

Annual report

Name and surname: Tommaso Croci

Cycle and a.a.: XXXIX cycle, a.y. 2024/2025

Supervisors: Dr. Arianna Morozzi, Prof. Daniele Passeri, Prof. Pisana Placidi

Research activity carried out during the year

The research project aims to develop **methodologies** and **numerical models** for the study, design, and optimisation of **innovative radiation-hard silicon particle detectors** for **4D tracking** in the **future high-energy physics experiments** (e.g., Future Circular Collider – FCC, at CERN, Geneva, Switzerland).

During the second year of the doctoral program, **Technology-CAD** (**TCAD**) **simulations** were carried out to explore different **design strategies** for **Guard Ring** (**GR**) **protection structures** in thin p-i-n and Low-Gain Avalanche Diode (LGAD) detectors fabricated on **n-doped** silicon **substrates** ("NLGAD" R&D production). In parallel, **TCAD simulations** and **design studies** continued on various LGAD-based **AC-coupled Resistive Silicon Detector** (**RSD**) **architectures**, aimed at optimising 4D tracking performance under different occupancy conditions ("RadHard AC-LGAD" R&D production).

A beam test of LGAD-based DC-coupled Resistive Silicon Detectors ("DC-RSD1" R&D production) was conducted at the DESY accelerator centre (German Electron Synchrotron) in Hamburg, Germany, from 9 to 16 December 2024, in the framework of the INFN CSN5 "4DShare" R&D project. The main challenges were setting up the experiment to ensure precise alignment between the device under test and the beam telescope, configuring and operating the various instrumentation components (e.g., oscilloscope, digitizers, amplifiers, voltage supply, DAQ system), managing the data acquisition process, and performing track reconstruction and analysis.

Defect spectroscopy measurements – specifically **Deep Level Transient Spectroscopy (DLTS)** – were performed, along with the **development** of a **TCAD simulation framework** capable of reproducing the experimental results (i.e., DLTS spectra). These activities were carried out during a **six-month international internship** at the Solid-State Detectors Laboratory (**SSD**) of the **CERN EP-DT group**, under the supervision of Dr. Michael Moll (Leader of the SSD and Deputy Group leader of the CERN EP-DT group), from April to September 2025.

The design and simulation activities were conducted using the state-of-the-art Synopsys Sentaurus TCAD suite, supported by dedicated high-performance workstations (e.g., DELL PowerEdge R640 Server with 80 cores and 128 GB RAM). One of the main challenges encountered during these activities was ensuring simulation convergence at cryogenic temperatures (below 250 K), as required by the operating conditions of the DLTS climate chamber. In this regime the concentration of charge carriers in the depleted volume of a silicon sensor becomes extremely low (e.g. ~10⁻¹⁰ cm⁻³ at 100 K compared to ~10³ cm⁻³ at room temperature), making it nearly impossible to solve the fundamental physical equations – such as diffusion and transport equations – on the discretised geometries, even when simulating a simple one-dimensional p-n junction. To overcome these software limitations, various numerical strategies were adopted, including tuning mathematical parameters that govern convergence behavior (e.g., number of Newton iterations, extended precision floating-point arithmetic, error criteria), as well as specific workarounds, such as artificially increasing the charge carrier generation rate to mimic charge injection from an optical stimulus (e.g., laser illumination).

As part of the defect spectroscopy activities, I underwent supervised training on the DLTS system, which comprises multiple interconnected instruments, including a cryostat, temperature controller, vacuum pump, compressor and chiller, capacitance and current meters, and voltage supply units. The main challenge was managing such a complex setup from both hardware and software perspectives, which requires the adoption of a systematic approach, treating the system as a set of functional sub-blocks to facilitate troubleshooting and problem-solving.

List of attended courses and passed exams

- o "Machine Learning Programming in Physics", **1 Oct-5 Nov 2024**, INFN and University of Bari, course held online, 2.5 CFU.
- o "Design of readout integrated circuits for particle detectors", **4-19 Nov 2024**, INFN and University of Bari, course held online, 2.5 CFU.
- o "Numerical simulation of electronic devices with TCAD tools for HEP applications", **9-11 Jun 2025**, INFN and University of Perugia, course held in presence, 2.5 CFU.

List of attended conferences, workshops and schools, with mention of the presented talks

o Presentations at conferences:

Poster: "Enhancing guard-ring protection structures for the next generation of radiation-hard thin silicon particle detectors", 17th Vienna Conference on Instrumentation - VCI2025 (https://vci2025.hephy.at/), 17-21 Feb 2025, Vienna University of Technology, Wien, Austria.

o Workshops:

- "2nd DRD3 week on Solid State Detectors R&D" (https://indico.cern.ch/event/1439336/),
 2-6 Dec 2024, CERN, Geneva, Switzerland.
- "6th Allpix Squared User Workshop" (https://indico.cern.ch/event/1489052/),
 7-9 May 2025, online attendance.

o Seminars:

"Advanced UK Instrumentation Training 2025" (https://indico.global/event/14484/),
 6 May-27 June 2025, lectures held online.

