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Motivation

 QFT Is fantastic in statistical physics, particle physics, cosmology

 Many phenomenologically relevant QFTs are strongly coupled

How do we formulate predictions in strongly coupled QFTs?

Method Downsides
Conformal bootstrap Only CFT
S-matrix bootstrap Only 2-to-2
Hamiltonian truncation | Cutofl breaks Lorentz, many divergences
Lattice Expensive, sign problem, no dynamics
Integrability Only 2D and extra conserved charges
Holography Only large N and SUSY
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Basic idea

A framework in the continuum, with no divergences and (maybe?) cheap

» In CFT, local observables are fixed by {A;, Ck }

52' | 0
(0;i(x)0,;(0)) = 5,;227; Z A“LAjk ~- (Ok(0) + descendants)

 QFT in AdS defines a family of CFTs (without stress tensor)
. Observables in QFT in AdS fixed by  {A;(A), b2(A\) , Ciie(A)}

 For arbitrary )\ , we can compute universally the derivatives of the data

* Truncated system of ODEs can in principle be solved iteratively, flowing the data
to strong coupling and to flat space
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Basic idea

What are local correlation functions in AdS?

And how do we compute them?

v

What is the S-matrix in QFT in flat space”

And how do we compute it?
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Basic idea

A

S = SQFT2 -+ )\/ b
AdSs

“QFT data” fully fixes all local observables

AN, Cin(V), 89 (N)

Taking A — A+ oA, with PT we compute

Cz’jk; db?a’

Truncated system of ODEs can be iteratively solved
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Outline

Correlation functions from QFT data
Perturbation theory, once and for all
Examples and checks

Further properties of the flow equations
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Observables from QFT data



Geometry

Embedding space formalism

+ Embed AdS, in R"*

el —
XX nap = —R?
 Boundary = space of light rays
B PAPBUAB =0, P4 ~ \PA

, dz? 4+ dr?
 Poincaré metric ds? = T

~2
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Correlation functions

* At any point in the RG flow

OA; A,

Aq (A
P12()

Cia3(A)

O1 p—

PA123 (A) P2A3231 (A) P1A3132 (A)

12
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P12 — —2P1 ¥ P2
Aoz = A1+ Ay — Ajg

Correlation functions

* At any point in the RG flow

O O — 5A1A2
PlAzl()\) @
S {0
(—2P - X)A1(N)
@
o C123(A) o
1 PA”S(/\)PAQ‘“ ()\>PA132<)‘) These are the coefficients in the BOE
12

Z A bO ) + descendants)
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Correlation functions

o State-operator map: any other correlation function is built from QFT data

— Z b? 15?2 b,??’ C; ik (kinematic block)

2,3,k

ijk
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Correlation functions

o State-operator map: any other correlation function is built from QFT data

Dynamics
— b bj bk ka

(kinematic block)

ijk
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The QFT data

* QFT observables are thus fully fixed by these functions

AZ()‘) 7 Cijk()‘) 7 boa ()‘)

 For boundary observables, we only need

b
AZ()‘) ) Cijk()‘) ) b ()‘)
 ODEs for these functions come by solving perturbation theory once and for all
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Perturbation theory, once and for all



Perturbation theory, once and for all
Shifting data

» Change the coupling infinitesimally

e

S:SQFT2+(A+5A)/ 5

X

* At leading order, the only effect is
SA;(N) = X AL(N)
0C5K(A) = 0A Cjr(N)
5b@i()\) =P, b’@i()\)
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Perturbation theory, once and for all

2-pt function
S = Sqrr, + (A +6\) / 5 SA(A) = 6X AL(N)
X

e At the same time,

(O(P1)O(F2)) atsxn) = (O(P1)O()) () — 5)\/X<O(P1)O(P2)(i’(X)>(/\)

e Renormalization conditions

" ¢
Onron) = (1+ Z(€) O 1o, o8 o

_ 0y
ON) = SA;FA,
P 7 7
12

(O (P1)O5* (P2))

S to,
[



Perturbation theory, once and for all

Conformal blocks

 We want to carry out these integrals universally

/X (0103 (P)O4(P)d(X)[0)
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Conformal blocks

 We want to carry out these integrals universally

[ wourorbn = [ 3 [ 00(rI0rIA, A, PRI
U y

Cliij he

J

O; ’ (97;



Perturbation theory, once and for all

Conformal blocks

 We want to carry out these integrals universally

[ womoreen = [ 3 [ wlomopia, P, PR
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Perturbation theory, once and for all

Conformal blocks

 We want to carry out these integrals universally

[ wourorbn = [ 3 [ 00(rI0rIA, A, PRI

© ’ ‘ © \ / B P
=P X)) (R X)

Can we swap?



