Muon g-2: issues with data driven approaches

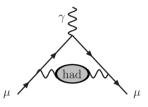
F. Piccinini

INFN, Pavia and GGI

Muon g-2 or stress testing the SM, Rome, 14 October 2025

SM contributions to \mathbf{a}_{μ}

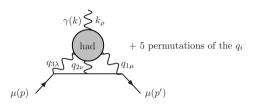
- QED: it accounts for more than 99.99% of the total, with negligible uncertainty at the present precision
- **ElectroWeak**: calculated up to three loops, with negligible uncertainty ($\sim 153(1) \cdot 10^{-11}$)
- QCD: the largest source of uncertainty, due to non-perturbative effects


$$a_{\mu}^{\rm SM} = 116\,592\,033(62)\cdot 10^{-11}$$

R. Aliberti et al., Phys. Rept. 1143 (2025) [arXiv:2505.21476]

QCD contributions

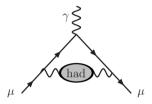
٠/


Hadronic Vacuum Polarization (HVP)

F. Jegerlehner, arXiv:0902.3360

• starts at $\mathcal{O}(\alpha^2)$ $\sim 7000(60) \cdot 10^{-11}$

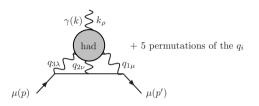
Hadronic Light-by-Light (HLxL)



F. Jegerlehner, arXiv:0902.3360

• starts at $\mathcal{O}(\alpha^3)$ $\sim 100(10) \cdot 10^{-11}$

QCD contributions

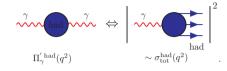

Hadronic Vacuum Polarization (HVP)

F. Jegerlehner, arXiv:0902.3360

• starts at $\mathcal{O}(\alpha^2)$ $\sim 7000(60) \cdot 10^{-11}$

Hadronic Light-by-Light (HLxL)

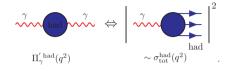
F. Jegerlehner, arXiv:0902.3360


• starts at $\mathcal{O}(\alpha^3)$ $\sim 100(10) \cdot 10^{-11}$

- two approaches for both contributions:
 - first principle calculations with LQCD
 - data driven approach

see previous talk by G. Gagliardi

⇒ focus on HVP, since it is the largest source of uncertainty

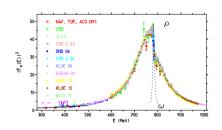

The (time-like) dispersive approach for HVP

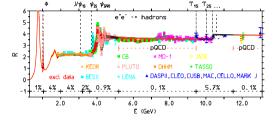
at Leading Order

$$\begin{split} a_{\mu}^{\rm HLO} &= \left(\frac{\alpha^2}{3\pi^2}\right) \int_{m_{\pi}^2}^{\infty} ds \frac{K^{\rm LO}(s)R(s)}{s} \\ K^{\rm LO}(s) &= \int_0^1 dx \frac{x^2(1-x)}{x^2+(1-x)\left(\frac{s}{m^2}\right)} \\ R(s) &= \frac{\sigma^0(e^+e^- \to {\rm hadrons}(+\gamma))}{\sigma_{\rm pt}} \qquad \sigma_{\rm pt} = \frac{4\pi\alpha^2}{3s} \end{split}$$

The (time-like) dispersive approach for HVP

at Leading Order

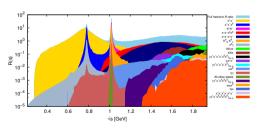

$$a_{\mu}^{\rm HLO} = \left(\frac{\alpha^2}{3\pi^2}\right) \int_{m_{\pi}^2}^{\infty} ds \frac{K^{\rm LO}(s)R(s)}{s}$$

