

Development and Exploitation of MPGD detectors for the upgrade of the CMS experiment

Felice Nenna

XL cycle | National PhD in Technologies for Fundamental Research in Physics and Astrophysics

Curriculum: DETECTORS

Admission to the II year

University of Padova, INFN Bari, University of Bari

Supervisors: Dr. Piet Verwilligen (INFN Bari)

Dr. Federica Simone (University & INFN Bari)

Research topics and objectives

- Analysis of spatial and timing performance of ME0 stack:
 - Validate performance of the detector in high intensity background environment using data from the GIF++ test
 beam campaign of July 2024

This analysis has been completed

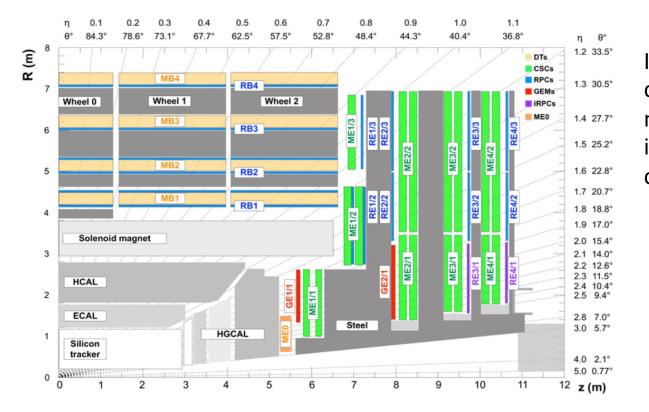
First results presented in a <u>poster</u> at VCI and in the corresponding published <u>proceeding</u> Final results presented in a poster at IWorid and in the upcoming proceeding

- Evaluate performance of ME0 detectors using cosmic ray data to support module validation | Ongoing
- Final validation of the mass-produced ME0 detectors and electronics | Planned
- ❖ Analysis of the trigger performance of the GE1/1 chambers installed in the CMS experiment using pp collision data collected in 2024 and 2025 runs

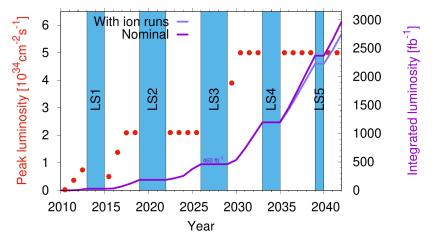
This analysis is ongoing and scheduled to be completed by the end of the second year

- Studies of muon reconstruction in ME0 system using HL-LHC simulations
 - Enhance muon reconstruction and identification to the ME0 coverage in the high Pile-Up scenario
 - Evaluate the impact of the ME0 station in the HL-LHC flagship analyses
 - Projections for HL-LHC of the CMS sensitivity to Lepton Flavor Violating decays
 - Improved projections with final Phase-2 reconstruction algorithm

This analysis is ongoing and scheduled to be completed by the end of the third year


Preliminary results based on Run 2 paper presented in 2 talks at IFAE (+ corresponding accepted proceeding) and NuFact

Full PhD schedule



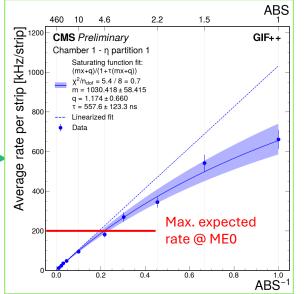
Motivations

In 2029, the High Luminosity LHC project will start delivering a luminosity up to 5-7.5 times the nominal LHC luminosity ($10^{34}~\rm cm^{-2}s^{-1}$), causing an increase in the rate of particles traversing the detectors.

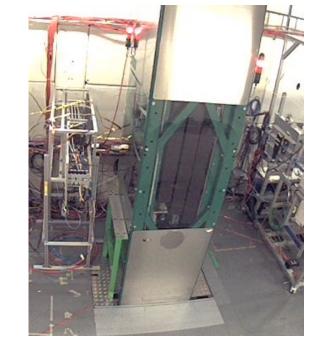
Three new GEM stations installed/foreseen (GE1/1, GE2/1 and ME0):

- Complement the existing muon stations to decrease the trigger rate
- ME0 station will extend the muon trigger coverage up to $|\eta| < 2.8$
 - Challenging environment due to unprecedently high pile-up (PU) track multiplicity
- Increase CMS sensitivity to rare decays with low p_T /high η final state muons

First year activity: ME0 detector performances

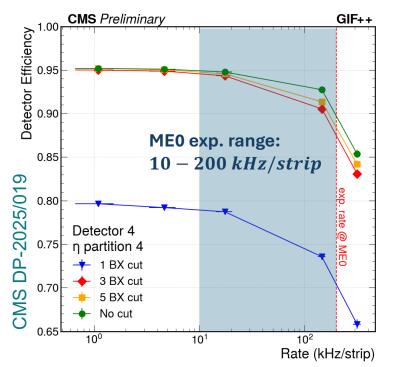

Before production started: check performances in a high-rate radiation environment

