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Why Relative Entropy in QFT?

Entropy plays a crucial role in information theory, both classical and quantum. It finds
applications in QFT (Hollands and Sanders 2018; Nishioka 2018), including the study of
the geometry of black holes (Mann 2015).

In QM the entropy S(ρ) of a state described by a density matrix ρ is given by:

S(ρ) = Tr(ρ ln ρ).

In QFT (infinitely many degrees of freedom) the algebras of local systems do not admit
trace class operators (Type III von Neumann factors) =⇒ Divergent traces =⇒
Relative entropy (rather then entanglement entropy) is suitable for generalization to
QFTs (on the continuum). It subtracts the vacuum UV divergences common to every
state.
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Relative Entropy: from QM to QFT

Relative entropy provides a measure of how much two states are “distinguishable” (Hiai
and Dénes Petz 1991) (not symmetric!).

In QM the relative entropy between ρ1, σ1 acting on an Hilbert space H1 is defined
by

S(ρ|σ) := Tr ρ1(ln ρ1 − ln σ1).

We identify ρ1, σ1 with the reduced density matrices of two vectors Ψ, Φ in an
enlarged Hilbert space H1 ⊗ H2 (purification (Witten 2018)). It follows

S(ρ|σ) = −(Ψ, ln ∆Ψ|ΦΨ), (1)

where
ln ∆Ψ|Φ = ln σ1 ⊗ 1 − 1 ⊗ ln ρ2.

Eq. (1) generalizes to the QFT setting (Araki 1975; Araki 1976; Uhlmann 1977),
with the positive operator ∆Ψ,Φ the relative modular operator between Ψ, Φ (Araki
and Masuda 1982).
It satisfies “good” entropic properties (E.g. Positivity, Monotonicity w.r.t.
localization)
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Algebraic QFT

In AQFT (Haag and Kastler 1964) a theory is specified by the following axioms:

It exists a map:
O 7→ A(O),

that associate to every open bounded region O of Minkowski spacetime (M) a
unital (C∗-)algebra A(O) (in general, abstract!).
Isotony:

O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2)

(inclusion by unital ∗-homomorphism)
Poincaré group G represented by a geometrical group of automorphisms αg:

αgA(O) = A(αgO), g ∈ G.

Locality, i.e. if O1, O2 are causally separated:

[A(O1), A(O2)] = {∅}.

States ω are positive, normalised linear functionals acting on A:

ω ∈ A∗ s.t. ω(A∗A) ≥ 0, ω(1) = 1.
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Represented von Neumann Algebras

We recover net of operator algebras via GNS construction (Bratteli and Robinson
1987) (not all equivalent!). Given ω on A(M) (quasi-local algebra), we obtain a
representation πω on an Hilbert space Hω containing a vector |Ω⟩ that implements ω:

ω(A) = ⟨Ω| πω(A) |Ω⟩ , ∀A ∈ A(M).

We obtain a net A of von Neumann algebras by defining:

A(O) := πω(A(O))′′.

It coincides with the closure in the weak topology (useful and makes physical sense!)
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Example: Scalar Field

Massive real scalar field equation:

(□ − m2)ϕ(x) = 0.

Admits a unique causal propagator E (retarded minus advanced Green functions):

E(x , y) = i
(2π)3

∫
sign(p0)δ(p2

0 − ω2
p)e ip(x−y)d4p, ωp =

√
∥p∥2 + m2.

E defines a symplectic form E(f , g) on the space of real valued test functions
f , g ∈ C∞

c (M) =⇒ Unique associated C∗-algebra W(M), so called Weyl algebra or CCR
algebra (D. Petz 1990; Gérard 2023) .

Let ω0 be the vacuum state GNS=⇒ Recover the usual representation on the symmetric
Fock space. A(O) is generated by polynomials in:

W (f ) = e iϕ(f ), supp f ⊂ O

where (formally):

ϕ(f ) =
∫

d4x f (x)ϕ(x) =
∫

d4x f (x)
∫

d3p
(2π)3ωp

[
ape−iωpx0+ipx + a†

pe iωpx0−ipx
]

.
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Modular Theory in a Nutshell

Let H be a Hilbert space, A a von Neumann algebra and |Ω⟩ be a cyclic (A |Ω⟩ = H)
and separating (A |Ω⟩ = 0, A ∈ A =⇒ A = 0) vector. =⇒ modular theory can be
constructed Review: (Borchers 2000):

Tomita operator S is (well) densely defined on A |Ω⟩ by:

SA |Ω⟩ = A† |Ω⟩ ∀A ∈ A.

