signal:

- Double boxcar (integrator)
- Lock-in (amplifier?)
- Correlator functions
- Fourier transformation (DLTFS)
- Laplace transformation

24/04/2025 T. Croci, SSD Lab, CERN 28

C-DLTS transient analysis: Double boxcar method (1/)

(from Michael Moll's PhD thesis, Ch. 4, Para. 4.4, pp. 81-88)

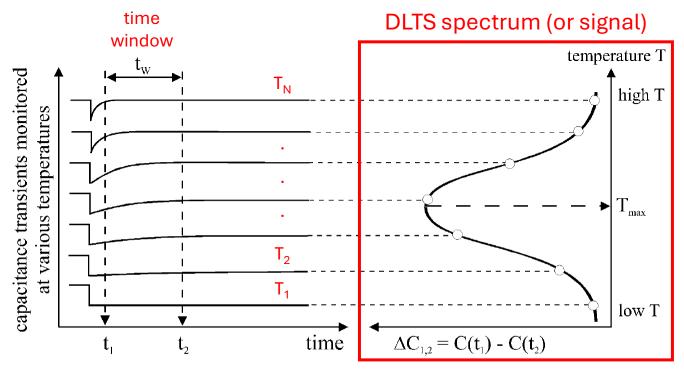


Figure 4.9: The left-hand side shows capacitance transients at various temperatures, while the right-hand side shows the corresponding DLTS signal resulting from using the double boxcar to display the difference between the capacitance at time t_1 and the capacitance at time t_2 as a function of temperature (after [Lan74]). **NB**: after filling pulse, t_p , and delay period t_0

Emission time constant, τ_e , at the peak maximum temperature, T_{max} , in the DLTS spectrum @ time window

$$\tau_e(T_{max}) = \frac{t_1 - t_2}{\ln\left(\frac{t_1}{t_2}\right)}.$$
 (4.16)

Double boxcar integrator method: consists of taking the difference between the measured capacitance, $\Delta C_{1,2} = C(t_1) - C(t_2)$, at two precise moments (t_1 and t_2), **NB**: after the filling pulse, t_p , and the delay period, t_0 (see previous slide).

<u>DLTS spectrum</u>: difference $\Delta C_{1,2} = C(t_1) - C(t_2)$ plotted **versus** the temperature, **T**.

- Zero @ T_{low} & T_{high} where the emission process is too slow and too fast, respectively.
- Max @ T_{max} where the emission time constant, $\tau_e(T_{max})$, fits the chosen time window, t_W , depending on t_1 and t_2 (Eq. 4.16).

Arrhenius plot: can be constructed from a set of data $(T_{max,i}, \tau_e(T_{max,i}))$ obtained performing several temperature scans with different time windows.

<u>Drawback</u>: the outcoming DLTS signal is fully influenced by the behaviour of the transient signal at the two sampling points.

C-DLTS *transient analysis:* Correlator functions (1/2)

(from Michael Moll's PhD thesis, Ch. 4, Para. 4.4, pp. 81-88)

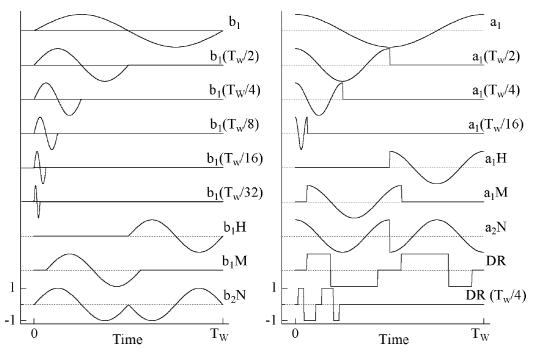


Figure 4.10: The 18 correlator functions used for the maximum evaluation.

$$b_1 = \frac{2\Delta C_0}{T_W} \int_0^{T_W} \exp\left(-\frac{t+t_0}{\tau_e}\right) \sin\left(\frac{2\pi}{T_W}t\right) dt \tag{4.17}$$

$$\tau_e(T_{max}) = 0.43 \times T_W.$$
(4.18)

Correlator function: the **complete capacitance transient** is used by **folding** it with a **correlator function**, e.g. a sine, namely by doing the **convolution** between the **measured signal** and a **known function**, called **correlator**. The result is a correlator function, e.g. b_1 (Eq. 4.17), where T_W is the time window.

DLTS spectrum: correlator, e.g. $\mathbf{b_1}$, plotted **versus** the temperature, **T**. NB: in this case, the **emission time constant**, $\tau_{e}(T_{max})$, can only be **calculated numerically** (Eq. 4.18), where 0.43 corresponds to 512 time bins.

Arrhenius plot: can be constructed from 18 pairs $(T_{\text{max,i}}, \tau_{\text{e}}(T_{\text{max,i}}))$ for each time window (usually 20, 200 and 2000 ms), by using in total 18 different correlator functions (Fig. 4.10). See example in the next slide.

C-DLTS transient analysis: Correlator functions (2/2)

(from Michael Moll's PhD thesis, Ch. 4, Para. 4.4, pp. 81-88)

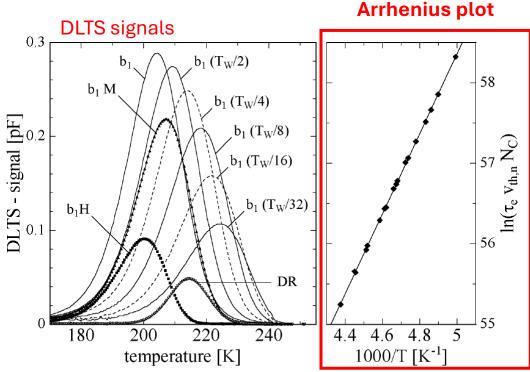


Figure 4.11: DLTS spectra obtained with various different correlators (see Fig. 4.10). For better visibility not all of the 18 used correlators are shown. However, the Arrhenius plot on the right-hand contains the data obtained with all 18 correlators. (transition: $VV^{(-/0)}$, sample M21009, $V_R = -10 \text{ V}$, $V_P = 0 \text{ V}$, $T_W = 200 \text{ ms}$, $t_0 = 6 \text{ ms}$, ⁶⁰Co- γ -irradiated: 107 kGy)

Example:

DLTS signals corresponding to 9 different correlators (on the left) and an **Arrhenius plot** (on the right).

This **method** is called **maxima evaluation**.

Usually, three different time windows T_w of 20, 200 and 2000 ms used during one temperature scan.

NB: the **measured temperature dependence** of the **characteristic emission time constant** of the capacitance transient, τ_e , can be used to establish an **Arrhenius plot** to determine the **capture cross-section**, $\sigma_{n,p}$, and the **activation energy**, $\Delta H'_{n,p}$, of the defect from the **intercept with the ordinate** and from the **slope**, respectively.