Local blocks

* Big technical parenthesis: must use local blocks

* Naive conformal blocks present unphysical cuts
* | ocal blocks form a basis with physical analytic structure
« Endowed with an extra free parameter «

* There exists an integral transform
FG) = G

(@) 1] = 7()

32



Perturbation theory, once and for all

* Expanding for small 4\ and matching,
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The flow equations

 The ODEs: Z ;i> mz(a) (A)
z

— Z b; Cl@mCka]CXX-)AjAk (A7, Ay, + (29k) perms.
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Examples and Checks



Example
Scalar GFF

S = ; /\@ d*x (ﬁuggﬁ“qg + mzqu)

.. 2

+ In this example & = % and ) = -
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Example S =3 [ V3 & (0,60"6 + m*?)
Scalar GFF
+ In this example & — @2 and )\ — %2

» The theory is solvable. It has, for example, primaries ¢ and [¢~]

n

Ag(m?) =

%: \/411 Fm A, (m7) = 284(m*) + 2n
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Example = ; / Vi &z (8,60"5 + m*$?)
Scalar GFF
+ In this example & — @2 and )\ — %2 .

» The theory is solvable. It has, for example, primaries ¢ and [¢2]n

| 1
Ap(m®) = 5 + \/4 - Apg2), (m?) = 2A4(m*) + 2n
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Example
Scalar GFF

]. qub ]_ > ¢22 N
205 — 1 T dm? 2 Z b[¢2]nc[¢2]n¢</5z( )(Qﬁ(p + 2n)
n=0
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Example

Scalar GFF From boundary expansion of (¢2¢?)
1 dA¢ .

\ From harmonic analysis on (¢¢¢¢)
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Flow of scaling dimensions

6_

dm

nmax

1
20 4—1

1
2A4—1

L |

Neumann

Dirichlet

Normal blocks ny.c = 5
Local blocks ny,.x =5 and a = 3

A

0.0

0.5

1.0 1.5
Ay

2.0

Sum over normal blocks
converges only if

3
A <2
S



Flow of scaling dimensions

10—1_
10—3 i

dA¢ 10_5'
" dm?

dA, 1

nmax

Z bfb¢2]n0[¢2]n¢¢z(a) (2A¢ —|— 2%)
n=0

dm2 ~ 2
1
o ® . O o a = 10
¢ o o @ ¢ e O a = 20
v
® e, I ®
® o ' ® o
O ¢ e
O
@) Universal error estimate:
0 o
Z(AZ—&)—I—AA
O . Amax ®
®
® .
® o
@
1
D 10 15 20

Tmax
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Flow of BOE coefficient

From harmonic analysis on (¢¢¢¢do)

5 /
db A

I, 42 2 o .
o — 5 Z bEb Q]Zbﬁbz]jC¢2[¢2]l[¢2]jj2(A)¢ (2A¢ + 21, 2A¢ + 2])
L,J
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Flow of BOE coefficient

From harmonic analysis on (¢¢¢¢do)

5 /
db A

1 — h? 2 87 .
N R D b, bz, Corlgnnion), Tany (286 + 21,28 + 2)

laj /

jg@)(Al AQ) _ QﬁF(A12+1)F(A2—I-%)F(a— %)F(a A223)

(A1 = 1)Agsl (252 T (0 = ) T (o + 25— T (S35
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Flow of BOE coefficient

dbgbz Jmax I max

<b (o) .
am2 L L b b o2 [d2]1[92]; j2A¢ (244 + 21,244 + 2j)
7=0 [=0
15.0 1
P S T V(As+3) -V (Ay))
19.5 - \ V2 (284, -1 (Ap+13)
| ® normal blocks lhax = 10, Jmax = 10
local blocks l;ax = 10, Jmax = 10 and a = 30.1
10.0 -
®
v’ 7o \_* o
dm? 5 () - .
-
2.5 o
® @
0.0 A -A—~—'_‘ _____________
-
—2.5 1 /
—5.0 1 I . |
0.0 0.9 1.0 1.5 2.0



Flow of BOE coefficient

Ag = 2.1

"o |
db¢ 1 Jmax lmax ~ 5 ~ 5
> _ ~\ ¢ () :
T2 9 L L b[¢2]zb[¢2]j0¢2 [¢2]z[¢2]jj2A¢ (2A¢ + 21, 2A¢ + 2])
=0 1=0
10°4
1@ o lmaX:j+207 &:2A¢—|—]—|—3
o
10714 o
o
b’
err. am2
102 ®s.
o
““‘
1073+ "o,
“““‘
: ““"“
0 10 20 30 40



Flow of OPE coefficient

dC — 4 o) (a)
0= df;gl = > b, Cosisn) (IC(A¢,A¢,O(2A¢+2Z7A¢>+KA¢,O,A¢(2A¢+ZZ7A¢)
[=0

KGR, a, (206 + 21,20, + 21))
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Flow of OPE coefficient

d0¢¢1 S o e
0= = > b, Cosisn) (IC(AQZ,AQS,O(ZAC/H_QZ? Ap)HKR) o a, (20421, Ay)
[=0

dm?

