NUMERICAL SOLUTION OF QUANTUM PROBLEMS VIA BOHMIAN TRAJECTORIES
Outline of the talk

- Time Dependent Schroedinger Equation
Outline of the talk

- Time Dependent Schroedinger Equation
- Numerical Methods via Bohmian Trajectories
 - Single Particle
 - Quantum Trajectory Method
 - Single Trajectory
 - Many Particle
Outline of the talk

- Time Dependent Schroedinger Equation

- Numerical Methods via Bohmian Trajectories
 - Single Particle
 - Quantum Trajectory Method
 - Single Trajectory
 - Many Particle

- Measurement issue
 - Theoretical Model
 - Numerical Simulation
Time Dependent Schroedinger Equation

\[i\hbar \frac{\partial \psi}{\partial t} = \mathbf{H}\psi \]

Different numerical approaches for different problems

Single Particle

\[i\hbar \frac{\partial \psi}{\partial t} = \left(-\frac{\hbar^2}{2m} \nabla^2 + V \right)\psi \]

\[\psi = \psi(x, t) \]

Many Particle

\[i\hbar \frac{\partial \psi}{\partial t} = \left(-\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla_i^2 + V \right)\psi \]

\[\psi = \psi(x_1, x_2, \ldots, x_N, t) \]

We can use the trajectories X_t of Bohmian Mechanics

$$\dot{X}_t = v \quad \text{where} \quad v = \frac{\hbar}{m} \text{Im} \frac{\nabla \psi}{\psi}$$
We can use the trajectories X_t of Bohmian Mechanics

$$\dot{X}_t = v \quad \text{where} \quad v = \frac{\hbar}{m} \text{Im} \frac{\nabla \psi}{\psi}$$

Polar form

$$\psi = \text{Re} \frac{i}{\hbar} S \quad \rightarrow \quad v = \frac{\nabla S}{m}$$
Bohmian Mechanics

We can use the trajectories X_t of Bohmian Mechanics

$$\dot{X}_t = v \quad \text{where} \quad v = \frac{\hbar}{m} \text{Im} \frac{\nabla \psi}{\psi}$$

Polar form $\psi = \text{Re} \frac{i}{\hbar} S$ \rightarrow $v = \frac{\nabla S}{m}$

Schroedinger equation

$$\frac{\partial S}{\partial t} = -\frac{\nabla^2 S}{2m} - V + \frac{\hbar^2}{2m} \frac{\nabla^2 R}{R}$$

$$\frac{\partial \rho}{\partial t} + \nabla \left(\rho \frac{\nabla S}{m} \right) = 0$$
Bohmian Mechanics

We can use the trajectories X_t of Bohmian Mechanics

$$\dot{X}_t = v \quad \text{where} \quad v = \frac{\hbar}{m} \text{Im}\frac{\nabla \psi}{\psi}$$

Polar form

$$\psi = \text{Re}\left(\frac{i}{\hbar} S\right) \quad \rightarrow \quad \psi = m \frac{\nabla S}{m}$$

Schroedinger equation

$$\frac{\partial S}{\partial t} = -\frac{\nabla^2 S}{2m} - V + \frac{\hbar^2}{2m} \frac{\nabla^2 R}{R}$$

$$\frac{\partial \rho}{\partial t} + \nabla \left(\rho \frac{\nabla S}{m} \right) = 0$$

Equation of motion

$$m \frac{d^2 X_t}{dt^2} = F_{\text{class}} + F_{\text{quant}}$$

$$F_{\text{class}} = -\nabla V$$

$$F_{\text{quant}} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\nabla^2 R}{R} \right)$$
Quantum Trajectory Method

Solve the hydrodynamic equations in the lagrangian frame for a time interval δt.

\downarrow

Reconstruct the wave function in the update positions of the particles by means of an interpolation method. (eg. MWLS, RBF, ...)

Quantum Trajectory Method

Solve the hydrodynamic equations in the lagrangian frame for a time interval δt.

\Downarrow

Reconstruct the wave function in the update positions of the particles by means of an interpolation method. (eg. MWLS, RBF, ...)

Single Trajectory

We solve the Schrödinger equation along a single trajectory.

\Downarrow

Sampling we can obtain the entire wave function.

