Electroweak Corrections at the TeV Scale

Denis Comelli

INFN sezione di Ferrara, Italy

work done during many years in collaboration with <u>M. Ciafaloni</u>, <u>P. Ciafaloni</u> and <u>A. Urbano</u>

Outlines in High energy EW physics

- Infrared (IR) Problem & the eikonal current
- Asymptotic states for QED-QCD-EW
- Leading Logs, $\alpha \log^2 \frac{Q^2}{M^2}$, Cancellation Theorems: KLN (Kinoshita-Lee-Nauenberg) theorem BN (Block-Nordsieck) theorem EX: Structure of double logs in Sudakov form factors in EW IN: Structure of double logs in EW BN violation observables
- EW DGLAP: evolution equations for structure functions EW DGLAP Sum Rules
- EW physics in Cosmology (heavy DM annihilation or decay)
- Exotics: Power Suppressed amplitudes $\left(\alpha \frac{m^2}{Q^2} \log^2 \frac{Q^2}{M^2}\right)$ IN: Revised KLN theorem at one loop (real + virtual emission)

 EX: Anomalous Sudakov at all orders

Observables: Inclusive \equiv IN & Exclusive \equiv EX

IR Problem: a long history...

- (1937) Bloch and Nordsieck (BN) introduced a practical way to handle IR-divergences. They showed that while individual cross sections can be IR-divergent, the physically relevant inclusive cross sections where one sums over all possible emissions of soft radiation below a detector threshold remain IR-finite.
- (1962-64) Kinoshita-Lee-Nauenberg (KLN) theorem which states that sufficiently inclusive sums over degenerate <u>initial and final states</u> yield IRfinite probabilities.
- During the late 1960s and early 1970s: Chung, Kibble, and Dollard culminated in what became known as the Faddeev-Kulish (FK) approach.
 The FK approach modifies the S-matrix using asymptotic states surrounded by soft bosonic particles.
 See also M.Ciafaloni, Marchesini, Catani for a FK approach to QCD.
- Infrared triangle: relationship between soft theorems, memory effects, and asymptotic symmetries (Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448.)

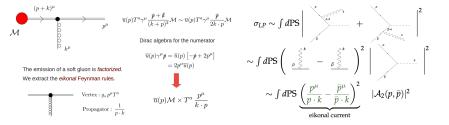
Main ideas of the talk

For very high energy processes with $Q \gg M_W$, the massive EW gauge bosons behave as approximately massless gauge bosons

massless gauge field \sim massive gauge field (transverse) where the mass (M_W) is becoming the physical cut off of the uncanceled IR divergences.

We can translate the resummation techniques of the IR structures in QED and QCD to the EW sector with some *interesting results!*

Eikonal structure for Leading Log corrections



Factorization:
$$\mathcal{M} = \mathcal{M}_{soft} \cdot \mathcal{M}_{Hard}$$

$$\mathcal{M}_{n+1}^{a,\mu}(p_1...p_n; k) = g\left(\sum_{i}^{n} T_i^a \frac{p_i^{\mu}}{p_i \cdot k}\right) \cdot \mathcal{M}_n(p_1...p_n)$$

Emission amplitude of a soft gauge boson (γ , g, W) with with charge/color/isospin index a, Ta "charge/color/isospin" operator for the i-th particle.

$$J^{\mathbf{a}}_{\mu}(k) = g \sum_{i} \mathbf{T}^{\mathbf{a}}_{i} \frac{p_{i\mu}}{p_{i} \cdot k}$$

Eikonal current features

$$\mathcal{M}_{n+1}^{a,\mu}(p_1...p_n; k) = g\left(\sum_{i}^{n} T_i^a \frac{p_i^{\mu}}{p_i \cdot k}\right) \cdot \mathcal{M}_n(p_1...p_n) \qquad J^a_{\mu}(k) = g\sum_{i} T_i^a \frac{p_{i\mu}}{p_i \cdot k}$$

- Amplitude factorization (soft factors decouple from the hard dynamics).
- The eikonal current is universal in the sense that it is independent of the specific details of the hard scattering process: kinematics & spins of the hard partons.
- The soft current depends on the momentum and charges of all hard partons involved in the scattering process.
- **Soft** & **Collinear** Singularity: Poles at $k \to 0$ & $p_i \cdot k \to 0$
- The eikonal current captures both real (soft) and virtual (loop) corrections.
- The eikonal current is conserved (gauge invariant) for hard processes where charge/color/isospin are conserved!

$$k^{\mu} \; J_{\mu}^{a}(k) \cdot \mathcal{M}_{n} = g \; \sum_{i} \; \boldsymbol{T}_{i}^{a} \cdot \mathcal{M}_{n} = 0 \label{eq:continuous_problem}$$

However, for QCD (EW) in contrast to QED, the soft emission of a gluon (W) carries away some colour (isospin) charge. Soft emission does not factorize exactly and leads to colour/isospin correlations.

Asymptotic States in SM: QED, QCD, EW

$$QCD: \begin{cases} Non Abelian & SU(3) & Unbroken-Confining \\ Hadrons & Singlets \end{cases}$$

Cancellation Theorems for Leading IR divergencies

K.L.N. Theorem In a theory with massless fields, transition rates are free of IR divergences <u>IF</u> the summation over <u>INITIAL</u> and <u>FINAL</u> degenerate (*in Energy*) states is carried out.

B.N. in QED: IR divergences cancel out after summation over all degenerate final soft photons compatible with experimental detection.

B.N. in QCD : Leading IR singularities cancel after:

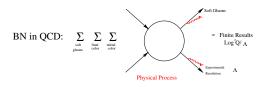
- summation over final soft gluons
- average over <u>final color</u> and <u>initial color</u> or for <u>color singlet</u> initial states (like protons)

QCD IR singularities in inclusive cross sections are cancelled when:

LO: colours of hard partons are arranged in singlets

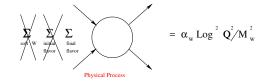
NLO: momenta of partons within the same singlet must be equal. (Perturbative indication for colour confinement)

From QCD to EW: $SU(3) \rightarrow SU(2)$, (Color \rightarrow Flavor), M_W physical IR cutoff



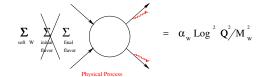
EW Sudakov

the Initial flavor is dictated by the accelerator



BN violation

the Initial flavor is fixed by the accelerator



Order of magnitudes at Collider

From EW Perturbation Theory—large double logs in

ALL high energy cross sections $\sigma(Q\gg M_W)$ with EW charged initial states

$$\frac{\Delta\sigma}{\sigma} = \alpha_W \left(\underbrace{\frac{Log^2 \frac{Q^2}{M_W^2} + Log \frac{Q^2}{M_W^2}}_{LHC + Next...?} + \underbrace{1 + o(\frac{m^2}{Q^2})}_{LEP} \right)$$

IN QCD and QED only single logs $(\alpha \ Log \frac{Q^2}{m^2})$ for sufficient inclusive observables! Typical size of the one loop logs $(Q = 1 \ TeV)$:

$$\frac{\alpha_W}{4\pi} Log^2 \frac{Q^2}{M_W^2} = 6.7\%, \quad \frac{\alpha_{W/S}}{4\pi} Log \frac{Q^2}{M_W^2} = 1.4 / 3.6 \%$$

High energy limit $(Q \to \infty) \equiv Infrared limit (M_W \to 0)$

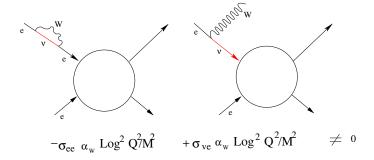
Sudakov Form Factor:

 $C_i^2=t_i\left(t_i+1
ight)$ is the external leg Casimir isospin (e.g., $t_i=rac{1}{2}$ for a left fermion, $t_i=1$ for a W)

Sudakov corrections always depress the Hard cross section.

