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SM contributions to aµ

• QED: it accounts for more than 99.99% of the total, with negligible uncertainty at the present precision

• ElectroWeak: calculated up to three loops, with negligible uncertainty (∼ 153(1) · 10−11)

• QCD: the largest source of uncertainty, due to non-perturbative effects

aSMµ = 116 592 033(62) · 10−11

R. Aliberti et al., Phys. Rept. 1143 (2025) [arXiv:2505.21476]

Fulvio Piccinini (INFN, Pavia and GGI) Tor Vergata: Muon g − 2 or stress testing the SM 2 / 28



QCD contributions

Hadronic Vacuum Polarization (HVP)
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Fig. 19. Leading hadronic contribution to g − 2.

vector bosons ρ, ω, φ and by the order parameters of chiral symmetry breaking, like the quark condensates
〈q̄q〉 6= 0 (q = u, d, s). For the calculation of the hadronic contributions ahadµ to the g − 2 of the muon,
baryons like proton and neutron do not play a big role.

Quarks contribute to the electromagnetic current according to their charge
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The hadronic electromagnetic current jµ had
em is a color singlet and hence includes a sum over colors indexed

by c. Its contribution to the electromagnetic current correlator Eq. (64) defines Π
′ had
γ (s), which enters the

calculation of the leading order hadronic contribution to ahadµ , diagrammatically given by Fig. 19.

Perturbative QCD fails to be a reliable tool for estimating ahadµ and known approaches to low energy QCD
like chiral perturbation theory as well as extensions of it which incorporate spin-1 bosons or lattice QCD
are far from being able to make precise predictions. We therefore have to resort to a semi-phenomenological
approach using dispersion relations together with the optical theorem and experimental data.

The basic relations are
– analyticity (deriving from causality), which allows to write the DR

Π′
γ(k2) − Π′

γ(0) =
k2

π

∞∫

0

ds
ImΠ′

γ(s)

s (s− k2 − iε)
. (101)

– optical theorem (deriving from unitarity), which relates the imaginary part of the vacuum polarization
amplitude to the total cross section in e+e−–annihilation

ImΠ′
γ(s) =

s

4πα(s)
σtot(e

+e− → anything) :=
α(s)

3
R(s) , (102)

with

R(s) = σtot/
4πα(s)2

3s
. (103)

The normalization factor is the point cross section (tree level) σµµ(e+e− → γ∗ → µ+µ−) in the limit
s ≫ 4m2

µ. We obtain the hadronic contribution if we restrict “anything” to hadrons. The complementary
leptonic part may be calculated reliable in perturbation theory and the production of a lepton pair at lowest
order is given by

Rℓ(s) =

√
1 − 4m2

ℓ

s

(
1 +

2m2
ℓ

s

)
, (ℓ = e, µ, τ), (104)

which may be read off from the imaginary part given in Eq. (75). This result provides an alternative way to
calculate the renormalized vacuum polarization function Eq. (73), namely, via the DR Eq. (66) which now
takes the form
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• starts at O(α2) ∼ 7000(60) · 10−11
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Fig. 31. Assignment of momenta for the calculation of the hadronic contribution of the light–by–light scattering to the muon
electromagnetic vertex.

Fig. 32. The invariant γγ mass spectrum obtained with the Crystal Ball detector [241]. The three spikes seen represent the
γγ → pseudoscalar (PS) → γγ excitations: PS=π0, η, η′.

continuum (see Fig. 33).
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Fig. 33. Hadronic light–by–light scattering is dominated by π0–exchange in the odd parity channel, pion loops etc. at long
distances (L.D.) and quark loops including hard gluonic corrections at short distances (S.D.). The photons in the effective
theory couple to hadrons via γ − ρ0 mixing.

As a contribution to the anomalous magnetic moment three of the four photons in Fig. 31 are virtual
and to be integrated over all four–momentum space, such that a direct experimental input for the non–
perturbative dressed four–photon correlator is not available. In this case one has to resort to the low energy
effective descriptions of QCD like chiral perturbation theory (CHPT) extended to include vector–mesons.
Note that early evaluations assumed that the main contribution to hadronic light-by-light scattering comes
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• starts at O(α3) ∼ 100(10) · 10−11

‘<

• two approaches for both contributions:
• first principle calculations with LQCD see previous talk by G. Gagliardi

• data driven approach =⇒ focus on HVP, since it is the largest source of uncertainty
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• starts at O(α3) ∼ 100(10) · 10−11

‘<

• two approaches for both contributions:
• first principle calculations with LQCD see previous talk by G. Gagliardi

• data driven approach =⇒ focus on HVP, since it is the largest source of uncertainty
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The (time-like) dispersive approach for HVP

Fred Jegerlehner

expected (standard wisdom). In contrast, the top Yukawa coupling yt and Higgs self-coupling
λ, while screening if standalone (IR free, like QED), as part of the SM, they are transmuted
from IR free to UV free. The SM reveals an amazing parameter conspiracy, which reminds us
of phenomena often observed in condensed matter systems “... there is a sudden rapid passage
to a totally new and more comprehensive type of order or organization, with quite new emergent
properties ..." [8] i.e. there must be reasons that couplings are as they are. This manifests itself
in the QCD dominance within the renormalization group (RG) of the top-Yukawa coupling,
which requires g3 >