Quantum Trajectory Method

The method uses the Lagrangian formulation of the Hamilton-Jacobi and Continuity Equation

\[m \frac{d \vec{v}(\vec{x}, t)}{dt} = - \vec{\nabla}[V(\vec{x}, t) + U(\vec{x}, t)] \]

\[\frac{d \rho(\vec{x}, t)}{dt} = - \rho(\vec{x}, t) \frac{\vec{\nabla} \cdot \vec{v}(\vec{x}, t)}{m} \]
Quantum Trajectory Method

The method uses the Lagrangian formulation of the Hamilton-Jacobi and Continuity Equation

\[
m \frac{d\vec{v}(\vec{x}, t)}{dt} = -\vec{\nabla} [V(\vec{x}, t) + U(\vec{x}, t)]
\]

\[
d \rho(\vec{x}, t) \frac{dt}{dt} = -\rho(\vec{x}, t) \frac{\vec{\nabla} \cdot \vec{v}(\vec{x}, t)}{m}
\]

The Propagation at discrete time is

\[
\rho(\vec{x}_i(t_{n+1}), t_{n+1}) = \rho(\vec{x}_i(t_n), t_n) e^{-\vec{\nabla} \cdot \vec{v}(\vec{x}_i(t_n), t_n) \delta t}
\]

\[
\vec{v}(\vec{x}_i(t_{n+1}), t_{n+1}) = \vec{v}(\vec{x}_i(t_n), t_n) - \frac{\delta t}{m} \vec{\nabla} [V(\vec{x}_i(t_n), t_n) + U(\vec{x}_i(t_n), t_n)]
\]

\[
\vec{x}_i(t_{n+1}) = \vec{x}_i(t_n) + \vec{v}(\vec{x}_i(t_n), t_n) \delta t.
\]

The TDSE is solved along the trajectories and step by step.
The idea of the algorithm

\[Q_0 \rightarrow \psi_0 \rightarrow Q_1 \rightarrow \psi_1 \rightarrow \cdots \rightarrow Q_n \rightarrow \psi_n \]
Single Trajectory

The idea of the algorithm

\[Q_0 \rightarrow \psi_0 \rightarrow Q_1 \rightarrow \psi_1 \rightarrow \cdots \rightarrow Q_n \rightarrow \psi_n \]

we stop the iteration when

\[\psi_n \approx \psi_{n-1} \text{ and } Q_n \approx Q_{n-1} \]
Single Trajectory

The idea of the algorithm

\[Q_0 \rightarrow \psi_0 \rightarrow Q_1 \rightarrow \psi_1 \rightarrow \cdots \rightarrow Q_n \rightarrow \psi_n \]

we stop the iteration when

\[\psi_n \approx \psi_{n-1} \quad \text{and} \quad Q_n \approx Q_{n-1} \]

Single trajectory: \(x_0 \) on \(|\psi_0|^2 \)

Known \(R_{n-1} \) and \(S_{n-1} \), we calculate

1. \(\dot{Q}_n = \frac{\nabla S_{n-1}}{m} \)
2. \(R_n = R_{n-1}(x_0, 0)|J_{n-1}|^{\frac{1}{2}} \)
3. \(S_n = S_{n-1}(x_0, 0) + \int_{0}^{t_1} m\dot{Q}_{n-1}^2 - V_{n-1} - U_{n-1} \)
Single Trajectory

The idea of the algorithm

\[Q_0 \rightarrow \psi_0 \rightarrow Q_1 \rightarrow \psi_1 \rightarrow \cdots \rightarrow Q_n \rightarrow \psi_n \]

we stop the iteration when

\[\psi_n \approx \psi_{n-1} \quad \text{and} \quad Q_n \approx Q_{n-1} \]

Single trajectory: \(x_0 \) on \(|\psi_0|^2 \)

Known \(R_{n-1} \) and \(S_{n-1} \), we calculate

\[\dot{Q}_n = \frac{\nabla S_{n-1}}{m} \]

\[R_n = R_{n-1}(x_0, 0)|J_{n-1}|^{1/2} \]

\[S_n = S_{n-1}(x_0, 0) + \int_0^{t_1/2} m\dot{Q}_{n-1}^2 - V_{n-1} - U_{n-1} \]
Single Trajectory

Sampling new initial position

![Graph showing position vs. time for a single trajectory]

We obtain the wave function...
Single Trajectory

Sampling new initial position

We obtain the wave function
Single Trajectory

Sampling new initial position

We obtain the wave function

Interpolation gives ψ_t at every x
Many Particle - TDSE

\[i\hbar \frac{\partial \psi(x_1, x_2, \ldots, x_N, t)}{\partial t} = \left[-\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla_i^2 + V(x_1, x_2, \ldots, x_N, t) \right] \psi(x_1, x_2, \ldots, x_N, t) \]

Impossibility to solve numerically the above equation with standard methods!!!
Many Particle - TDSE

\[i\hbar \frac{\partial \Psi(x_1, x_2, \ldots, x_N, t)}{\partial t} = \left[-\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla_i^2 + V(x_1, x_2, \ldots, x_N, t) \right] \Psi(x_1, x_2, \ldots, x_N, t) \]

Impossibility to solve numerically the above equation with standard methods!!!