EW violation of the Block-Nordsiek Theorem

One loop example of EW BN violation



Different coefficients (the hard cross sections) for virtual ($\propto \sigma_{e\bar{e}}$) and real ($\propto \sigma_{\nu\bar{e}}$) corrections

$$(\sigma_{\nu\bar{e}\to\sum_{q}q\bar{q}}\simeq 2 \sigma_{e\bar{e}\to\sum_{q}q\bar{q}} \text{ for } Q^2\gg M_W^2)$$

EW violation of the Block-Nordsiek Theorem

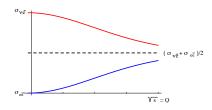
EW BN violation structure: Resumation Leading EW Virtual plus Real radiative corrections

$$\sigma_{e\bar{e}}^{\textit{inclusive}} = \frac{\sigma_{e\bar{e}}^{H} + \sigma_{\nu\bar{e}}^{H}}{2} + \frac{\sigma_{e\bar{e}}^{H} - \sigma_{\nu\bar{e}}^{H}}{2} \ e^{-\frac{\alpha_{W}}{2\pi}Log^{2}\frac{Q^{2}}{M_{W}^{2}}} \xrightarrow[Q \gg M_{W}]{} \frac{\sigma_{e\bar{e}}^{H} + \sigma_{\nu\bar{e}}^{H}}{2}$$

$$\sigma_{\nu\bar{e}}^{\textit{inclusive}} = \frac{\sigma_{e\bar{e}}^{\textit{H}} + \sigma_{\nu\bar{e}}^{\textit{H}}}{2} - \frac{\sigma_{e\bar{e}}^{\textit{H}} - \sigma_{\nu\bar{e}}^{\textit{H}}}{2} \text{ e}^{-\frac{\alpha_{\textit{W}}}{2\pi} \text{Log}^2 \frac{Q^2}{M_W^2}} \underset{Q \gg M_W}{\underbrace{\rightarrow}} \frac{\sigma_{e\bar{e}}^{\textit{H}} + \sigma_{\nu\bar{e}}^{\textit{H}}}{2}$$

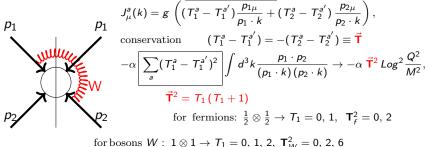
 $(\mathrm{ex}:\sigma^H_{\nu\bar{e}\to q\bar{q}}=2~\sigma^H_{e\bar{e}\to q\bar{q}})$

Effectively $\emph{e}_\emph{L}$ becomes indistinguishable from $\nu_\emph{e}$



EW violation of the Block-Nordsiek Theorem

Eikonal current applied to the Overlap Matrix (a squared amplitude)



The hard cross section is first decomposed in total t-channel isospin basis:

$$\sigma(s) = \sum_{T} e^{-\frac{1}{2} \frac{\alpha_{W}}{4\pi} T (T+1) Log^{2} \frac{Q^{2}}{M_{W}^{2}}} \sigma_{T}^{H} \underbrace{\longrightarrow_{Q/M_{W} \to \infty}} \sigma_{T=0}^{H}, \qquad \sigma_{T\neq 0}^{H} \lessgtr 0$$

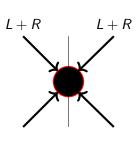
T is the total isospin obtained by composing two single leg isospins in t - channel.

 $\sigma_{T=0}^{H}$ is the average cross section.

BN violating corrections can be negative or positive.

Abelian BN violation

The effect is present also for a chiral U(1) Hypercharge gauge group where, due to the spontaneous symmetry breaking, mass eigenstate \neq gauge eigenstate.



examples:

Fermionic transverse polarized beams $(\alpha | L >_{y_L} + \beta | R >_{y_R})$

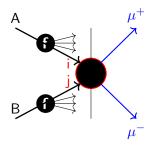
higgs/goldstone state ($h/\phi = |H>_{y_h=1/2} \pm |H^*>_{y_h^*=-1/2}$)

$$\sigma_{L+R} \sim \sigma_L + \sigma_R + \left(\mathcal{M}_L \, \mathcal{M}_R^* + h.c.\right) \, e^{-\alpha_y (y_L - y_R)^2 \, \log^2 Q^2}$$

EW DGLAP

Factorization & Structure Function (fragmentation functions) approach

Resumation of IR & collinear logs



$$\sigma_{AB \to \mu^{+}\mu^{-} + X} = \sum_{i,j}^{f,W,\Phi,g} \int dx_{1} dx_{2} \mathbf{f}_{iA}(x_{i}, Q, M_{W}) \mathbf{f}_{jB}(x_{j}, Q, M_{W}) \frac{\sigma_{ij}^{H}(x_{i} x_{j} Q^{2})}{\sigma = f^{t} \otimes \sigma^{H} \otimes f}$$

$$(a \otimes b)(x) \equiv \int_{0}^{1} dx_{1} dx_{2} a(x_{1}) b(x_{2}) \delta(x_{1} x_{2} - x)$$

General structure of the QCD+EW DGLAP

QCD: f_{q_i} , $f_{\bar{q}_i}$, f_g : 2 n_f N_f+1 , $n_f=2$ quark flavours, $N_f=3$ families

DGLAP running scales:
$$\underbrace{\Lambda_{QCD} < \mu < M_W}_{QED+QCD}$$
 $\underbrace{\underbrace{M_W < \mu < ?}}_{QCD+EW(QED)}$

$$-\frac{\sigma(\mathsf{X},\mu)}{\partial\log\mu^{2}} = \left\{\alpha_{\mathsf{QED}} \ f\otimes P_{\mathsf{QED}}\right\} \ \theta(\mathsf{m}_{\mathsf{e}}^{2} < \mu^{2} < \mathsf{M}_{W}^{2}) + \left\{\alpha_{\mathsf{S}} \ f\otimes P_{\mathsf{QCD}}\right\} \ \theta(\mathsf{\Lambda}^{2} < \mu^{2} < \mathsf{M}_{W}^{2}) + \left\{\underbrace{\alpha_{\mathsf{S}} \ f\otimes P_{\mathsf{QCD}}}\right\} \ \theta(\mathsf{\Lambda}^{2} < \mu^{2} < \mathsf{M}_{W}^{2}) + \left\{\underbrace{\alpha_{\mathsf{QED}} \ f\otimes \left(\underbrace{\mathsf{Q}_{\mathsf{QED}}^{2} \ P_{\mathsf{EW}}^{(\mathsf{IR})}}_{\mathsf{New}} + P_{\mathsf{EW}}\right) + \alpha_{\mathsf{S}} \ f\otimes P_{\mathsf{QCD}}\right\} \ \theta(\mathsf{M}_{W}^{2} < \mu^{2} < \mathsf{Q}^{2})$$

QCD: $P_{ii}^V + P_{ii}^R$, P_{ij}^R , μ -independent

EW: $P_{ii}^V,~P_{ii}^R,~P_{ij}^R,$ explicitly μ -dependent

Schrödinger like evolution equation

$$\begin{split} \partial_t \ \mathbf{f}(t) &= \mathbf{P}(t) \otimes \mathbf{f}(t) \to \mathbf{f}(t) = \mathbf{U}(t, \, t_0) \otimes \mathbf{f}(t_0), \ \ \mathbf{U}(t, \, t_0) = T_t \, e^{\int_{t_0}^t dt' \, \mathbf{P}(t')} \\ \text{basis } \mathbf{f} &\equiv \left| \begin{array}{ccc} \mathbf{I}_{e,\nu,\dots} & \mathbf{w}_{W^{\pm,3},B} & \mathbf{q}_{u,d,\dots} & \mathbf{g} \end{array} \right| \\ \text{"Hamiltonian"} & \mathbf{P}(t) &= \alpha_s(t) \, P_{QCD} + \alpha_w \, P_{EW}(t) \end{split}$$

$$\mathrm{e}^{\alpha_{\mathrm{S}}\;P_{\mathrm{QCD}}+\alpha_{\mathrm{W}}\;P_{\mathrm{EW}}} = \left(1 - \frac{\alpha_{\mathrm{S}}\,\alpha_{\mathrm{W}}}{2}[P_{\mathrm{QCD}},\;P_{\mathrm{EW}}] + \ldots\right)\;\mathrm{e}^{\alpha_{\mathrm{S}}\;P_{\mathrm{QCD}}}\;\mathrm{e}^{\alpha_{\mathrm{W}}\;P_{\mathrm{EW}}}$$

$$[P_{QCD}, P_{EW}] = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & P_{qq} P_{qw} & 0 & -P_{qq} P_{qq} \\ 0 & P_{gq} P_{qw} & P_{gq} P_{qq} \end{vmatrix} - P_{qq} P_{qq}$$

• gauge basis f_{ν_L} , f_{e_L} , $f_{W^{\pm}}$, f_{W^3}

$$\underbrace{\partial f}_{\text{N eqs}} = \alpha \underbrace{f}_{\text{N}} \otimes \underbrace{P}_{\text{NxN matrix}}, \qquad \text{N} = 5$$

• In total T channel isospin the new $P^{(T)}$ kernel is block diagonal

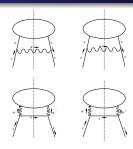
$$\begin{bmatrix} f(0) = \frac{f_{\nu} + f_{e}}{2}, & f(0) = \frac{f_{+} + f_{3} + f_{-}}{3} \end{bmatrix}$$

$$\begin{bmatrix} f(1) = \frac{f_{\nu} - f_{e}}{2}, & f(1) = \frac{f_{+} - f_{-}}{2} \end{bmatrix}$$

$$\begin{cases} f(2) = \frac{f_{+} + f_{-} - 2f_{3}}{6} \end{bmatrix}$$

$$\underbrace{\frac{\partial f(T)}{N_T \; eqs} = \alpha \; \underbrace{f(T)}_{N_T} \; \otimes \underbrace{\underbrace{P^{(T)}}_{N_T \times N_T \; matrix} \; \underbrace{N_0 = 2, \; N_1 = 2, \; N_2 = 1}_{5}}_{5}$$