It is antilinear, unbounded but closable.
Let S = J∆1/2 be the polar decomposition of S. ∆ (modular operator) defines an
automorphism for A (time evolution! (Longo 2020)) via the unitary group
∆it , t ∈ R :

Ad∆itA = A, ∀t ∈ R.

J is a conjugation (antilinear and J = J† = J−1) and:

AdJA = A′.

The state defined by |Ω⟩ (via ω(·) = ⟨Ω| · |Ω⟩) is KMS (thermal) with respect to
the modular evolution.
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Relative Modular Operator

Let (for simplicity) |Ω⟩ , |Ψ⟩ be two cyclic and separating vectors. We define SΩ|Ψ on the
dense domain A |Ω⟩ by

SΩ|ΨA |Ω⟩ = A† |Ψ⟩ , ∀A ∈ A.

SΩ|Ψ is again antilinear,unbounded and closable.

The polar decomposition is:
SΩ|Ψ = JΩ|Ψ∆1/2

Ω|Ψ.

with ∆Ω|Ψ the relative modular operator.

Obviously S = SΩ|Ω, J = JΩ|Ω and ∆1/2 = ∆1/2
Ω|Ω.

In addition, ∆Ω|Ψ depends on |Ψ⟩ only through the state ⟨Ψ| · |Ψ⟩ that it implements on
A (Araki and Masuda 1982) (important for entropy!).
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Modular Operator in QFT

In QFT, we assign von Neumann algebras A to spacetime regions O:

A(O) = πω(A(O))′′. (2)

What about cyclic and separating vectors for local algebras?

Surprisingly, we have
many!

Reeh-Schlieder Theorem (Reeh and Schlieder 1961)
The vacuum vector |Ω⟩ for a scalar field theory on M is separating (not too surprising)
and cyclic (surprising) for every local algebra A(O).

It follows from analytic properties of correlation functions. Can be generalised to KMS
states (Jäkel 2000) and to more generic (globally hyperbolic) spacetimes (Strohmaier,
Verch, and Wollenberg 2002; Sanders 2009).

We can construct modular theory for local algebras, but...can we compute modular
operators?
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Known Modular Operators

Explicit expression for ∆ only known in some cases, mostly for geometric modular flow
Ad ∆it , i.e. ln ∆ (modular hamiltonian) generates a (combination of) spacetime
symmetries.

Rindler wedge: Scalar field (also massive, possibly interacting), right wedge Wr of
Md+1:

Wr := {x ∈ Md+1|x1 > |x0|},

vacuum vector |Ω⟩ =⇒ Ad ∆it coincides with Rindler time evolution, ln ∆ = K
with the boost generator in x1 direction and J with the x0, x1

reflection (Bisognano and Wichmann 1975; Bisognano and Wichmann 1976):

Ad JA(Wr) = A(Wl).

The vacuum state is KMS (looks thermal) for uniformly accelerated observers.
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vacuum vector |Ω⟩ =⇒ Ad ∆it coincides with Rindler time evolution, ln ∆ = K
with the boost generator in x1 direction and J with the x0, x1

reflection (Bisognano and Wichmann 1975; Bisognano and Wichmann 1976):

Ad JA(Wr) = A(Wl).

The vacuum state is KMS (looks thermal) for uniformly accelerated observers.
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Modular Operator in QFT

Massless free scalar field on M, vacuum vector |Ω⟩, algebra of the future light
cone (Buchholz 1977) and algebra of the double cone (Hislop and Longo 1982).

Massless free scalar field on M, KMS state implemented by thermal vacuum
vector |Ωβ⟩, algebras of the right wedge and future light cone (Borchers and
Yngvason 1999).
CFTs on conformally flat spacetimes, algebras of the light cone and double
cone (Fröb 2023) and references therein.
. . .

Open problems:
For a massive theory, double cone (equivalent to O) we have no exact results
(even for free scalar theory and vacuum state on M). Some numerical results for
scalar theories (Bostelmann, Cadamuro, and Minz 2023), perturbative results for
fermionic theories (Cadamuro, Fröb, and Minz 2024) and numerical results on the
lattice (Eisler et al. 2020; Javerzat and Tonni 2022).
Interacting theories (in more than 1 + 1 dimensions).