Using the same Bohmian method for single particle equation we obtain a system of \(N\) coupled equations

\[
\begin{aligned}
\frac{d^2 x_i}{dt^2} = -\nabla_i [V(x_1, x_2, \ldots, x_N, t) + U(x_1, x_2, \ldots, x_N, t)] \bigg|_{x_1=x_1(t),\ldots,x_N=x_N(t)} \\
\end{aligned}
\]
Many Particle - *TDSE*

\[i\hbar \frac{\partial \psi(x_1, x_2, \ldots, x_N, t)}{\partial t} = \left[-\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla_i^2 + V(x_1, x_2, \ldots, x_N, t) \right] \psi(x_1, x_2, \ldots, x_N, t) \]

Impossible to solve numerically the above equation with standard methods!!!

Using the same Bohmian method for single particle equation we obtain a system of \(N \) coupled equations

\[
\begin{aligned}
\frac{d^2 x_i}{dt^2} &= -\nabla_i [V(x_1, x_2, \ldots, x_N, t) + U(x_1, x_2, \ldots, x_N, t)]|_{x_1=x_1(t), \ldots, x_N=x_N(t)} \\
&\vdots \\
&\text{At this point we have to know } \psi \\
&\text{Impossible to solve numerically the above system}
\end{aligned}
\]
Many Particle - TDSE

\[
\frac{i\hbar}{\partial t} \psi(x_1, x_2, \ldots, x_N, t) = \left[-\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla_i^2 + V(x_1, x_2, \ldots, x_N, t) \right] \psi(x_1, x_2, \ldots, x_N, t)
\]

Impossibility to solve numerically the above equation with standard methods!!!

Using the same Bohmian method for single particle equation we obtain a system of N coupled equations

\[
\begin{align*}
\frac{d^2 x_i}{dt^2} = -\nabla_i [V(x_1, x_2, \ldots, x_N, t) + U(x_1, x_2, \ldots, x_N, t)] |_{x_1=x_1(t),\ldots,x_N=x_N(t)} \\
\vdots
\end{align*}
\]

At this point we have to know \(\Psi \)

Impossibility to solve numerically the above system

\[\Downarrow\]

We need a new approach!
Theorem: Many-particle Bohm trajectory

\[x_a(t) \] solution of many particle Schroedinger equation \(\Psi(x_a, \vec{x}, t) \)
Many Particle - Trajectory

Theorem: Many-particle Bohm trajectory

\[x_a(t) \text{ solution of many particle Schrödinger equation } \Psi(x_a, \vec{x}, t) \]

can be calculated from a single particle wave function

\[\psi_a(x_a, t) = \Psi(x_a, \vec{x}(t), t) \text{ solution of the pseudo-Schrödinger equation} \]

\[
i\hbar \frac{\partial \psi_a(x_a, t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_a^2} + V_a(x_a, \vec{x}(t), t) + G_a(x_a, \vec{x}(t), t) + iJ_a(x_a, \vec{x}(t), t) \right] \psi_a(x_a, t)
\]
Many Particle - *Trajectory*

Theorem: Many-particle Bohm trajectory

\[x_a(t) \] solution of many particle Schroedinger equation \(\Psi(x_a, \vec{x}, t) \)

can be calculated from a single particle wave function

\[\psi_a(x_a, t) = \Psi(x_a, \vec{x}(t), t) \] solution of the pseudo-Schroedinger equation

\[
i\hbar \frac{\partial \psi_a(x_a, t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_a^2} + V_a(x_a, \vec{x}(t), t) + G_a(x_a, \vec{x}(t), t) + iJ_a(x_a, \vec{x}(t), t) \right] \psi_a(x_a, t)
\]

with a suitable approximation for

\[G_a(x_a, \vec{x}(t), t) \text{ and } iJ_a(x_a, \vec{x}(t), t) \]

we can solve many particle problems.

Applications

- Quantum Trajectory Method
 Kinetic chemistry, dissociation problems.
Applications

- Quantum Trajectory Method
 Kinetic chemistry, dissociation problems.

- Single Trajectory
Applications

- Quantum Trajectory Method
 Kinetic chemistry, dissociation problems.