→ 2022-2024: test beam campaign at GIF++


The Gamma Irradiation Facility (GIF++) provides:

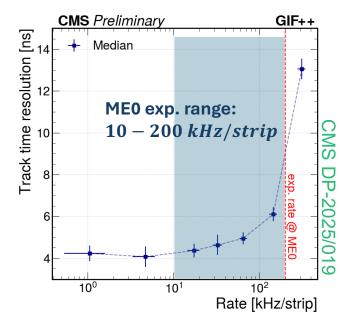
- ☐ A high energy **muon beam** (~ 80 GeV)
- \square A radioactive source: 14 TBq ^{137}Cs

Able to operate the chambers up to 200 kHz/strip



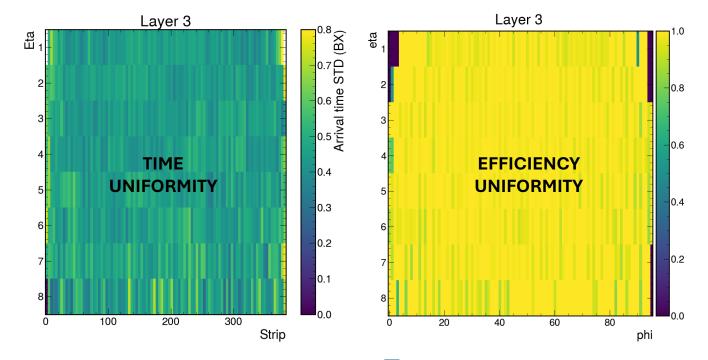
ACHIEVED GOAL

Study efficiency and time resolution of the ME0 detectors under the expected radiation rate in HL-LHC


I developed a complete analysis framework in python for the evaluation of efficiency and timing of the ME0 stack

First year activity: ME0 detector performances

- √The contribution of the background to the efficiency has been subtracted with a statistical procedure
- ✓ The efficiency drop is \sim 3%, which corresponds to \sim 150 200 ns in terms of dead time of the single layer
- √The dead time is compatible with the expected front-end dead time due
 to different cluster sizes of muons and bkg hits
- \checkmark At the expected ME0 rate $\sim 150~kHz/cm^2$ the chambers have an efficiency for muons of $\sim 90\%$


- ✓ Time resolution of the single chambers improved from ~ 18 ns to ~ 10 ns, and the time resolution of the stack is ~ 4 ns increasing up to ~ 8 ns under irradiation
- ✓ Combining spatial efficiency and time resolution, the results show that a 3 BX [-1,0,+1] cut preserves a high efficiency, while ensuring a reduced background contamination.

Ongoing activity: ME0 detector performances

Contribution to the analysis of data from cosmic stand for ME0 stacks:

- Updated algorithm for tracking with the ME0 stack
- Developed code for the analysis of the timing performances
- Handling of the central analysis code used at CERN laboratory



- Excellent time resolution (~ 10 ns)
- High efficiency (> 95%)

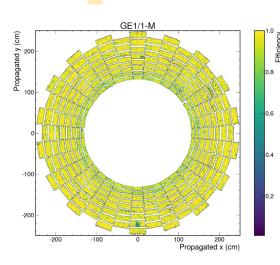
Uniform response over all η partitions!

QC8 cosmic stand at lab 904

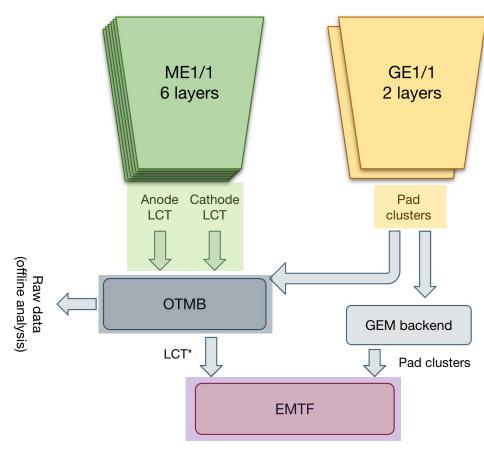
INFN Bari one of the main ME0 production sites

Ongoing activity: GE1/1 Trigger

Integration of GEM data with the CSC measurements allows substantial improvement in standalone muon momentum resolution, enlarging the lever arm

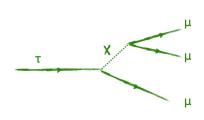

FINAL GOAL | evaluate the quality of the information GEM system provides to the muon trigger

Basic elements:


- > LCT: local charged track
 - CSC trigger primitive built with anode and wire clusters in 4 or more layer

> GEM pad cluster:

 GEM trigger primitive built by clustering neighbouring GEM hits in the same eta partition



- The redundancy from the two GEM layers operating in an OR configuration ensures high overall efficiency
- Time resolution optimization (~17–12 ns) is progressing well, supporting better matching with CSC ME1/1