Example DGLAP in the gauge base $(v, e)_L$ and (W^{\pm}, W^3) :



$$\begin{split} &-\frac{4\pi}{\alpha_W}\frac{\partial f_{\nu}}{\partial t} &= f_{\nu}\otimes(3P_{ff}^V+P_{ff}^R) + 2f_{e}\otimes P_{ff}^R + 2f_{+}\otimes P_{gf}^R + f_{3}\otimes P_{gf}^R \\ &-\frac{4\pi}{\alpha_W}\frac{\partial f_{e}}{\partial t} &= f_{e}\otimes(3P_{ff}^V+P_{ff}^R) + 2f_{\nu}\otimes P_{ff}^R + 2f_{-}\otimes P_{gf}^R + f_{3}\otimes P_{gf}^R \\ &-\frac{2\pi}{\alpha_W}\frac{\partial f_{+}}{\partial t} &= \frac{f_{\bar{e}}+f_{\nu}}{2}\otimes P_{fg}^R + f_{3}\otimes P_{gg}^R + f_{+}\otimes (P_{gg}^R+2P_{gg}^V) \\ &-\frac{2\pi}{\alpha_W}\frac{\partial f_{-}}{\partial t} &= \frac{f_{\bar{e}}+f_{e}}{2}\otimes P_{fg}^R + f_{3}\otimes P_{gg}^R + f_{-}\otimes (P_{gg}^R+2P_{gg}^V) \\ &-\frac{2\pi}{\alpha_W}\frac{\partial f_{3}}{\partial t} &= \frac{f_{\bar{e}}+f_{e}+f_{\bar{\nu}}+f_{\nu}}{4}\otimes P_{fg}^R + (f_{-}+f_{+})\otimes P_{gg}^R + 2f_{3}\otimes P_{gg}^V \end{split}$$

 $t = \log \mu$

Example DGLAP in the t-channel base

Fermions
$$(f): \frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$$

Gauge bosons (g) : $1 \otimes 1 = 0 \oplus 1 \oplus 2$

$$\boxed{ \textbf{\textit{T}} = \textbf{0} } \left\{ \begin{array}{l} \frac{\partial}{\partial t} \int\limits_{L} f(0) = \frac{\alpha_{\textit{W}}}{2\pi} \left(\frac{3}{4} \int\limits_{L} f(0) \otimes \left(P_{\textit{ff}}^{\textit{R}} + P_{\textit{ff}}^{\textit{V}} \right) + \frac{3}{4} \int\limits_{\textit{w}} f(0) \otimes P_{\textit{gf}}^{\textit{R}} \right) \\ \frac{\partial}{\partial t} \int\limits_{\textit{w}} f(0) = \frac{\alpha_{\textit{W}}}{2\pi} \left(2 \int\limits_{\textit{w}} f(0) \otimes \left(P_{\textit{gg}}^{\textit{R}} + P_{\textit{gg}}^{\textit{V}} \right) + \frac{1}{2} \left(f(0) + f(0) \right) \otimes P_{\textit{fg}}^{\textit{R}} \right) \end{array} \right.$$

$$\boxed{ T = 1 } \begin{cases} \frac{\partial}{\partial t} f_{L}(1) = \frac{\alpha_{W}}{2\pi} \left(f_{L}(1) \otimes P_{ff}^{V} - \frac{1}{4} f_{L}(1) \otimes \left(P_{ff}^{R} + P_{ff}^{V} \right) + \frac{1}{2} f_{L}(1) \otimes P_{gf}^{R} \right) \\ \frac{\partial}{\partial t} f_{w}(1) = \frac{\alpha_{W}}{2\pi} \left(f_{w}(1) \otimes P_{gg}^{V} + f_{w}(1) \otimes \left(P_{gg}^{R} + P_{gg}^{V} \right) + \frac{1}{2} \left(f_{L}(1) + f_{L}(1) \right) \otimes P_{fg}^{R} \right) \end{cases}$$

$$\boxed{T=2} \left\{ \frac{\partial}{\partial t} f_{(2)} = \frac{\alpha_W}{2\pi} \left(3 f_{(2)} \otimes P_{gg}^V - f_{(2)} \otimes (P_{gg}^R + P_{gg}^V) \right) \right\}$$

General flavour structure of EW DGLAP

DGLAP in t-channel isospin base

$$f_i^{(\mathsf{T})} = Tr[\mathcal{P}_\mathsf{T} \ f_i]$$
 $i = g, \ B, \ W, \ \Phi, \ R, \ L, \ \bar{R}, \ \bar{L},$ \mathcal{P}_T are isospin projectors

$$-\frac{\partial}{\partial \log \mu^{2}}f_{i}^{(\mathsf{T})} = \alpha \left(\frac{\mathsf{T}^{2}}{2} f_{i}^{(\mathsf{T})} \otimes \underbrace{P_{ii}^{V}(\mu)}_{singular} + (C_{i} - \frac{\mathsf{T}^{2}}{2}) f_{i}^{(\mathsf{T})} \otimes \underbrace{(P_{ii}^{V} + P_{ii}^{R})}_{regular} + \sum_{j} f_{j}^{(\mathsf{T})} \otimes P_{ji}^{R}\right)$$

$$P_{ii}^{V}(\mu) = -\log \frac{Q^2}{\mu^2} + \bar{P}_{ii}^{V} \qquad \bar{P}_{ii}^{V} = \frac{3}{2} (i = f), \ 2 (i = \Phi), \ \frac{11}{6} - \frac{n_f}{6} - \frac{n_s}{24} (i = W)$$

• Sudakov : $P^R = 0$

$$-\frac{\partial}{\partial \log \mu^2} f_i^{(\mathsf{T})} = \alpha \ \underset{\leftarrow}{\mathsf{C}_i} \ f_i^{(\mathsf{T})} \otimes P_{ii}^{V} \rightarrow f_i^{(\mathsf{T})} = \mathrm{e}^{-\alpha \ \underset{\leftarrow}{\mathsf{C}_i} \left(\frac{1}{2} \log^2 \frac{Q^2}{\mu^2} + \bar{P}_{ii}^{V} \log \frac{Q^2}{\mu^2}\right)}$$

ullet BN at LL: $(P^R_{ii}+P^V_{ii})_{IR}
ightarrow 0,\; P^R_{ij}
ightarrow 0$

$$-\frac{\partial}{\partial \log \mu^2} f_i^{(\mathsf{T})} = \alpha \; \frac{\mathsf{T}^2}{2} \; f_i^{(\mathsf{T})} \otimes (P_{ii}^{\mathsf{V}})_{IR}(\mu) \to f_i^{(\mathsf{T})} = \mathrm{e}^{-\alpha \; \frac{\mathsf{T}^2}{2} \left(\frac{1}{2} \log^2 \frac{Q^2}{\mu^2}\right)}$$

DGLAP Sum Rules

$$\frac{\partial}{\partial \log \mu^2} f(\mathbf{x}, \mu) = \left(P \otimes f\right)(\mathbf{x}, \mu) \underbrace{\longrightarrow}_{\mathbf{f}(\mathbf{N}, \epsilon) = \int_0^1 d\mathbf{z} \ f(\mathbf{z}, \epsilon) \ \mathbf{z}^{\mathbf{N} - 1}} \frac{\partial}{\partial \log \mu^2} \mathbf{f}(\mathbf{N}, \mu) = \mathbf{P}(\mathbf{N}, \mu) \ \mathbf{f}(\mathbf{N}, \mu)$$

two kind of singularities in the z integration of $P_{ij}^{(R/V)}(z)$:

$$\boxed{\text{for } z \to 1} \quad \int^{1-\epsilon} \frac{dz}{1-z} \sim -\log \epsilon, \qquad \boxed{\text{for } z \to 0} \quad \int_{\kappa} \frac{dz}{z} \sim -\log \kappa$$

$$\begin{split} P_{ff}^V &= \left(\frac{3}{2} + \log \epsilon^2\right) \, \delta(1-z) & \rightarrow & \mathbf{P}_{ff}^V(1,\epsilon) = \mathbf{P}_{ff}^V(2,\epsilon) = \left(\frac{3}{2} + \log \epsilon^2\right) \\ P_{ff}^R &= \frac{1+z^2}{1-z} & \rightarrow & \begin{cases} & \mathbf{P}_{ff}^R(1,\epsilon) = -\frac{3}{2} - \log \epsilon^2, \\ & \mathbf{P}_{ff}^R(2,\epsilon) = -\frac{17}{6} - \log \epsilon^2 \end{cases} \\ P_{gg}^R &= \frac{1+(1-z)^2}{z} & \rightarrow & \mathbf{P}_{gf}^R(1,\kappa) = -\frac{3}{2} - \log \kappa^2 \\ P_{gg}^V &= \left(\frac{5}{3} + \log \epsilon^2\right) \delta(1-z) & \rightarrow & \mathbf{P}_{gg}^V(1,\epsilon) = \mathbf{P}_{gg}^V(2,\epsilon) = \left(\frac{5}{3} + \log \epsilon^2\right), \\ P_{gg}^R &= 2 \left(z \, (1-z) + \frac{z}{1-z} + \frac{1-z}{z}\right) \rightarrow \begin{cases} & \mathbf{P}_{gg}^R(1,\epsilon,\kappa) = -\frac{11}{3} - \log \epsilon^2 - \log \kappa^2, \\ & \mathbf{P}_{gg}^R(2,\epsilon) = -\frac{11}{6} - \log \epsilon^2 \end{cases} \end{split}$$

DGLAP Sum Rules

probabilistic interpretation of the Parton Distribution Functions & quantum numbers conservation (symmetries of the theory).