Leonardo Sangaletti (UniGe) RELATIVE ENTROPY IN QFT 08th October 2025 10 / 16



Modular Operator in QFT

Massless free scalar field on M, vacuum vector |Ω⟩, algebra of the future light
cone (Buchholz 1977) and algebra of the double cone (Hislop and Longo 1982).
Massless free scalar field on M, KMS state implemented by thermal vacuum
vector |Ωβ⟩, algebras of the right wedge and future light cone (Borchers and
Yngvason 1999).

CFTs on conformally flat spacetimes, algebras of the light cone and double
cone (Fröb 2023) and references therein.
. . .

Open problems:
For a massive theory, double cone (equivalent to O) we have no exact results
(even for free scalar theory and vacuum state on M). Some numerical results for
scalar theories (Bostelmann, Cadamuro, and Minz 2023), perturbative results for
fermionic theories (Cadamuro, Fröb, and Minz 2024) and numerical results on the
lattice (Eisler et al. 2020; Javerzat and Tonni 2022).
Interacting theories (in more than 1 + 1 dimensions).

Leonardo Sangaletti (UniGe) RELATIVE ENTROPY IN QFT 08th October 2025 10 / 16



Modular Operator in QFT

Massless free scalar field on M, vacuum vector |Ω⟩, algebra of the future light
cone (Buchholz 1977) and algebra of the double cone (Hislop and Longo 1982).
Massless free scalar field on M, KMS state implemented by thermal vacuum
vector |Ωβ⟩, algebras of the right wedge and future light cone (Borchers and
Yngvason 1999).
CFTs on conformally flat spacetimes, algebras of the light cone and double
cone (Fröb 2023) and references therein.

. . .

Open problems:
For a massive theory, double cone (equivalent to O) we have no exact results
(even for free scalar theory and vacuum state on M). Some numerical results for
scalar theories (Bostelmann, Cadamuro, and Minz 2023), perturbative results for
fermionic theories (Cadamuro, Fröb, and Minz 2024) and numerical results on the
lattice (Eisler et al. 2020; Javerzat and Tonni 2022).
Interacting theories (in more than 1 + 1 dimensions).

Leonardo Sangaletti (UniGe) RELATIVE ENTROPY IN QFT 08th October 2025 10 / 16



Modular Operator in QFT

Massless free scalar field on M, vacuum vector |Ω⟩, algebra of the future light
cone (Buchholz 1977) and algebra of the double cone (Hislop and Longo 1982).
Massless free scalar field on M, KMS state implemented by thermal vacuum
vector |Ωβ⟩, algebras of the right wedge and future light cone (Borchers and
Yngvason 1999).
CFTs on conformally flat spacetimes, algebras of the light cone and double
cone (Fröb 2023) and references therein.
. . .

Open problems:
For a massive theory, double cone (equivalent to O) we have no exact results
(even for free scalar theory and vacuum state on M). Some numerical results for
scalar theories (Bostelmann, Cadamuro, and Minz 2023), perturbative results for
fermionic theories (Cadamuro, Fröb, and Minz 2024) and numerical results on the
lattice (Eisler et al. 2020; Javerzat and Tonni 2022).
Interacting theories (in more than 1 + 1 dimensions).

Leonardo Sangaletti (UniGe) RELATIVE ENTROPY IN QFT 08th October 2025 10 / 16



Modular Operator in QFT

Massless free scalar field on M, vacuum vector |Ω⟩, algebra of the future light
cone (Buchholz 1977) and algebra of the double cone (Hislop and Longo 1982).
Massless free scalar field on M, KMS state implemented by thermal vacuum
vector |Ωβ⟩, algebras of the right wedge and future light cone (Borchers and
Yngvason 1999).
CFTs on conformally flat spacetimes, algebras of the light cone and double
cone (Fröb 2023) and references therein.
. . .

Open problems:
For a massive theory, double cone (equivalent to O) we have no exact results
(even for free scalar theory and vacuum state on M). Some numerical results for
scalar theories (Bostelmann, Cadamuro, and Minz 2023), perturbative results for
fermionic theories (Cadamuro, Fröb, and Minz 2024) and numerical results on the
lattice (Eisler et al. 2020; Javerzat and Tonni 2022).
Interacting theories (in more than 1 + 1 dimensions).

Leonardo Sangaletti (UniGe) RELATIVE ENTROPY IN QFT 08th October 2025 10 / 16



Relative Modular Operator

Is the situation better for the relative modular operator?
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Relative Modular Operator

Explicit expressions for ∆Ψ|Φ are generally unknown.
Exception: if Ψ = UU ′Ω and Φ = VV ′Ω (both cyclic and separating), with
U, V ∈ M; U ′, V ′ ∈ M′ all unitary:

Invertibility implies
SΨ|Φ = (U−1)†V ′S(U ′)−1V †.