- Single Trajectory

- Many Particle
 Problems of transport in nanoelectric devices.
Measurement issue

Von Neumann Model

Interaction between system and apparatus

$x \in X \rightarrow \text{system} \quad y \in Y \rightarrow \text{apparatus}$

\[H_{VN} = -\lambda \hat{A} \otimes \hat{P}_y \]

Only

\[H_{VN} \rightarrow \psi_\alpha(x) \phi_0(y - \lambda a_\alpha t) \]

where

\[A_\psi_\alpha = a_\alpha \psi_\alpha \]

\[H_{\text{meas}} = H_{\text{syst}} + H_{\text{app}} + H_{VN} \]

We assume that

\[M \gg m \]
Measurement issue

Von Neumann Model

Interaction between system and apparatus
\[x \in X \to \text{system} \quad y \in Y \to \text{apparatus} \]

\[H_{VN} = -\lambda \hat{A} \otimes \hat{P}_y \quad \text{where} \quad \hat{P}_y \equiv i\hbar \partial/\partial y \]

Only \(H_{VN} \to \psi_\alpha(x)\phi_0(y - \lambda a_\alpha t) \)

where \(A\psi_\alpha = a_\alpha \psi_\alpha \)
Von Neumann Model

Interaction between system and apparatus

\[x \in X \rightarrow \text{system} \quad y \in Y \rightarrow \text{apparatus} \]

\[H_{VN} = -\lambda \hat{A} \otimes \hat{P}_y \quad \text{where} \quad \hat{P}_y \equiv i\hbar \frac{\partial}{\partial y} \]

Only \(H_{VN} \rightarrow \psi_\alpha(x)\phi_0(y - \lambda a_\alpha t) \)

where \(A\psi_\alpha = a_\alpha \psi_\alpha \)

\[H_{\text{meas}} = H_{0}^{\text{syst}} + H_{0}^{\text{app}} + H_{VN} \quad \text{where} \quad A(x) = \chi[0, +\infty) - \chi(-\infty, 0] \]

We assume that \(M \gg m \)
Measurement issue

Hydrodynamic equations

\[
\frac{\partial S}{\partial t} = -\frac{1}{2m} \left(\frac{\partial S}{\partial x} \right)^2 - \frac{1}{2M} \left(\frac{\partial S}{\partial y} \right)^2 + \\
+ \lambda A(x) \frac{\partial S}{\partial y} + \frac{\hbar^2}{2mR} \frac{\partial^2 R}{\partial x^2} + \frac{\hbar^2}{2MR} \frac{\partial^2 R}{\partial y^2}
\]

\[
\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \left(\rho \frac{1}{m} \frac{\partial S}{\partial x} \right) - \frac{\partial}{\partial y} \left[\rho \left(\frac{1}{M} \frac{\partial S}{\partial y} + \lambda A(x) \right) \right]
\]

Guidance equations

\[
v_x \equiv \frac{1}{m} \frac{\partial S}{\partial x} \quad v_y \equiv \frac{1}{M} \frac{\partial S}{\partial y} + \lambda A(x)
\]
Evolution of the complete wave function system + apparatus (Ψ)

\[\Psi_0 = \psi_0(x)\phi_0(y) \]

where

\[\psi_0(x) = \psi_+^0(x) + \psi_-^0(x) \]

\[A\psi_+ = +1 \cdot \psi_+ \]
\[A\psi_- = -1 \cdot \psi_- \]
Evolution of the complete wave function system + apparatus (Ψ)

\[
\Psi_0 = \psi_0(x) \phi_0(y)
\]

where

\[
\psi_0(x) = \psi_+(x) + \psi_-(x)
\]

\[
A\psi_+ = +1 \cdot \psi_+ \\
A\psi_- = -1 \cdot \psi_-
\]

After the interaction we have

\[
\Psi_t = \psi_+(x) \phi_+(y) + \psi_-(x) \phi_-(y)
\]
Measurement issue

Wave Function of the Measured System \(\psi_{\text{cond}} = \frac{\psi_t(x, Y_t)}{||\psi_t(x, Y_t)||} \)

\[\psi_+ \]

\[\psi_- \]

\(X_0 = 6.6 \text{ a.u.} \quad Y_0 = 0.6 \text{ a.u.} \)

\(X_0 = -5.2 \text{ a.u.} \quad Y_0 = 0.6 \text{ a.u.} \)
Wave Function of the Measured System

\[\psi_{\text{cond}} = \frac{\psi_t(x, Y_t)}{||\psi_t(x, Y_t)||} \]

\[\psi_+ \]

\[\psi_- \]

\[X_0 = 6.6 \text{ a.u.} \quad Y_0 = 0.6 \text{ a.u.} \]

\[X_0 = -5.2 \text{ a.u.} \quad Y_0 = 0.6 \text{ a.u.} \]
NUMERICAL SOLUTION OF QUANTUM PROBLEMS VIA BOHMIAN TRAJECTORIES

Thank you for your attention!