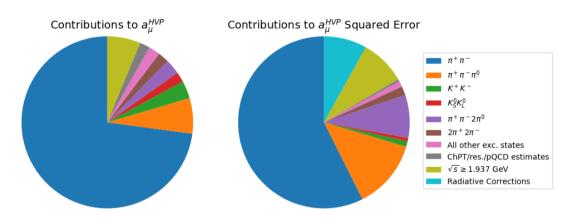

$$K^{\rm LO}(s) = \int_0^1 dx \frac{x^2(1-x)}{x^2 + (1-x)\left(\frac{s}{m^2}\right)}$$

$$R(s) = \frac{\sigma^0(e^+e^- \to {\rm hadrons}(+\gamma))}{\sigma_{\rm pt}} \qquad \sigma_{\rm pt} = \frac{4\pi\alpha^2}{3s}$$

- at Higher Orders
 - $K^{\text{LO}}(s) \to K^{\text{NLO}}(s) \Longrightarrow a_{\mu}^{\text{HNLO}}$
 - $K^{\text{LO}}(s) \to K^{\text{NNLO}}(s) \Longrightarrow a_{"}^{\text{HNNLO}}$

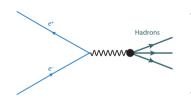
Data for dispersive integral




Pion form factor

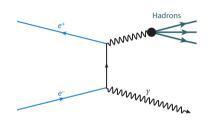
$$\langle \pi^{\pm}(p')|j^{\mu}(0)|\pi^{\pm}(p)\rangle = \pm (p'+p)^{\mu}F_{\pi}^{V}((p'-p)^{2})$$

$$\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}) = \frac{\pi\alpha^{2}}{3s}\beta_{\pi}^{3}|F_{\pi}^{V}(s)|^{2}$$


Contributions to integral and to its error

talk by A. Wright, FCCP 2025, Capri, 29 Setember - 1 October 2025

Methods for the hadronic cross section measurement


Energy scan

$$\sigma^0(e^+e^- \to X) = \frac{N_X}{\epsilon_X(1 + \delta_{RC})L_{ee}}$$

- dependence on the radiative corrections δ_{RC} in generators, photonic and full vac. pol.
- dependence on the absolute luminosity
- * => theoretical systematics

Radiative return

- tagged analysis
- untagged analysis
- possible normalization to $\mu^+\mu^-\gamma$ events
 - independence of the absolute normalization and of the vacuum polarization
 - high stat $\mu^+\mu^-\gamma$ required

Overview of present experiments

Experiment	Published Method	Normalization	Separation π - μ - e	Future
KLOE	ISR untagged ISR tagged ISR untagged	Luminosity Luminosity μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	ISR untagged μ+μ-γ statistics x 7
BABAR	ISR tagged	μ+μ-γ	Particle ID	ISR tagged, separation by polar angle, statistics x 2
BESIII	ISR tagged	Luminosity	Particle ID (ML)	ISR tagged, $\mu+\mu-\gamma$, statistics x 7, 1C kin. fit
BELLE-II				ISR tagged, μ+μ-γ, Particle ID
CMD-3	Energy scan	e+e-	Kinematics Track Kinematics EMC	overall improvements
SND	Energy scan	e+e-	Kinematics EMC	overall improvements ML for π – e separation

A. Denig, talk at FCCP 2025, Capri

MC tools: radiative corrections and the pion structure

Eur. Phys. J. C (2010) 66: 585–686 DOI 10.1140/epjc/s10052-010-1251-4 THE EUROPEAN
PHYSICAL JOURNAL C