Unitarity and uniqueness of polar decomposition imply

∆Ψ|Φ = VU ′∆(U ′)†V †.

In conclusion, the relative entropy is:

SΨ|Φ = − ⟨Ψ| ln ∆Ψ|Φ |Ψ⟩ = − ⟨V †UΩ| ln ∆ |V †UΩ⟩

independent of U ′, V ′ (as it should!).
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Relative Entropy for Coherent States

Knowing Ad ∆it , the relative entropy between |Ω⟩ and a coherent excitaion
W (f ) |Ω⟩ = e iϕ(f ) |Ω⟩ can be computed for a scalar theory. If Ad ∆it acts geometrically:

SΩ|W (f )Ω = 1
2E

( d
d t αt(f )

∣∣∣
t=0

, f ), with Ad ∆itW (f ) = W (αt(f )).

Only the “classical” causal propagator enters!

Example: Rindler wedge
By explicit computation, for |Ω⟩ the vacuum vector and
Ψ = W (f ) |Ω⟩ , supp f ⊂ Wr (Casini, Grillo, and Pontello 2019; Ciolli, Longo, and Ruzzi
2020):

SΩ|Ψ =
∫

2πx1[T00(Ef )]x0=0ddx ≥ 0,

where T00(ϕ) = 1
2m2ϕ2 + 1

2

d∑
i=0

∂x i ϕ,

i.e. the classical Noether charge associated to the boosts =⇒ Recover the classical
entropy of a wave packet.
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Petz-Rényi Entropy

Generalizations of the relative entropy exist. In (Fröb and S. 2025) we consider the
Petz-Rényi relative entropy (Rényi 1961; Dénes Petz 1985; Dénes Petz 1986) of order
α ∈ [0, 1):

Sα(Ω|Ψ) := 1
α − 1 ln ⟨Ω| ∆1−α

Ω|Ψ |Ω⟩ ,

which satisfies:
lim

α→1
Sα(Ω|Ψ) = SΩ|Ψ.

We prove that Sα(Ω|Ψ) can be computed by analytic continuation of relative
modular flow Ad ∆it

Ω|Ψ.
For coherent excitations of |Ω⟩ and geometric modular flow we prove:

Sα(W (f )Ω|Ω) = 1
α − 1F (i(α − 1)), F (t) = ω2(f−t/2, ft/2) − ω2(f , f ).

It is genuinely quantum! (while for α → 1 only E contributes).
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Explicit Computation of Petz-Rényi Entropy

We explicitly compute Sα for coherent excitations for:

Massive scalar field on Wr in the vacuum

Sα(W (f )Ω|Ω) =
1

α − 1

∫∫ [
ω2(Λ− i(α−1)

2
x , Λ i(α−1)

2
y) − ω2(x , y)

]
f (x)f (y)dd+1xdd+1y ,

with Λ boost in x1 direction.
Chiral current of scalar field on light ray in a thermal equilibrium KMS state:

Sα(W (f )Ω∥Ω) = − 1
4π(α − 1) lim

ϵ→0+

∫∫ ∞

0

×

[
ln

[
− cos(πα)

(
e

2πu
β − e

2πv
β

)
− i sin(πα)

(
e

2πu
β + e

2πv
β − 2

)
− iϵ

]
− ln

(
e

2πu
β − e

2πv
β − iϵ

)]
f ′(u)f ′(v)dudv .
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Non Unitary Excitations

We are recently working on the case of non unitary excitations. Using known results
about Rényi divergences (Berta, Scholz, and Tomamichel 2018) we obtain an explicit
upper bound on SΩ|Ψ in terms of ∆, for Ψ = A |Ω⟩ and A not necessarily unitary.

Pros:
First result for non unitary excitations.
The bound applies to a dense set of state.
The bound works also for certain unbounded excitations (E.g. the field!)

Cons:
It is only a bound, not equality.
Does not apply to every excitation.
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Conclusions and Outlook

Entanglement entropy is not well defined in QFT, but relative entropy is.

The formula for the relative entropy in QFT is given by Tomita-Takesaki modular theory
in terms of the relative modular operator.

Explicit expressions are available only in few cases (E.g. Rindler wedge). In particular,
for unitary excitations and only when the modular flow is known.

Main open problems: non unitary excitations? More results for the modular flow, in
particular massive scalar field in a double cone?
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