• **fermion number** conservation :

$$\sum_{a} \int_{0}^{1} dx \ f_{ae}(x,\mu) = 1 \leftrightarrow \frac{\partial}{\partial \mu^{2}} \tilde{f}_{L}^{(0)}(1,\mu) = 0$$

$$\mathbf{P}_{ff}^{R}(1,\epsilon) + \mathbf{P}_{ff}^{V}(1,\epsilon) = 0$$

• momentum conservation :

$$\textstyle \sum_{a} \int_{0}^{1} dx \, x \, f_{aj}(x,\mu) = 1, \ j = f, \ W \leftrightarrow \frac{\partial}{\partial \mu^{2}} \tilde{f}_{j}^{(0)}(2,\mu) = 0$$

$$\mathbf{P}_{ff}^{R}(2,\epsilon) + \mathbf{P}_{ff}^{V}(2,\epsilon) + \mathbf{P}_{gf}^{R}(2) = 0$$

$$\mathbf{P}_{gg}^R(2,\epsilon)+\mathbf{P}_{gg}^V(2,\epsilon)+\frac{1}{2}\mathbf{P}_{fg}^R(2)+\frac{1}{2}\mathbf{P}_{\phi g}^R(2)=0$$

Charges Conservation

$$\boxed{ \text{bfcharges conservation :} } \boxed{ \sum_{a} \int_{0}^{1} dx \ q_{a} \ f_{ai}(x, \mu) = q_{i} }$$

Weak Isospin conservation: T^3

• Fermion: $\sum_{n=0}^{f,w} \int_{0}^{1} dx \ T_{n}^{3} f_{a\nu}(x,\mu) = T_{n}^{3} = \frac{1}{2}$

$$3~\mathbf{P}_{\mathit{ff}}^{\mathit{V}}(1,\epsilon) - \mathbf{P}_{\mathit{ff}}^{\mathit{R}}(1,\epsilon) + 4~\mathbf{P}_{\mathit{gf}}^{\mathit{R}}(1,\kappa) = 0 \rightarrow \mathbf{P}_{\mathit{ff}}^{\mathit{R}}(1,\epsilon) = ~\mathbf{P}_{\mathit{gf}}^{\mathit{R}}(1,\kappa)$$

• Gauge boson: $\sum_{a=0}^{w,f} \int_{0}^{1} dx \, T_{a}^{3} f_{xw+}(x,\mu) = 1$

$$\frac{1}{2} \; \mathbf{P}^R_{\mathit{fg}}(1) + \mathbf{P}^R_{\mathit{gg}}(1,\epsilon,\kappa) + 2 \; \mathbf{P}^V_{\mathit{gg}}(1,\epsilon) = 0$$

$$\mathbf{P}_{\mathit{ff}}^R(2,\epsilon) + \mathbf{P}_{\mathit{ff}}^V(2,\epsilon) = \mathcal{O}(1), \; \mathbf{P}_{\mathit{gg}}^R(2,\epsilon) + \mathbf{P}_{\mathit{gg}}^V(2,\epsilon) = \mathcal{O}(1), \; \mathbf{P}_{\mathit{ff}}^R(1,\epsilon) + \mathbf{P}_{\mathit{ff}}^V(1,\epsilon) = 0$$

$$\begin{aligned} \mathbf{P}_{ff}^{R}(1,\epsilon) &= \mathbf{P}_{gf}^{R}(1,\kappa) \\ \mathbf{P}_{fg}^{R}(1,\epsilon) &= \mathbf{P}_{gg}^{R}(1,\epsilon) + 2 \mathbf{P}_{gg}^{V}(1,\epsilon) = -\frac{1}{2} \mathbf{P}_{fg}^{R}(1) \\ P_{ff}^{R}(x,\epsilon) &= \frac{1+x^{2}}{1-x} \boxed{\theta(1-x-\epsilon)}, \quad P_{ff}^{V}(x,\epsilon) = -\delta(1-x) \left(\log \frac{1}{\epsilon^{2}} - \frac{3}{2}\right) \\ P_{gf}^{R}(x,\epsilon) &= \frac{1+(1-x)^{2}}{x} \boxed{\theta(x-\epsilon)} \\ P_{gg}^{V}(x,\epsilon) &= -\delta(1-x) \left(\log \frac{1}{\epsilon^{2}} - \frac{5}{3}\right) \\ P_{gg}^{R}(x,\epsilon) &= 2 \left(x(1-x) + \frac{x}{1-x} + \frac{1-x}{x}\right) \boxed{\theta(x-\epsilon)} \boxed{\theta(1-x-\epsilon)} \\ P_{fg}^{R}(x,\epsilon) &= (x^{2} + (1-x)^{2}) \end{aligned}$$

Parton Splitting Relations

• Parton exchange:

$$P_{ff}^{R}(x,\epsilon) = P_{gf}^{R}(1-x,\epsilon), \quad P_{gg}^{R}(x,\epsilon) = P_{gg}^{R}(1-x,\epsilon)$$

• Crossing relation:

$$P_{fg}^{R}(x) = x P_{gf}^{R}\left(\frac{1}{x}, \epsilon\right), \quad P_{gg}^{R}(x) \neq -x P_{gg}^{R}\left(\frac{1}{x}, \epsilon\right)$$

Supersymmetry relation:

$$P_{ff}^{R}(x,\epsilon) + P_{gf}^{R}(x,\epsilon) = P_{fg}^{R}(x) + P_{gg}^{R}(x,\epsilon)$$

Conformal Invariance

$$\left(x\frac{d}{dx}-2\right)P_{fg}^{R}(x)\neq\left(x\frac{d}{dx}+1\right)P_{gf}^{R}(x,\epsilon)$$

$$\hat{P}_{gf}^{R}(x,\epsilon) = \underbrace{P_{gf}^{R}(x)}_{1+(1-x)^{2}} \theta(x-\epsilon), \quad f_{gf}(x,\epsilon) \sim \alpha \int_{\epsilon}^{1} \frac{d\epsilon'}{\epsilon'} P_{fg}^{R}(x,\epsilon') \rightarrow \begin{cases} f_{gf}(x,\epsilon) \sim \alpha P_{gf}^{R}(x) \\ f_{gf}(x,\epsilon) \sim \alpha P_{gf}^{R}(x) \end{cases} \underbrace{\theta(x-\epsilon) \log \frac{x}{\epsilon}}_{\epsilon}$$

$$\epsilon = 0.01$$

$$f_{W} - e$$

Black lines: full calculations. Red lines: only the first order $\mathcal{O}(\alpha)$. Blue dashed lines: full calculations without constrains on the splitting functions.

x

x

EW versus QCD DGLAP

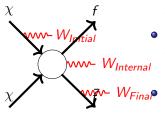
Main Leading order differences...

Properties	EW	QCD
chirality	chiral	vector — like
flavour	Flavour changing	Flavour blind
evolution range	$\mu > M_W$	$\mu > \Lambda_{QCD}$
initial conditions	$f(M_W)$	$f(\Lambda_{QCD})$
<u>μ</u> dependence	$\alpha_W P(\mu)$	$\alpha_s(\mu) P$
diagonal P _{ii} ^{R/V}	$\kappa_1 P_{ii}^V(\mu) + \kappa_2 P_{ii}^R(\mu)$	$P_{ii}^V + P_{ii}^R$
off — diagonal P _{ij}	$P_{gf}^{R}(\mu)$	P_{gf}^{R}
Log resummation	$\alpha_w^n \left(\log^{2n} Q^2 \div \log^n Q \right)$	$(\alpha_s \log Q^2)^n$
Mixed – distributions	$f_{Z_T\gamma}, f_{Z_Lh}, f_{LR}$	

Plus "subleading" differences...