Review

Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies

```
S. Actis<sup>38</sup>, A. Arbuzov<sup>9,e</sup>, G. Balossini<sup>32,33</sup>, P. Beltrame<sup>13</sup>, C. Bignamini<sup>32,33</sup>, R. Bonciani<sup>15</sup>, C.M. Carloni Calame<sup>35</sup>, V. Cherepanov<sup>25,26</sup>, M. Czakon<sup>1</sup>, H. Czyż<sup>19,a,f,i</sup>, A. Denig<sup>22</sup>, S. Eidelman<sup>25,26,g</sup>, G.V. Fedotovich<sup>25,26,e</sup>, A. Ferroglia<sup>23</sup>, J. Gluza<sup>19</sup>, A. Grzelińska<sup>8</sup>, M. Gunia<sup>19</sup>, A. Hafner<sup>22</sup>, F. Ignatov<sup>25</sup>, S. Jadach<sup>8</sup>, F. Jegerlehner<sup>3,19,41</sup>, A. Kalinowski<sup>29</sup>, W. Kluge<sup>17</sup>, A. Korchin<sup>20</sup>, J.H. Kühn<sup>18</sup>, E.A. Kuraev<sup>9</sup>, P. Lukin<sup>25</sup>, P. Mastrolia<sup>14</sup>, G. Montagna<sup>32,33,b,d</sup>, S.E. Müller<sup>22,f</sup>, F. Nguyen<sup>34,d</sup>, O. Nicrosini<sup>33</sup>, D. Nomura<sup>36,h</sup>, G. Pakhlova<sup>24</sup>, G. Pancheri<sup>11</sup>, M. Passera<sup>28</sup>, A. Penin<sup>10</sup>, F. Piccinini<sup>33</sup>, W. Płaczek<sup>7</sup>, T. Przedzinski<sup>6</sup>, E. Remiddi<sup>4,5</sup>, T. Riemann<sup>41</sup>, G. Rodrigo<sup>37</sup>, P. Roig<sup>27</sup>, O. Shekhovtsova<sup>11</sup>, C.P. Shen<sup>16</sup>, A.L. Sibidanov<sup>25</sup>, T. Teubner<sup>21,h</sup>, L. Trentadue<sup>30,31</sup>, G. Venanzoni<sup>11,c,i</sup>, J.J. van der Bij<sup>12</sup>, P. Wang<sup>2</sup>, B.F.L. Ward<sup>39</sup>, Z. Was<sup>8,g</sup>, M. Worek<sup>40,19</sup>, C.Z. Yuan<sup>2</sup>
```

Recently used generators: general features

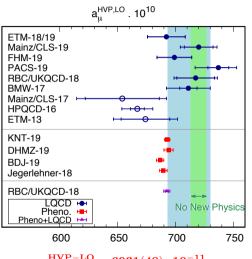
- for luminosity (Bhabha, $\mu^+\mu^-$, $\gamma\gamma$ production): NLO with multiphoton resummation (Parton Shower in BabaYaga, YFS in KKMC, BHWIDE)
- for $\pi^+\pi^-$ production: NLO with IS multiphoton resummation with structure functions (MCGPJ)
- for radiative processes: NLO (Phokhara). LO $2 \rightarrow 3$ with collinear LL Structure functions (AfkQED)
- Pion form factor in F×QED approximation: diagrams calculated in sQED with $F_{\pi}(q^2)$ factorized with a scale q^2 able to guarantee the IR cancellation

From R-ratio to \mathbf{a}_{μ}

- The evaluation of the dispersion relation for a_{μ} is performed by different groups
 - DHM7

M. Davier, A. Hoecker, B. Malaescu, Z. Zhang

A. Keshavarzi, D. Nomura, T. Teubner, A. Wright

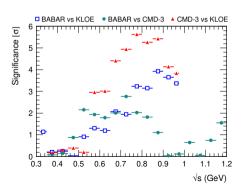

KNTW

G. Colangelo, M. Hoferichter, B. Kubis, T.P. Leplumery, P. Stoffer

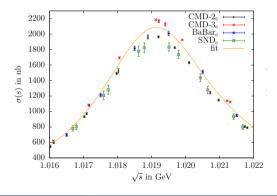
- CHKLS
- interpolation between different energy points
- combination of all exclusive channels, considering the correlations between channels and between experiments
- using general constraints, from analyticity, unitarity and crossing symmetry

having different approaches crucial to have more reliable results

Situation at the time of WP20

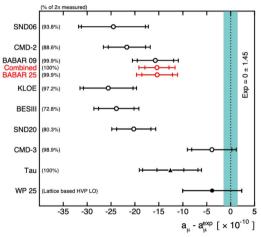

T. Aoyama et al., Phys. Rept. 887 (2020) 1

 $\mathbf{a}_{\mu}^{\mathbf{HVP-LO}} = \mathbf{6931}(\mathbf{40}) \cdot \mathbf{10^{-11}}$


Results on the experimental side after WP20: CMD-3

• new measurement of $\sigma(e^+e^- \to \pi^+\pi^-)$ @VEPP-2000 in strong tension with previous experiments (even CMD-2!)