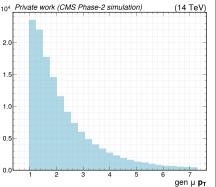
^{*} possibly improved by GE1/1 hits

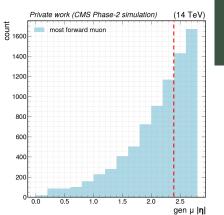
Ongoing activity: GEM Upgrade Physics cases

 $\tau \to 3\mu$ is the golden channel for Lepton Flavor Violation at LHC The main sources (~99%) of τ 's are heavy mesons (D_s and B) and decay into 3 muons with:

- \triangleright Very low momenta (peak@~1 1.5 GeV)
- Significantly boosted in the forward region
- \rightarrow Only ~1.3% of the muons survive the CMS acceptance (p > 2.5GeV and $|\eta| < 2.4$)

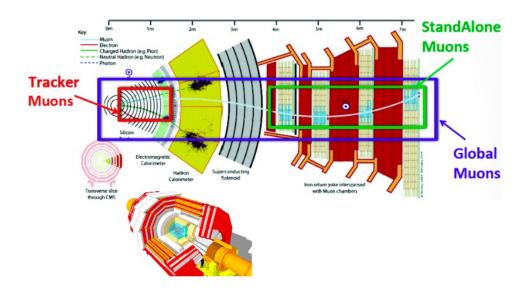
Upper limit stat. limited!


ME0 extends the CMS muon coverage up to $|\eta| < 2.8 \rightarrow$ doubles the signal fiducial acceptance ²⁰ GEM-CSC tandem **improves purity** of reconstructed low momentum muons


First projections of this limit were published in the Technical Design Report (2017):

- No GEM-CSC tandem developed
- ☐ General reconstruction scheme not suitable for the very forward region

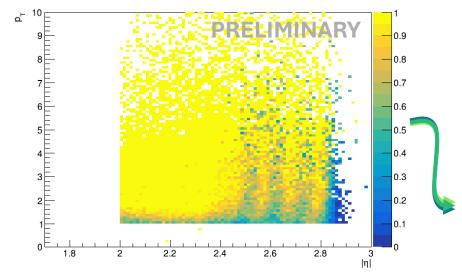
FINAL GOAL | perform a renewed projection of the upper limit for $\tau \to 3\mu$ in Phase-2 scenario


Contributed to the latest **Run2-based projection** produced for the Update of the European Strategy for Particle Physics (ESPPU) and published in CMS public note (<u>CMS-NOTE-2025-004</u>)

10

Ongoing activity: GEM Upgrade Physics cases

In the ME0 pseudorapidity coverage, muons can be reconstructed only as Tracker muons, but the **unprecedented** Pile-Up expected in HL-LHC implies:


- High probability of fake muons
- High p_T thresholds to control trigger rate
- Very limited acceptance for interesting Physics channels

- Developing a reliable algorithm to extend high-quality muon reconstruction to ME0 coverage
- \triangleright Finding new reasonable p_T thresholds for very forward muons
- Performing complete HL-LHC projection of $\tau \rightarrow 3\mu$ channel remarking the advantages of Phase-2 upgrades

Ongoing effort to optimize **matching** between tracks in the inner tracker and segments reconstructed by ME0 to increase efficiency

18 Sep. 2025 | Felice Nenna

Training activities

- 1. Big Data Analysis in Python (2.5 CFU)
 - ✓ Exam passed in May 2025
- 2. Novel Detectors for Future Colliders (2 CFU)
- 3. Neural Networks (4 CFU)
- 4. Fundamental of FPGA-based digital design (2.5 CFU)

Attended:

- 1. DRD1 Gaseous Detector School (CERN) | 27 Nov.- 6 Dec. 2024
- 2. National PhD TFPA Retreat (LNGS-L'Aquila) | 17 21 Feb. 2025
- 3. Flavor Physics at LHC School (CERN) | 26 30 May 2025

Scheduled:

1. CMS Data Analysis School (DESY) | 13 – 17 Oct. 2025 supported from Erasmus+ short mobility PhD KA131

Conferences and Workshops

- ❖ Talk at Incontri di Fisica delle Alte Energie (IFAE 2025) | 9-11 Apr. 2025
 Lepton Flavor Violation in Heavy Flavor decays at the CMS experiment
 - Proceeding submitted and accepted
- ❖ Poster at The Platform for Advanced Scientific Computing (PASC) Conference | 16-18 Jun. 2025
 Interactive Visualization of High-Energy Physics Events via Nvidia Omniverse
- Poster at the 26th International Workshop on Radiation Imaging Detectors (iWoRID) | 6-10 Jul. 2025
 Performance of triple-GEM detectors for the ME0 system of the CMS Phase-2 Upgrade
 Proceeding submission by September 30th
- ❖ Talk at the 26th International Workshop on Neutrinos from Accelerators (NuFact) | 1-6 Sep. 2025
 Search for LFV and LFUV in Heavy Hadron Decays at CMS

2025 | Felice Nenna

Thank you for your attention!