EW high energy physics in Cosmology

Annihilation or decay of heavy neutral relicts $\chi\chi\to f\bar f+W$ with $M_\chi\gg M_W$



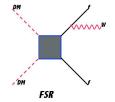
- Final state W emission: modification of the final state spectra (SM physics)
- Internal W emission: Change of chirality of the effective operators for the annihilation processes

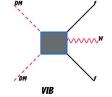
/Final Initial state W emission: only for SU(2) charged DM (wino, etc.) change of leading order effective operators for to the annihilation process

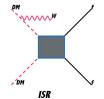
From $\langle v \sigma \rangle_{\chi\chi \to ff}$ to $\langle v \sigma \rangle_{\chi\chi \to ffW}$

Indirect detection sensitive to the non relativistic DM velocity

$$< \upsilon \; \sigma> = \underbrace{\mathbf{a}}_{s-wave} + \underbrace{\mathbf{b}}_{p-wave} \underbrace{v^2}_{\text{with}} \; v = 10^{-3}, \;\; _{\sigma(\textit{Majorana DM} \; \rightarrow \; f\bar{f}) \; \propto \; \mathbf{b} \; _{v^2}$$



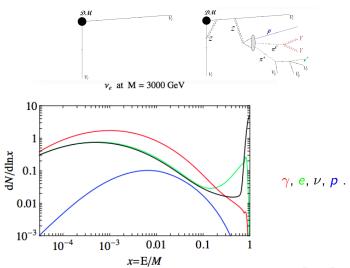




$s-wave$ $\sigma_{\chi\chi o ffW}/\sigma_{\chi\chi o ff}$	ρ – wave $\sigma_{\chi\chi o ffW}/\sigma_{\chi\chi o ff}$		
FSR $\alpha \log^{(n)} \sim \#\%$	$\alpha \log^{(n)} \sim \# \%$		
VIB $\alpha \frac{M_{\chi}^4}{\Lambda^4} \ll 1$	$rac{lpha}{v^2}rac{\mathcal{M}_\chi^4}{\Lambda^4}\simrac{10^4~\mathcal{M}_\chi^4}{\Lambda^4}$		
ISR $\alpha \sim \#\%$	$\frac{\alpha}{v^2} \geq 10^4$		

EW high energy physics in Cosmology

$$\bar{\chi}\chi \to \nu + \bar{\nu}$$
 with $EW \to \bar{\chi}\chi \to \nu + \bar{\nu} + Z$



Partially inclusive cross sections at LHC

Cross sections $PP \to Q\bar{Q} + X$ with $Q\bar{Q} = t\bar{t}, t\bar{b}, b\bar{t}, b\bar{b}$ tagged $\sigma_H(g g \to Q \bar{Q})$ (2 EW legs),

 $\sigma_H(q \bar{q} \to Q \bar{Q})$ (is a 3 EW legs because the the proton sea is, almost, an EW singlet)

Two kinds of observables:

$$\overline{\mathit{EW}\ \mathit{Sudakov}}: (\mathit{PP} \to \mathsf{tagged}\ \mathsf{final}\ \mathsf{state} + \mathit{X})\ \mathsf{with}\ \underline{\mathit{W}, \mathit{Z} \notin \mathit{X}}$$

$$[EW \ BN]$$
: $(PP \rightarrow \text{tagged final state} + X)$ with $W, Z \in X$

Cross sections	Flavor	σ_H Tree Level	σ_{BH}	σ_{Sud}
$PP o Q_iar{Q}_j+X$	$\delta_{ij} (t \bar{t}, b \bar{b})$	$\alpha_s^2 + \mathcal{O}(\alpha_w^2)$	$\alpha_s^2 \alpha_w \log^2 Q^2$	$\alpha_s^2 \alpha_w \log^2 Q^2$
	$i \neq j \ (t \bar{b}, \ b \bar{t})$	$lpha_w^2$	$\alpha_w^2 \left[\frac{\alpha_s^2}{\alpha_w} \log^2 Q^2 \right]$	$\alpha_w^2 \left[\alpha_w \log^2 Q^2 \right]$

 $lpha_W
ightarrow 0$ we have $d\sigma_{t\bar{t}}^{BN} \sim d\sigma_{t\bar{t}}^{H}$ $\frac{1}{4}(3+e^{-2\;L}W)$, $d\sigma_{t\bar{b}}^{BN} \sim d\sigma_{t\bar{t}}^{H}$ $\frac{1}{4}(1-e^{-2\;L}W)$

Exotic aspects of high-energy electroweak physics

In the high-energy regime hard cross sections are *isospin-invariant*. **Vev insertions** (masses or interactions) generates mass suppressed terms $\mathcal{O}\left(\frac{v^2}{Q^2}\right)$ that **break isospin flow**.

What happens to the IR dynamics for Hard amplitudes with isospin not conserved?

Playground: chiral $U_{Z'}(1) \otimes U_{Z}(1)$ with $Q^2 \sim M_{Z'} \gg M_{Z}$.

- One Loop verification of KLN cancellation theorem (real+virtual) for IR terms $\alpha \left(\frac{m^2}{Q^2}\right)^n \log^2 Q^2$ for Z' decay.
- All order Sudakov Form factors (only virtual) for the amplitude $Z' \to f \ \bar{f}$

$$Z'^{\mu} \ \bar{u}(p_1) \left(\gamma_{\mu} \underbrace{(\digamma_L P_L + \digamma_R P_R)}_{isospin \ \text{conserving}} + \underbrace{\frac{m}{Q^2} (p_{1\,\mu} - p_{2\,\mu}) \ \digamma_M + \frac{m}{Q^2} (p_{1\,\mu} + p_{2\,\mu}) \ \gamma_5 \ \digamma_P}_{isospin \ \text{breaking}} \right) v(p_2)$$

Power Suppressed IR double logs

Structure of power suppressed double logs corrections

$$\alpha \ \left(\frac{\textit{m}_{i}^{2}}{\textit{Q}^{2}}\right)^{n} \ \textit{Log}^{2} \frac{\textit{Q}^{2}}{\textit{m}_{j}^{2}} \ \Rightarrow \ \left\{ \begin{array}{ccc} \rightarrow 0 & \textit{for} & \textit{Q} \rightarrow \infty \\ \rightarrow 0 & \textit{for} & \textit{m}_{i} \rightarrow 0 \ \& \ \textit{m}_{j} = \textit{m}_{i} \\ \rightarrow \infty & \textit{for} & \textit{m}_{j} \rightarrow 0 \ \& \ \textit{m}_{j} \neq \textit{m}_{i} \end{array} \right.$$

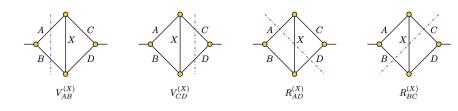
n = 1, ..., 3 at one-loop order.

All the one loop terms $\alpha \left(\frac{m^2}{Q^2}\right)^n Log^2Q^2$ with n=0, 1, 2, 3.

Can we define a combination of observables which is free from these power-suppressed terms? i.e an "improved" KLN?

Power Suppressed KLN theorem

The sum over all possible cuts gives $0 \times \mathcal{O}\left(\alpha \left(\frac{m^2}{Q^2}\right)^n \log^2 Q^2\right) \, \forall n$



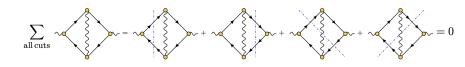
$$V_{AB}^{(X)} + V_{CD}^{(X)} + R_{AD}^{(X)} + R_{BC}^{(X)} = 0$$

$$R_{AD}^{(X)} = R_{BC}^{(X)} = -V_{CD}^{(X)} = -V_{AB}^{(X)}$$

NB: these equalities hold at the <u>double log level</u> and includes **all** power suppressed terms.

Power Suppressed KLN theorem in QED

In QED, power-suppressed double-logarithmic corrections at one loop cancel out, if we sum over all possible cut diagrams!

