

Target

multi-component enhanced dark matter → the target is light mass DM2

Chain analysis system

<u>no background for > 1μm proton signal at neutron Run</u>

LNGS activity summary (Jul2025)

gel production EGS027

EGS027 1 batch / 6 washing (deionization) batches wash 1-5 \rightarrow Run film (1 large film \sim 100 g of washed gel) wash 6 \rightarrow quality evaluation at Japan

pAg result of produced batch

012

016 (electrical noise exist)

017

018

027 (this batch)

final pAg value goes high offset was initially high. Sensor problem?

spectroscopy (crystal size check)

CR1 film production and large size film test

big film (25x20 cm) test

CR1 film production activity

- electron is not main background this time. Radon and neutron are the background
- To reduce Radon, film production at CR1 is essential
- the humidity in the CR1 is near zero and cause problem of films→ humidifying tent test

• to increase target mass, sequential production of new size film

(25x20cm) is tested

- $90g \times 4$ films:~360g + other size
- filtration 20cc > 20 times

over dry problem

CR1 Radon monitoring

Properly humidified with a low radon level.

hall F

update of development setup in hall F

- big thermal bath for 10Lx4 tanks (in the future 20Lx4 tanks)
- cooled by outer thermal bath problem
- temperature control (5.5deg aiming 5deg)
- floor is not stable
- update of antifreeze liq., insulation, water mixier etc. are needed.

new holder

exposure setup

Galactic coordinates and celestial coordinates

180° longitude

5h 45.6m

+28.94°

(near HIP 27180)

The simplest setting: Setting emulsion at 62.6 deg from north celestial pole → GC and CYGNUS will be both on the emulsion plane

Exposure set up

procedure

- 1. Adjust mount axis to Polaris (axis = latitude, plane = 90- latitude)
- 2. Galactic plane is 62.6° from celestial plane
- 3. Assuming that the GNP is directly overhead, point the film toward true south with angle of 62.6 + 42.2 (left figure)
- 4. Sgr A* and deneb(CYGNUS) will be on the film and angle can be calculated from Galactic Longitude *l* using mimosa (also in the galactic plane and same RA of GNP=placed to the south at setting)
- 5. Adjust film RA from GNP overhead time to current time by high-speed rotation and start exposure

	star	RA	Deg	1	b	l angle from mimoza
GNP	31 comae berenices	193.2	27.4	306.1	90.0	4.0
Milky way/same RA of GNP	mimosa	192.3	-59.8	302.7	3.0	
CYGNUS	deneb	310.4	45.3	84.3	2.0	141.6
~GC	Sagitarius A*	266.4	-28.9	0.0	0.0	57.4

Exposure set up

47.8

procedure

- 1. Adjust mount axis to Polaris (axis = latitude, plane = 90- latitude)
- 2. Galactic plane is 62.6° from celestial plane
- 3. Assuming that the GNP is directly overhead, point the film toward true south with angle of 62.6 + 42.2 (left figure)
- 4. Sgr A* and deneb(CYGNUS) will be on the film and angle can be calculated from Galactic Longitude *l* using mimosa (also in the galactic plane and same RA of GNP=placed to the south at setting)
 5. Adjust film RA from GNP overhead time to current time by high-speed rotation and start exposure

l angle star RA Deg from mimoza 31 comae **GNP** 193.2 27.4 306.1 90.0 4.0 berenices Milky way/same RA of GNP 192.3 -59.8302.7 3.0 mimosa **CYGNUS** deneb 310.4 45.3 84.3 2.0 141.6 Sagitarius \sim GC 266.4 -28.90.0 0.0 57.4 **A***

pre-check of setting method by app

check at the exposure start

rotation monitoring

Monitoring the rotation condition with photo diode and reflection mirror Daily pattern successfully continues

 \rightarrow 2-4 month Run is expected (mass~2g/film \rightarrow ~200g·days in max)

problem and task for further update

The gears of the Equatorial Mount were damaged

nano.tracker

- payload speck: $2kg \times 10cm$ from axis
- film(demo) \sim 1kg (\sim 200g \times 4 film is expected)

problem of barycenter?

 \rightarrow We decided to use normal size film (~30g) for the run

gear update plan

SWAT-350 series

- 100k~200k yen
- table payload ~15kg
- gear: duralumin + brass screw?
- high speed mode: max 16x (nano.tracker: 50x)
 - → worst case, 45min needed for start time adjustment?

filtration update

Approximately 60 repetitions are needed for a 100g mass scale. Operation at a high temperature of 85 degrees.

• We Should use a pressure filtration system We will discuss with the company (ADVANTEC) in August.

CR1 problem and update

- There is no direct demi-water supply, and the demi-water waste line is also unavailable.
- The N₂ gas line is shut off. (not been disconnected yet?)
- Desk space is nearly occupied by four large pouring stages.
- big shield is needed for CDM run scale up
- What is the expected availability of CR1 going forward?

situation of scale up

- Next scale
 - 20×25 cm film (emulsion area: 18×23 cm)
 - 1 film weight \sim 100g, target mass \sim 10g at 40um both sides
 - -10 films (100g mass scale) \cdot 10day = 1kg \cdot day as a goal of this step
 - target mass of this trial is 4 films $\sim 40g$
- Production
 - dry mass -100g/batch → 1-2 production is enough
- Deionization
 - Same method is still acceptable (about 5 times of 1.5L scale washing → 1 day for complete)
 - (Scale-up is also possible (simply increase bottle size from 2L to 10 L) (new bottle is needed))
- Pouring
 - Filtration can be a problem (cylinder capacity -30mL→ about 4 times/film, 40 times for 1kg·day)
 - Same method is hard but still possible for next demo. However, machine filtration should be applied
 - Additional pouring stage is needed \rightarrow 4 stages pouring are tested / desk space can be next problem
 - Humidity control at CR1 (box or booth) → humidifying tent works well/<u>CR1 equipment and space is not enough</u>
- Exposure
 - Upgrade of equatorial mount → nano.tracker(payload 2kg) didn't work well, update is needed
 - Upgrade of shielding \rightarrow difficult for short term. Demo will be done without shielding.
 - Upgrade of freezer → new big freezer is applied and operated well in -25deg
- Development
 - New scale tank (7L) and holder for $25 \times 20 \text{cm} \rightarrow \text{Ready}$
 - Chemical preparation for 7L scale → stainless pot works well. big and dustless magnetic vibrator is needed
 - New development bath for 8L, 16L, 32L- scale → OPERA dev chain is updated, but needs further update. 7L could fit to inner thermal bath