List of published papers/proceedings

o Corresponding author:

- T. Croci et al., "Enhancing guard-ring protection structures for the next generation of radiation-hard thin silicon particle detectors", Nuclear Inst. and Methods in Physics Research A, Volume 1080, November 2025, 170753. DOI: 10.1016/j.nima.2025.170753.
- <u>T. Croci</u> et al., "Measurements and TCAD simulations of guard-ring structures of thin silicon sensors before and after irradiation", Nuclear Inst. and Methods in Physics Research A, Volume 1069, **December 2024**, 169801. DOI: 10.1016/j.nima.2024.169801.

o Co-author:

A. R. Altamura et al., "Radiation-resistant thin LGADs for enhanced 4D tracking", Nuclear Inst. and Methods in Physics Research A, Volume 1081, January 2026, 170799. DOI: 10.1016/j.nima.2025.170799.

- A. Fondacci, <u>T. Croci</u> et al., "Compensated LGAD optimisation through van der Pauw test structures", Nuclear Inst. and Methods in Physics Research A, Volume 1080, November 2025, 170800. DOI: 10.1016/j.nima.2025.170800.
- R. Arcidiacono et al., "Innovative DC-coupled resistive silicon detector for 4D tracking", Nuclear Inst. and Methods in Physics Research A, Volume 1080, November 2025, 170796. DOI: 10.1016/j.nima.2025.170796.
- F. Moscatelli, A. Morozzi, <u>T. Croci</u> et al., "TCAD modeling of bulk and surface radiation damage effects in silicon devices", Journal of Instrumentation, Volume 20, **September 2025**, C09006. DOI: 10.1088/1748-0221/20/09/C09006.
- M. Da Rocha Rolo et al., "ARCADIA Fully-Depleted CMOS MAPS development with LFoundry 110nm CIS", Frontiers in Sensors, Volume 6, August 2025, 1603755.
 DOI: 10.3389/fsens.2025.1603755.
- V. Sola et al., "Thin LGAD sensors for 4D tracking in high radiation environments: state of the art and perspective", Frontiers in Sensors, Volume 6, August 2025, 1648102. DOI: 10.3389/fsens.2025.1648102.
- L. Lanteri et al., "Characterization of the FBK-LGAD devices manufactured at an external foundry for large-volume productions", Journal of Instrumentation, Volume 20, **July 2025**, C07039. DOI: 10.1088/1748-0221/20/07/C07039.
- M. Centis Vignali et al., "Development and wafer-level characterization of the first production of DC-RSD sensors at FBK", Journal of Instrumentation, Volume 20, July 2025, C07037.
 DOI: 10.1088/1748-0221/20/07/C07037.
- M. Durando et al., "Thin LGADs as radiation-resilient sensors for 4D tracking", Journal of Instrumentation, Volume 20, July 2025, C07028.
 DOI: 10.1088/1748-0221/20/07/C07028.
- M. Ferrero et al., "Compensated LGAD an innovative design of thin silicon sensors for very high fluences", Journal of Instrumentation, Volume 20, July 2025, C07023.
 DOI: 10.1088/1748-0221/20/07/C07023.
- A. Fondacci, <u>T. Croci</u> et al., "Design and optimisation of radiation resistant AC- and DC-coupled resistive LGADs", Journal of Instrumentation, Volume 20, June 2025, C06016. DOI: 10.1088/1748-0221/20/06/C06016.

- M. Menichelli et al., "Hydrogenated Amorphous Silicon Charge-Selective Contact Devices on a Flexible Substrate for Dosimetry and Polyimide Beam Flux Sensors, Volume 25, February 2025, 1263. DOI: 10.3390/s25041263.
- G. Mazza et al., "Cleopatra: a 12-channel recycling integrator ASIC for the readout of hydrogenated amorphous silicon detectors in dosimetry", radiotherapy Journal of Instrumentation, Volume 20, January 2025, C01034. DOI: 10.1088/1748-0221/20/01/C01034.
- A. Morozzi, A. Fondacci, <u>T. Croci</u> et al., "Thin silicon sensors for extreme fluences: a doping compensation strategy", Nuclear Inst. and Methods in Physics Research A, Volume 1069, December 2024, 169904. DOI: 10.1016/j.nima.2024.169904.
- A. Fondacci, T. Croci et al., "TCAD investigation of Compensated LGAD sensors for extreme fluence", Nuclear Inst. and Methods in Physics Research A, Volume 1068, November 2024, 169811. DOI: 10.1016/j.nima.2024.169811.
- R. S. White et al., "Characterisation of the FBK EXFLU1 thin sensors with gain in a high fluence environment", Nuclear Inst. and Methods in Physics Research A, Volume 1068, November 2024, 169798. DOI: 10.1016/j.nima.2024.169798.

Thesis title (even temporary)

"Development of methodologies and numerical models for the design and optimisation of innovative radiation-hard silicon particle detectors for 4D tracking in future high-energy physics experiments"

Date, 12 September 2025

Signature Tarmoso (1)

Seen, the supervisor

Arianna Morozzi

Daniele Passeri

Pisana Placidi

Couldellona
Proma Paris