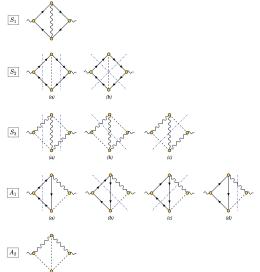


$$\begin{split} \Gamma_{\textit{Virtual}_{\gamma}}(\textit{Z}' \rightarrow \bar{\psi}\,\psi) \quad \sim \quad \left(\Gamma_{0}\;(1+\epsilon_{\gamma}^{2})^{2} + \Gamma_{1}\;\epsilon_{\psi}^{2} + \Gamma_{2}\;\epsilon_{\gamma}^{2}\;\epsilon_{\psi}^{2} + \Gamma_{3}\;\epsilon_{\psi}^{4}\right) \boxed{\log^{2}\epsilon_{\gamma}^{2}}, \\ \epsilon_{\gamma} = \frac{\lambda_{\textit{IR}}}{\textit{Q}},\;\epsilon_{\psi} = \frac{\textit{m}_{\psi}}{\textit{Q}} \end{split}$$

$$\Gamma_{Virtual_{\gamma}}(Z' o ar{\psi}\,\psi) + \Gamma_{Real}(Z' o ar{\psi}\,\psi\,\gamma) \underbrace{=}_{Q o \infty} 0$$

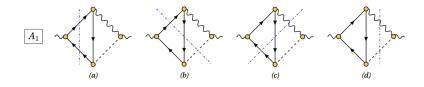
Full set of diagrams for $U_{Z'}(1) \otimes U_{Z}(1)$

<u>Different cuts</u> for each bubble generate different physical process



Asymmetric bubble cuts

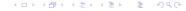
The presence of the A_1 bubble is the element that relate the decay rate of the Z' into fermionic and purely bosonic channels



Physical processes

Virtual
$$\rightarrow$$
 (a): $Z' \rightarrow \boxed{\bar{\psi} \psi}$, (d): $Z' \rightarrow \boxed{h Z}$

Real
$$\rightarrow$$
 (c): $Z' \rightarrow \sqrt{\bar{\psi} \psi Z}$, (b): $Z' \rightarrow \sqrt{\bar{\psi} \psi h}$



Power Suppressed KLN theorem for a spontaneously broken $U_y(1)\otimes U_f(1)$

- "Standard" KLN cancellation mechanism: $\Gamma(Z' \to \boxed{\bar{f}f}) + \sum_{X} \Gamma(Z' \to \boxed{\bar{f}f} + \underbrace{X}_{\text{soft}}) \text{ is IR safe.}$
- To cancel all leading and power suppressed terms we have to include all possible decay channels

$$\Gamma(Z' \to \overline{f}f) + \sum_{X}^{Z,h} \Gamma(Z' \to \overline{f}f X) + \Gamma(Z' \to Zh) + \Gamma(Z' \to ZZZ) + \Gamma(Z' \to Zhh) = \boxed{ IR \text{ safe} }$$

ullet it happens when $\left\{egin{array}{ll} m_f
eq 0 \\ U_Z(1): & y_h = y_R - y_L
eq 0 \\ U_{Z'}(1): & f_h = f_R - f_L
eq 0 \end{array}
ight.$

heavy **chiral** Z' gauge boson produced at future colliders....

Improved degenerate states definition for KLN

The KLN theorem states that the transition amplitude squared is finite once we sum over <u>initial</u> and <u>final</u> degenerate states Hypothesis: perturbation theory with degenerate states + unitarity of the theory.

$$|\bar{S}|^2 = \sum_{\phi_i, \phi_f \in \mathcal{D}(E)} | < \phi_f |S| \phi_i > |^2 < \infty$$

 $\mathcal{D}(E)$ is given by all the states degenerate in energy in a $\Delta > 0$ range, i.e. $|E_{i/f} - E| < \Delta$

In the case of the decay of a "Neutral" particle Φ

$$\boxed{\sum_{\phi_f \in |E_f - E| < \Delta}} \mid <\phi_f |S| \Phi > \mid^2 = \boxed{\sum_{\textit{Kin}} \sum_{\textit{Quantum Num Channel}}} \mid <\phi_f |S| \Phi > \mid^2$$

Look inside the higher twist operators...

Why? Growing Sudakov Form Factors: $e^{+\alpha Log^2 \frac{Q^2}{M^2}}$

$$\sigma_{\textit{H}} \sim \frac{\alpha^2}{Q^2} (1 + \frac{\textit{M}^2}{Q^2}) \underbrace{\rightarrow}_{\substack{\text{IR Virtual Cloud}}} \sigma_{\textit{Sud}} \sim \frac{\alpha^2}{Q^2} \left(e^{-\alpha \; \text{Log}^2 \frac{Q^2}{\textit{M}^2}} + \frac{\textit{M}^2}{Q^2} e^{+\alpha \; \text{Log}^2 \frac{Q^2}{\textit{M}^2}} \right)$$

$$\text{NB: } \tfrac{M^2}{Q^2} e^{+\alpha \; \text{Log}^2 \; \tfrac{Q^2}{M^2}} = \left(\tfrac{Q^2}{M^2} \right)^{\alpha \; \text{log} \; \tfrac{Q^2}{M^2} - 1} \rightarrow \sigma_H \sim \, Q^{2 \; \left(\alpha \; \text{log} \; \tfrac{Q^2}{M^2} - 2 \right)}$$

depressing Sudakov
$$\left[e^{-\alpha \, \text{Log}^2 \, \frac{Q^2}{M^2}} \sim \frac{M^2}{Q^2} \, e^{+\alpha \, \text{Log}^2 \, \frac{Q^2}{M^2}} \right]$$
 anomalous Sudakov

Scale of overtaking beyond Planck scale....

$$Q \sim M e^{rac{1}{4 \alpha}}$$

Resummed Sudakov Effective $Z' \rightarrow \bar{f} f$

$$Z'^{\nu} \ \bar{u}(\rho_1) \left(\gamma_{\mu} (F_L P_L + F_R P_R) + \frac{m}{Q^2} (\rho_{1\,\mu} - \rho_{2\,\mu}) F_M + \frac{m}{Q^2} (\rho_{1\,\mu} + \rho_{2\,\mu}) \gamma_5 \ F_P \right) v(\rho_2)$$

Form Factors: $F_{L,R}$ conserve chirality, $F_{M,P}$ violate chirality. All order resummed form factors

$$\begin{split} F_L &= \left(e^{-y_L^2 L^2} - \frac{\rho}{2} \left(e^{-y_R^2 L^2} - e^{-y_L^2 L^2} \right) \right) \\ F_R &= \left(e^{-y_R^2 L^2} - \frac{\rho}{2} \left(e^{-y_L^2 L^2} - e^{-y_R^2 L^2} \right) \right) \\ F_M &= \frac{1}{2} \left(e^{-y_L^2 L^2} + e^{-y_R^2 L^2} \right) - e^{-y_L y_R L^2} \\ F_P &= \frac{1}{2} \left(e^{-y_L^2 L^2} - e^{-y_R^2 L^2} \right); & \frac{\alpha}{4\pi} \log^2 \frac{Q^2}{m_Z^2} \equiv L^2, \ \rho = \frac{m^2}{p_1 \cdot p_2} \end{split}$$

In the magnetic dipole moment form factor F_M we have an <u>Anomalous Sudakov</u> $\left(e^{-y_L y_R} L^2\right)$ whose exponent can be positive if $y_L y_R < 0$.

From the quantum number of the SM fields we see that U(1) "anomalous" Sudakov form factors are presents for the down quark sector where $y_L=\frac{1}{6}$ and $y_R=-\frac{1}{3}$ so that $y_L \ y_R=-\frac{1}{18}<0$.

Conclusions

At very high scales (Q > 10 TeV), the QCD and EW interactions become of comparable strength. A unified DGLAP framework that includes both QCD and EW splittings is necessary.

- EW BN violation means an IR sensitivity for any observable of an high energy collider.
- EW versus QCD DGLAP evolution equations
- Many Collider & Cosmological implications...

Maas

Elitzur 's theorem: Gauge symmetries can never be broken spontaneously

composite states rather than elementary ones as asymptotic in and out states, very much like hadrons in QCD.

The Inadequacy of the Gauge-Variant Field: They stress that the Higgs field $\Phi(x)$, being in the fundamental representation of the gauge group, is not a physical, observable operator. Only gauge-invariant quantities are physical. Therefore, its vacuum expectation value Φ is not a valid order parameter. one should consider the correlation functions of gauge-invariant composite operators that have the appropriate quantum numbers. in a certain regime (the "physical region" or scaling limit), the spectrum of this gauge-invariant correlator is related to the spectrum of the correlator of the gauge-variant elementary field in a fixed gauge (like the unitary gauge): The physical, gauge-invariant spectrum "shadows" the spectrum of the gauge-variant formalism. The masses calculated perturbatively in the unitary gauge (like the

Gauge group SU(2)

Fundamental Field (Φ) This field transforms under the fundamental representation of SU(2). This means it's gauge-variant.