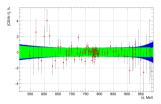
F.V. Ignatov et al., Phys. Rev. Lett. 132 (2024) 23; Phys. Rev. D109 (2024) 11



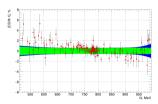
- At present no explanation found for the difference of results of CMD-3 w.r.t. other experiments
- tensions also in other channels

Recent news on the experimental side: BaBaR

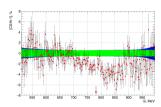
New blind analysis of 460 fb⁻¹ integrated luminosity confirms the results of 2009



 ${\sf Davier, Lutz, Malaescu, Zhang, Polat, Pinto, talk at \, {\sf Muon} \,\, g \,\, - \,\, 2 \,\, {\sf Theory \,\, Initiative \,\, meeting, \,\, IJCLab, \,\, Orsay, \,\, 8-12 \,\, {\sf September \,\, 2025}}$


Very recent SND analysis of 2018 data ightarrow tension with BaBaR and KLOE

A. Kupich, talk at Muon g-2 Theory Initiative, IJCLab, Orsay, 8-12 September 2025


SND data vs fit

CMD-3 vs SND

BaBaR data vs SND

KLOE vs SND

 $a_{\mu}^{\pi\pi} \cdot 10^{10} = 431.11 \pm 3.52 \text{ vs } a_{\mu}^{\pi\pi \text{ CMD}-3} \cdot 10^{10} = 433.62 \pm 3.76, a_{\mu}^{\pi\pi \text{ BaBar}} \cdot 10^{10} = 423.87 \pm 2.06 \pm 2.06$

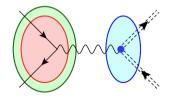
- RadioMonteCarLow 2 is a community effort focused on Monte Carlo tools and radiative corrections for e^+e^- collisions at low energies ($\sqrt{s} <$ few GeV)
- The goal is to assess the current state of MC codes, make them accessible, and further improve them where needed
- Close collaboration between theorists and experimental collaborations
 → BESIII, CMD-3, KLOE . . .
- 7 codes: AfkQed, Babayaga@NLO, KKMC, MCGPJ, McMule, Phokhara, Sherpa
- 3+3 processes (both for energy scan and radiative return):
 - $e^+e^- \rightarrow e^+e^-(\gamma)$
 - $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
 - $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$

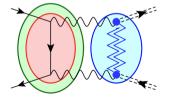
radiomontecarlow2.gitlab.io

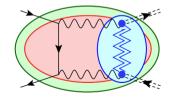
SciPost Phys. Comm. Rep. 9 (2025)

Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e^+e^- collisions

```
© Riccardo Aliberti<sup>1</sup>, © Paolo Beltrame<sup>2</sup>, © Ettore Budassi<sup>3,4</sup>,
        © Carlo M. Carloni Calame<sup>4</sup>, © Gilberto Colangelo<sup>5</sup>, © Lorenzo Cotrozzi<sup>2</sup>,

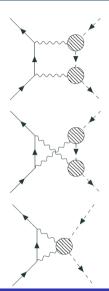

    Achim Denig¹, 
    Anna Driutti<sup>6,7</sup>, 
    Tim Engel<sup>8</sup>, 
    Lois Flower<sup>2,9</sup>.


              © Sophie Kollatzsch<sup>10,11</sup>, © Bastian Kubis<sup>12</sup>, © Andrzei Kupść<sup>13,14</sup>*.
⑤ Fabian Lange<sup>10,11</sup>, ⑥ Alberto Lusiani<sup>7,15</sup>, ⑥ Stefan E. Müller<sup>16</sup>, ⑥ Jérémy Paltrinieri²,
       <sup>®</sup> Pau Petit Rosàs<sup>2</sup>, <sup>®</sup> Fulvio Piccinini<sup>4</sup>, <sup>®</sup> Alan Price<sup>17</sup>, <sup>®</sup> Lorenzo Punzi<sup>7,15</sup>,


<sup>™</sup> Marco Rocco<sup>10,18</sup>, <sup>™</sup> Olga Shekhovtsova<sup>19,20</sup>, <sup>™</sup> Andrzei Siódmok<sup>17</sup>.

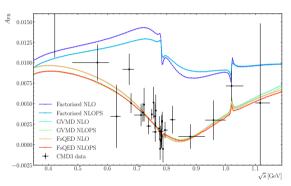
             <sup>©</sup> Thomas Teubner<sup>2</sup>, <sup>©</sup> William J. Torres Bobadilla<sup>2</sup>.
        © Francesco P. Ucci<sup>3,4</sup>. © Yannick Ulrich<sup>2,5</sup>* and © Graziano Venanzoni<sup>2,7</sup>*
                              (RadioMonteCarLow 2 working group)
```

- WP1 & WP2: fixed-order QED
- WP3: hadronic final states (mainly pions)
- WP3: all-order QED (resummation)
- WP5: experimental inputs



- **F**×**sQED**: Diagrams are computed in scalar QED and multiplied by a global form factor $F_{\pi}(q^2)$, where q^2 is chosen to ensure the cancellation of IR divergences $\Rightarrow q^2 = m_{\pi\pi}^2$ for ISC, $q^2 = s$ for FSC and mixed
- GVMD: The form factor is written as a sum of Breit-Wigner functions. The
 propagator-like form allows one to solve the loop integral with standard techniques

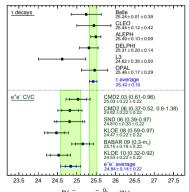
$$F_{\pi}(q^2) = \sum_{\nu=0}^{N} c_{
u} rac{\Lambda_{
u}^2}{\Lambda_{
u}^2 - q^2} \qquad ext{with} \quad \Lambda_{
u}^2 = m_{
u}^2 - i m_{
u} \Gamma_{
u}$$


 FsQED: Under the general assumptions unitarity and analyticity, the form factor is decomposed using the dispersion relation

$$rac{F_{\pi}(q^2)}{q^2} = rac{1}{q^2 - \lambda^2} - rac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} rac{\mathrm{d}s'}{s'} rac{\mathrm{Im}F_{\pi}(s')}{s'(q^2 - s')}$$

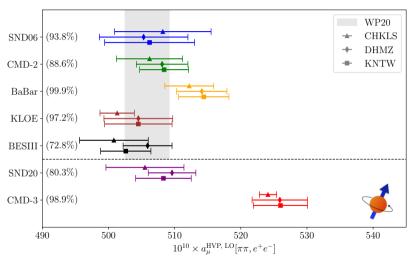
di-pion final state: charge asymmetry

$$A_{\rm FB}\left(\sqrt{s}\right) = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

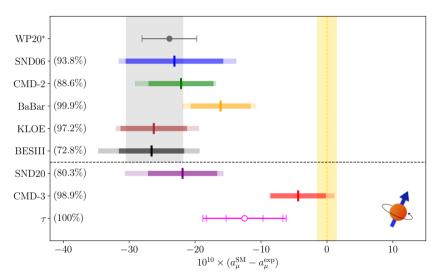

E. Budassi et al., JHEP05 (2025) 196 [arXiv:2409.03469]

- FsQED and GVMD approaches give very similar predictions
- Relevant differences with the FxsQED approach (for exclusive angular observables)

Another possible way: τ decay data


• In the limit of isospin invariance, the normalized invariant mass spectrum of the τ decay for I=1 channel $\tau^{\pm} \to X^{\pm} \nu_{\tau}$ is proportional to the corresponding isovector final state production cross section $e^+e^- \to X^0$