KGR, a, (206 + 21,20, + 21))

This i1s the numerical bottleneck for now:

o d61d62d63 AA,,
]CE\Z-)/\j/\k(AlvAWJ :/ (27].@3 f/\;}\./\k(C]_,CQ,CS)

J
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dC pp1

0 —

dm?

Flow of OPE coefficient

=D by, Coole) (]CXX;,A@O(QACV'_QZ» Ag)+K
[=0

A¢,O,A¢

(2A¢—|—2l, ACb) —+ IC

1072 5

E o o = 5, A¢ = %

O

» O

10_3€ ~
O
dm? 104 3 o
107°
O
N

1079 ®

0 > A ] 10

0,A4,Ay

(20 + 21,24 + 21))



Further properties of the flow equations



The flat space limit and the S-matrix

 The coupling A isinunits of R
 Flow can be seen as happening from heavily curved AdS to flat space

* |n principle, spectrum and S-matrix can be extracted

m; Ai(A) T Yor (\/g A()\))
e = lim TS )~ lim 2 (A)Chs0. N3 (S0 = R0
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Further properties

Level repulsion

* Eigenvalues of hamiltonians which depend on continuous parameters don’t cross

« Proven in RMT and finite dimensional QM

* Expected to hold generically in QFT Ay
- -
* We can prove it with our equations - A,
A
dQ(Al — Ag) C

D<A — Ay K 1: —
T N2 (A, — Ay)3
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Further properties

Mergers and annihilations of theories

* Expected when operators hit marginality

 From the first flow equation,
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Further properties

Mergers and annihilations of theories

* Expected when operators hit marginality

 From the first flow equation,

dA, c
L, =1 Lo
A2 L d\ A, —1
2 1.d
AN ~ Ai(A\) £ V2eh— N = Cg*bl

 Example in free massive theory:

54

BF
bound

1
4

N |

[ QO

Normalizability
bound



Further properties

Free bulk and interacting boundary

There exists a family of 1D CFTs called Long
Range Ising

Critical point of Ising model with decaying
iInteractions

It is equivalent to the following construction
» Take free massive scalar in AdS2

e Turnon §b4 only on the boundary

* Flow to IR fixed point on boundary

Fits in our flow equations framework

55

=
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Conclusion



Conclusion

Summary

» QFT in AdS can be phrased interms of A;(\), Ciin(N), b9\

* Their evolution under RG flows is governed by coupled ODEs
 No more divergences to deal with

* Fully non-perturbative

* Nontrivial checks for scalar and fermion GFF

 They know a lot about QFT (level repulsion, merger-annihilation, etc..)

e \What next?
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Conclusion

Short term wishes

» Efficiency
» Solve simple interacting cases (ex: LRI family)

» More concise form? No bg’, no \
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Conclusion

Longer term wishes

* (Generalization to multiple deformations (maybe trivial)
* |sing Field Theory and flows between minimal models
* O(N) nonlinear sigma model and O(/N) GN model

» (Generalization to higher dimensions

¢ YM4
. QCD,!
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What is QFT?

* This framework inherits all axioms from CFT (except bdy stress tensor)

e EXistence of bulk stress tensor implies

24F(2AZ A 2 O
= Z IAT2(A, +) 2) (b? ) i Z Py Clt 8- )

* Possibly exciting for axiomatic (and computable) approach to QFT

Thank you
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Local blocks

Analytic structure

17

00)

Physical cut

62
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Local blocks D

oX
The dispersive integral S o
Consider the following trivial rewriting
) 1 dx" 1 f(X)
O;(P1)O;(P)O(X)) = =%
OPYOP)OX)) = (X R
Imposing a physical analytic structure for the correlator,
o [0 a1 F(X)
) =x /_oo i —x X < X' )
. _ . . A
Now plug in f(x) = Zb@jcmGAi,Aj (X) . Swapping (valid for a > A; A , )
J
- __ 1 (o) (a) _ ’ dX, 1 : GAi,Aj(X/)
(Oi(P1)0i(P2)0(X)) = P Zb@jciijGAi,Aj (x) Galn,(X) = /_OO dmi XDISCngo o
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Renormalization condition

* Explicitly, we choose

55
<OZR(P1)O;Q(P2)>()\—|—5)\) = PAz‘i(SAz
12

(j%jk;-+-<5(j%jk;

<Oﬁ(P1)Of(P2)Ol]j(P3)>()\—|—5>\) = Aijk+5AijkPAjki+5A
23

Aiki+0A ik
Pl 2

Tk P13

(P — 67 + 627 D7 | OF(P
Ol )(/\+5/\) (7’_'_ Zza P) i ( )(/\+5/\)

n=0
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