Gauge-Invariant Composite Field (H):

$$H = \Phi^+ \Phi = \sum_{i} |\phi_i|^2 \tag{1}$$

This is a scalar quantity. No matter how you perform an SU(2) gauge transformation, the value of Φ does not change. It is physically observable. NB: the famous "Mexican hat" potential. It is manifestly invariant under the full SU(2) gauge group because it depends only on the gauge-invariant V=V(H) We characterize the phase of the theory by the expectation value of a gauge-invariant operator H. We do not need to point to a specific gauge-variant VEV $\Phi < H > = 0$

IR versus UV evolution eqs

$$IR: \quad \frac{\partial}{\partial \log \epsilon} \mathbf{f} = \alpha \ \mathbf{P}(\epsilon) \otimes \mathbf{f}, \quad \epsilon = \frac{\mu}{Q}, \quad \mathbf{f}(Q) = f_0 \ \mathbf{I}$$

$$UV: \quad \frac{\partial}{\partial \log \epsilon} \mathbf{f} = \alpha \ \mathbf{f} \otimes \mathbf{P}(\epsilon), \quad \epsilon = \frac{M}{\mu}, \quad \mathbf{f}(M) = f_0 \ \mathbf{I}$$

$$\mathbf{f}_{IR} = \mathcal{T}_{\epsilon} e^{\alpha \int d \log \epsilon' \ P(\epsilon')} \otimes \mathbf{f}(Q), \quad \mathbf{f}_{UV} = \mathbf{f}(M) \otimes \bar{\mathcal{T}}_{e} e^{\alpha \int d \log \epsilon' \ P(\epsilon')}$$

simplest parametrization: $P(\chi) \equiv P^R + P^V \log \chi$, $\chi = \epsilon$, e

$$f_{UV} - f_{IR} \propto lpha^2 \, \log^3 rac{Q}{M} \, \left[P^R, \, P^V
ight]
ightarrow 0 \quad P_V \propto \mathbf{I}$$

Ingredient for one loop Power Suppressed KNL

Virtual (tree point functions) + Real (three body dacays) corrections

$$\Gamma^{\textit{Virtual}} = \underbrace{\textit{V}\!\left(\frac{m_i^2}{Q^2}\right)}_{\textit{Polynomial dim}} \underbrace{\textit{Log}^2 Q^2}, \qquad \Gamma^{\textit{Real}} = \underbrace{\textit{R}\!\left(\frac{m_i^2}{Q^2}\right)}_{\textit{Polynomial dim}} \underbrace{\textit{Log}^2 Q^2}_{\textit{Polynomial dim}}$$

- k integrals for virtual and real corrections
- IR unitarity theorem
- p + k theorem: the algebraic manipulations done for the cut of a given bubble lead to the same result (apart from a sign) for virtual and real contributions.

Virtual corrections: the double-log structure of the scalar three-point integral

$$C_0\left(q^2, p_a^2, p_b^2, m_A^2, m_B^2, m_k^2\right) = \begin{array}{c} q \\ \hline \\ k - p_b \\ \hline \\ k - p_b \\ \hline \\ k - p_b \\ \hline \\ m_k \\ k - p_b \\ \hline \\ m_k \\$$

$$\mathcal{C}_0(\underbrace{Q^2,m_a^2,\ m_b^2}_{\text{external parameters}},\ \underbrace{m_A^2,\ m_B^2,\ m_k^2}_{\text{internal}}) \underbrace{=}_{Q \to \infty} \underbrace{\frac{1}{\Phi_2(m_a^2,\ m_b^2)} \, \frac{i}{32\ \pi^2\ Q^2} \, \text{Log}^2 Q^2}_{\text{only external parameters}}$$

$$\Gamma^V \propto V_{AB}^X \left(rac{m^2}{Q^2}
ight) \;\; \Phi_2 \;\; \mathcal{C}_0$$

$$\Phi_2(m_a^2, \; m_b^2) \equiv rac{1}{16 \, \pi \, Q} \sqrt{1 - rac{2 \, (m_a^2 + m_b^2)}{Q^2} + rac{2 \, (m_a^2 - m_b^2)}{Q^4}}$$

Real corrections: the double-log structure of a particle emission

$$\Gamma^R \propto \int |\mathcal{M}_{q \to p_a p_b k}|^2 d\Phi_3(q; p_a, p_b, k) \propto R_{AB}^X \left(\frac{m^2}{Q^2}\right) \int \frac{dE_a dE_k}{D_A D_B}$$

 $D_{A,B}$: propagators of the intermediate states

Virtual versus real corrections

$$\underbrace{\int_{\text{BC}} \frac{dE_a dE_k}{[(p_a + k)^2 - m_A^2][(p_b + k)^2 - m_B^2]}}_{m_a} = \underbrace{-\frac{1}{4} \Phi_{\text{LIPS}}(m_a^2, m_b^2) \mathcal{C}_0(Q^2, m_a^2, m_b^2, m_A, m_B, m_k)}_{m_a} = \frac{1}{8Q^2} \log^2 Q^2 \,,$$

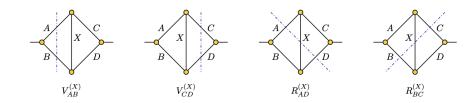
where we define the two-body Lorentz invariant phase space

$$\Phi_{\rm LIPS}(m_a^2, m_b^2) \equiv \sqrt{1 - \frac{2(m_a^2 + m_b^2)}{Q^2} + \frac{(m_a^2 - m_b^2)^2}{Q^4}},$$

$$\Gamma^R = R^X_{AB} \bigg(\frac{m^2}{Q^2} \bigg) \ Log^2 Q^2, \qquad \Gamma^V = V^X_{AB} \bigg(\frac{m^2}{Q^2} \bigg) \ Log^2 Q^2$$

IR unitarity theorem

The sum over all possible cuts of a given diagram gives $0 \log^2 Q^2$



$$V_{AB}^{(X)} + V_{CD}^{(X)} + R_{AD}^{(X)} + R_{BC}^{(X)} = 0$$

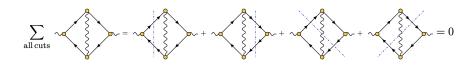
"p + k theorem"

$$R_{AD}^{(X)} = R_{BC}^{(X)} = -V_{CD}^{(X)} = -V_{AB}^{(X)}$$

NB: this equality holds at the <u>double log level</u> and includes all power suppressed terms.

IR unitarity theorem

In QED, power-suppressed double-logarithmic corrections at one loop cancel out, if we sum over all possible cut diagrams!



$$egin{aligned} \Gamma_{\mathit{Virtual}_{\gamma}}(Z'
ightarrow ar{\psi} \, \psi) &\sim & \left(\Gamma_0 \; (1 + \epsilon_{\gamma}^2)^2 + \Gamma_1 \; \epsilon_{\psi}^2 + \Gamma_2 \; \epsilon_{\psi}^3
ight) \log^2 \epsilon_{\gamma}^2, \ & \epsilon_{\gamma} = rac{\lambda_{\mathit{IR}}}{Q} , \; \epsilon_{\psi} = rac{m_{\psi}}{Q} \end{aligned}$$

$$\Gamma_{\mathit{Virtual}_{\gamma}}(Z' o ar{\psi}\,\psi) + \Gamma_{\mathit{Real}}(Z' o ar{\psi}\,\psi\,\gamma) \underbrace{=}_{Q o \infty} 0$$

Toy Model: Heavy Z' decays

Chiral $U'(1) \otimes U(1)$ gauge theory (in Feynman gauge) with: heavy Z' gauge boson

light: fermion ψ , higgs h and gauge boson Z

$$\epsilon_{\mathsf{z},\phi,\psi,\mathsf{h}}\ll 1$$

$$\begin{split} \mathcal{L}_{f} &= \bar{\psi} \left[\partial_{\mu} + ig \left(y_{L} P_{L} + y_{R} P_{R} \right) Z_{\mu} + ig' \left(f_{L} P_{L} + f_{R} P_{R} \right) Z_{\mu}' \right] \gamma^{\mu} \psi \,, \\ \mathcal{L}_{s} &= \left| \left(\partial_{\mu} + ig' f_{\varphi'} Z_{\mu}' \right) \varphi' \right|^{2} + \left| \left(\partial_{\mu} + ig' f_{\phi} Z' + ig y_{\phi} Z_{\mu} \right) \varphi \right|^{2} + V(\varphi) + \mathcal{V}(\varphi') \,, \\ \mathcal{L}_{m} &= \left(h_{f} \varphi \, \bar{\psi} \, P_{L} \, \psi + h.c. \right) \,. \end{split}$$

field	U(1) charge	U'(1) charge
$\psi_{L/R} = P_{L/R} \; \psi$	$y_{L/R}$	$f_{L/R}$
φ	$y_{\phi}=y_R-y_L$	$f_{\phi}=f_R-f_L$
φ'	0	$f_{\phi'}$

fields	mass spectrum	
Z, ϕ	M	
$Z, \ \phi$ $Z', \ \phi'$	Q	
ψ	m_{ψ}	
h	m_h	

$$\epsilon = \epsilon_{\phi} \equiv \frac{M}{Q}, \qquad \epsilon_{\psi} \equiv \frac{m_{\psi}}{Q}, \qquad \epsilon_{h} \equiv \frac{m_{h}}{Q}$$

Tree level decays: $Z' o \bar{\psi} \; \psi$ and $Z' o Z \; h$

Limits

• $y_{\phi} = 0$ $A_1 = 0$ Z gauge boson is massless M = 0,

Fermions are U(1) vector like $y_{\phi} = y_R - y_L = 0$.