- measured differential $\mathcal{B}(\tau \to \pi^- \pi^0 \nu_{\tau}) \Longrightarrow d\sigma(e^+e^- \to \pi^+\pi^-)/dm_{\pi^+\pi^-}$
- Isospin Breaking effects source of large uncertainties


 $B(\tau^- \to \nu_\tau \pi^- \pi^0)$ (%) B. Aliberti et al., Phys. Bept. 1143 (2025) [arXiv:2505.21476]

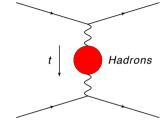
Results on a_{μ} of different groups

R. Aliberti et al., Phys. Rept. 1143 (2025) [arXiv:2505.21476]

Situation of WP25

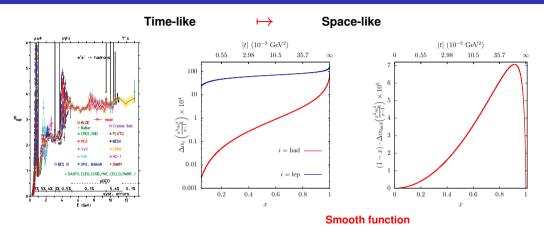
R. Aliberti et al., Phys. Rept. 1143 (2025) [arXiv:2505.21476]

Looking ahead, the space-like approach (MUonE)


- * G. Abbiendi, C.M. Carloni Calame, U. Marconi, C. Matteuzzi, G. Montagna, O. Nicrosini, M. Passera, F. Piccinini, R. Tenchini, L. Trentadue, G. Venanzoni,

 Measuring the leading hadronic contribution to the muon g-2 via μe scattering

 Eur. Phys. J. C 77 (2017) no.3, 139 arXiv:1609.08987 [hep-ph]
- C. M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni,
 A new approach to evaluate the leading hadronic corrections to the muon g-2
 Phys. Lett. B 746 (2015) 325 arXiv:1504.02228 [hep-ph]


Master formula

$$a_{\mu}^{\mathrm{HLO}} = \frac{\alpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \Delta \alpha_{\mathrm{had}}[t(x)]$$

$$t(x) = \frac{x^{2} m_{\mu}^{2}}{x - 1} < 0$$

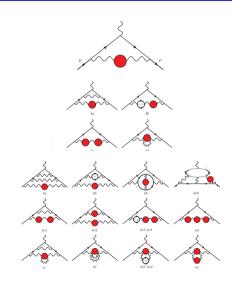
e.g. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

- \star $\Delta lpha_{
 m had}(\mathbf{t})$ can be directly measured in a (single) experiment involving a space-like scattering process and $\mathbf{a}_{\mu}^{
 m HLO}$ obtained through numerical integration Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325
- Odiforii Galaine, Passera, Tiefitadue, Verializotii PEB 740 (2013)
- \star A data-driven, inclusive evaluation of $a_{\mu}^{
 m HLO}$, but with space-like data

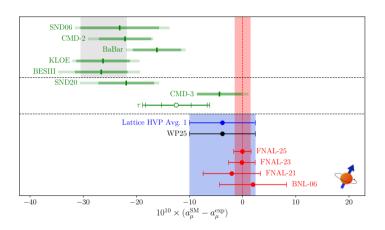
- \mapsto Time-like: combination of many experimental data sets, control of RCs better than $\mathcal{O}(1\%)$ on hadronic channels required
- → Space-like: in principle, one single experiment, it's a one-loop effect, very high accuracy needed

Kernel functions for $\mathbf{a}_{\mu}^{\mathbf{HVP}}$

- LO: $\frac{\alpha}{\pi}(1-x)$
- NLO


E. Balzani, S. Laporta, M. Passera, Phys. Lett. B834 (2022) 137462

A.V. Nesterenko, J. Phys. G49 (2022) 5, 055001;


J. Phys. G50 (2022) 2, 029401

NNLO

E. Balzani, S. Laporta, M. Passera, Phys. Lett. B834 (2022) 137462

Summary

- the puzzle(s) of the data driven approaches
- new data, new analysis and new simulation tools will be crucial to clarify the situatio