Mixing angle Z' - Z: $c_{\theta} = 1$ (diagonal mass matrix)

The couplings Z' Z h and Z Z h are null.

Yet the coupling with goldstone mode $Z' \phi h$, $\phi' \phi h$, $\phi \phi h$ are non zero.

$$\bullet \boxed{f_\phi = 0} (A_1 = 0)$$

Fermions are U'(1) vector like.

The decay channel $Z' \to Zh$ is zero so the heavy Z' can decay only in light fermions.

- Massless fermions $\epsilon_{\psi} = 0 \mid (S_2 = A_1 = 0)$ Higgs and goldstone fields do not interact with massless fermions.
- Massless higgs $\epsilon_h = 0$ $(A_2 = 0)$
- Zero vev v=0 $(S_1 \neq 0 \text{ and } S_3 \neq 0)$ All the light spectrum is massless $\epsilon_i = 0$.

Only the leading log (LL) corrections, proportional to the Sudakov double logs, remains.



The domino effect

"standard"observable

 $Z' \rightarrow \bar{\psi} \psi X$, with soft X = 0, Z

Once $A_1(b)$ is included, the cancellation of power suppressed double logs forces the inclusion of $A_1(d)$ which, in turn, further enlarges the observable by including the Zh final state Canceling $S_2(a)$ forces the inclusion of $Z' \rightarrow \bar{\psi} \psi h \text{ via } S_2(b) \text{ and } A_1(b)$ **∜**(b) (c)**♦**(b) $\begin{array}{cccc}
S_1 + S_2 + A_1 & \overline{S_1 + A_1} & \overline{S_2 + A_1} \\
\overline{Z' \to \overline{\psi}\psi} & \overline{Z' \to \overline{\psi}\psi} & \overline{Z' \to \overline{\psi}\psi}
\end{array}$ $\sum_{i} S_1 + S_2(a) + A_1(a)$ $A_1(d) + \sum_{i=1}^{n} A_2 + S_3(a)$ all cuts all cuts

"standard"observable

 $Z' \rightarrow Zh X$, with soft X = 0, h, Z

Again the KLN theorem: degenerate states

KLN Th: The theorem states that the transition amplitude squared is finite once we sum over <u>initial</u> and <u>final</u> degenerate states Hypothesis: perturbation theory with degenerate states + unitarity of the theory.

$$|\bar{S}|^2 = \sum_{\phi_i, \phi_f \in \mathcal{D}(E)} | < \phi_f |S| \phi_i > |^2 < \infty$$

 $\mathcal{D}(E)$ is given by all the states degenerate in energy in a $\Delta>0$ range, i.e. $|E_{i/f}-E|<\Delta$

In the case of the decay of a "Neutral" particle Φ

$$\sum_{\phi_f \in |E_f - E| < \Delta} | < \phi_f |S| \Phi > |^2 = \sum_{\textit{Kin Quantum Num Channel}} | < \phi_f |S| \Phi > |^2$$

KLN: kinematical degenerate states

$$oxed{\sum_{ extstyle exts$$

kinematically degenerate states Infrared and collinear.

In QED the decay of a neutral Φ into charged particles $q\bar{q}$ that interact with photons γ :

$$\text{Kinematical Sum}: \left\{ \begin{array}{l} |\langle \bar{q} \, q \, | \, S \, | \bar{\Phi} \rangle|^2 \rightarrow LL + LL_{PS} \\ \\ \sum_k |\langle \bar{q} \, q, \, \gamma(k) | \, S \, | \bar{\Phi} \rangle|^2 \rightarrow LL + \, LL_{PS}, \\ \\ |\langle \bar{q} \, q \, | \, S \, | \bar{\Phi} \rangle|^2 + \sum_k |\langle \bar{q} \, q, \, \gamma(k) | \, S \, | \bar{\Phi} \rangle|^2 \rightarrow NLL, \end{array} \right.$$

$$LL=Log^2\frac{Q^2}{m^2},\ LL_{PS}=\frac{m^2}{Q^2}Log^2\frac{Q^2}{m^2},\ NLL={\rm next\ to\ leading\ log}$$

KLN: quantum number degenerate states

: quantum number degenerate states

In the SM: color SU(3) quantum number, or isospin SU(2)

$$\begin{aligned} \text{Quantum Numbers Sum} : \begin{cases} & |\langle \bar{q}_{\alpha} \, q_{\beta} | \, S \, | \Phi \rangle|^2 \to LL + LL_{PS} \\ & |\langle \bar{q}_{\alpha} \, q_{\beta} | \, S \, | \Phi \rangle|^2 + \sum_{k,a} |\langle \bar{q}_{\alpha} \, q_{\beta}, \, g_a(k) | \, S \, | \Phi \rangle|^2 \to LL + \, LL_{PS}, \\ & \sum_{\alpha,\beta} |\langle \bar{q}_{\alpha} \, q_{\beta} | \, S \, | \Phi \rangle|^2 + \sum_{k,a,\alpha,\beta} |\langle \bar{q}_{\alpha} \, q_{\beta}, \, g_a(k) | \, S \, | \Phi \rangle|^2 \to NLL, \end{cases} \end{aligned}$$

In QCD, to cancel all the LL logs, we need to sum over all the colours of the quarks and over the emission of IR gluons of all possible colours.

A similar effects is present also for SU(2) multiples with the Isospin sum. The difference is that the gauge group is spontaneously broken and the gauge mediators are massive

$$LL = Log^2 \frac{Q^2}{m^2}, \ LL_{PS} = \frac{m^2}{Q^2} Log^2 \frac{Q^2}{m^2}, \ \ NLL = {\rm next\ to\ leading\ log}$$

KLN: channel degenerate states

: all possible different (Lorentz spin) channels

In Spontaneously broken $U'(1) \otimes U(1)$ the heavy Z' can decay into two light states: a fermion-antifermion

state $(Z' \to |q|\bar{q}>)$ and a light Z gauge boson-light higgs state $(Z' \to |Zh>)$.

$$\text{Channel sum} : \left\{ \begin{array}{l} |\langle \bar{q}q | S \, | \Phi \rangle|^2 \to LL + LL_{PS} \\ \sum\limits_{X = Z, h} \sum\limits_{k} |\langle q \, \bar{q}, \, X(k) | \, S \, | Z' \rangle|^2 \to LL + LL_{PS} \\ \\ \sum\limits_{X = Z, h} \sum\limits_{k} \left(|\langle X \, \bar{q}, \, q(k) | \, S \, | \Phi \rangle|^2 + |\langle X \, q, \, \bar{q}(k) | \, S \, | \Phi \rangle|^2 \right) \to LL_{PS} \\ \\ |\langle Zh | \, S \, |Z' \rangle|^2 \to LL + LL_{PS} \\ \sum\limits_{k} |\langle Zh, \, h(k) | \, S \, | \Phi \rangle|^2 \to LL_{PS} \\ \\ \sum\limits_{k} \left(|\langle ZZ, \, Z(k) | \, S \, | \Phi \rangle|^2 + |\langle h \, h, \, Z(k) | \, S \, | \Phi \rangle|^2 \right) \to LL + LL_{PS} \\ \\ \sum\limits_{k} \left(|\langle ZZ, \, Z(k) | \, S \, | \Phi \rangle|^2 + |\langle h \, h, \, Z(k) | \, S \, | \Phi \rangle|^2 \right) \to LL + LL_{PS} \\ \end{array} \right\}$$

$$\label{eq:log2} LL = Log^2 \frac{Q^2}{m^2} \,, \ LL_{PS} = \frac{m^2}{Q^2} Log^2 \frac{Q^2}{m^2} \,, \ NLL = {\rm next\ to\ leading\ log}$$

One loop KLN with Power suppressed double logs included

- standard KLN cancellation mechanism: If $\Gamma(Z' \to \bar{f}f)$ is IR then $\Gamma(Z' \to \bar{f}f) + \sum_X \Gamma(Z' \to \bar{f}f)$ is IR safe.
- the only way of cancelling all leading and power suppressed terms is to include all possible decay channels, and this must include channels very different from the starting one like $\Gamma(Z' \to \bar{f}f) + \sum_{X} \Gamma(Z' \to \bar{f}f X) + \Gamma(Z' \to Zh) + \Gamma(Z' \to ZZZ) + \Gamma(Z' \to Zhh)$ IR safe
 - necessary requirements $(A_1 \neq 0)$: $\left\{ egin{array}{l} \epsilon_{\psi} \neq 0 \\ y_{\phi} = y_R y_L \neq 0 \\ f_{\phi} = f_R f_L \neq 0 \end{array} \right.$

The only possible phenomenological models where the above three requirements can be present is in a new physical scenario where an extra heavy Z' gauge boson can be produced at future colliders.