3
4 yt and in the top-Yukawa dominance within the RG of the Higgs-boson

coupling, which requires λ < 3 (
√

5−1)
2 y2

t in the gaugeless (g1, g2 = 0) limit. In the focus is
the Higgs self-coupling. Does it stay positive λ > 0 up to ΛPl? A zero λ = 0 would be
essential singularity. The key question/problem concerns the precise size of the top-Yukawa
coupling yt, which decides about the stability of our world! The meta-stability vs. stability
controversy will be decided by getting more precise input parameters and by better established
EW matching conditions. Most important in this context is the direct measurements of yt and
λ at future e+e−-colliders. But also the important role that the running gauge couplings are
playing, requires substantial progress in obtaining more precise hadronic cross sections in order
to reduce hadronic uncertainties in α(MZ) and α2(MZ). A big challenge for low energy hadron
facilities. Complementary, progress in lattice QCD simulations of two-point correlators will be
important to pin down hadronic effects from first principles. Such improvement in SM precision
physics could open the new gate to precision cosmology of the early universe!

1.3 R-data evaluation of α(M2
Z)

What we need is a precise calculation of the hadronic photon vacuum polarization function. The
non-perturbative hadronic piece from the five light quarks ∆α(5)

had(s) = −
(
Π′γ(s)− Π′γ(0)

)(5)

had
can be evaluated in terms of σ(e+e− → hadrons) data via the dispersion integral

∆α(5)
had(s) = −α s3π

(
P
E2

cut∫

m2
π0

ds′
Rdata
γ (s′)

s′(s′ − s) + P
∞∫

E2
cut

ds′
RpQCD
γ (s′)

s′(s′ − s)

)
, (1.13)

where Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/
(

4πα2

3s

)
measures the hadronic cross-section in

units of the tree level e+e− → µ+µ− cross-section sufficiently above the muon pair production
threshold (s � 4m2

µ). The master equation (1.13) is based on analyticity and the optical
theorem

γ γ
had ⇔

Π
′ had
γ (q2)

γ

had

2

∼ σhad
tot (q2) .

A compilation of the available R-data is shown in Fig. B.4 for the low energy ππ channel
and in Fig. B.5 for R(s) above the ρ resonance peak. Since the mid 90’s [54] enormous
progress has been achieved, also because the new Initial State Radiation (ISR) radiative return
approach∗ provided high statistics data from φ- and B-meson factories (see [9–52]). Still, an
issue in hadronic vacuum polarization (HVP) is the region 1.2 to 2 GeV, where we have a

∗It has been pioneered by the KLOE Collaboration, followed by BaBar and BESIII experiments.

- 14 -

• at Leading Order

aHLO
µ =

(
α2

3π2

)∫ ∞

m2
π

ds
KLO(s)R(s)

s

KLO(s) =

∫ 1

0

dx
x2(1− x)

x2 + (1− x)
(
s
m2

)

R(s) =
σ0(e+e− → hadrons(+γ))

σpt
σpt =

4πα2

3s

• at Higher Orders
• KLO(s)→ KNLO(s) =⇒ aHNLO

µ

• KLO(s)→ KNNLO(s) =⇒ aHNNLO
µ
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Data for dispersive integral

Figure 28: A compilation of the modulus squared of the pion form factor in the ρ meson region, which yields about 75% of aHVP, LO
µ . Data from

CMD-2, SND, KLOE, BABAR, BESIII, and CLEOc [43, 48–51, 58, 60, 61, 64, 65, 73, 82, 84, 140, 141], besides some older sets. Reprinted from
Ref. [27].

Figure 29: The compilation of R(s)-data utilized in the analyses of Refs. [27, 217–220]. The bottom line shows the relative systematic errors within
the split regions. Different regions are assumed to have uncorrelated systematics. Data from Refs. [37, 41, 44–47, 53–56, 59, 62, 63, 66, 67, 69–
72, 75–77, 142, 167, 222–227] and others. Adapted from Ref. [27].

PDG. For the ω and φ one can apply a BW+PDG evaluation or use the corresponding decay spectra into 3π,
π0γ, K+K−, KLKS , and ηγ.

In addition to the data shown in the figures, pQCD is applied from 5.2 GeV to 9.46 GeV as well as above 11.5 GeV,
see Fig. 29, using the code of Ref. [132]. The central result based on e+e− data alone is13

aHVP, LO
µ = 688.1(4.1) × 10−10 , (2.18)

where the central values and uncertainties are distributed on different energy ranges as shown in Fig. 30. In view of the
observed discrepancies in the e+e− → ππ data from BABAR and KLOE, also a combined analysis with the τ→ ππντ
data from ALEPH [180, 191, 228, 229], OPAL [182], CLEO [183], and Belle [185] has been considered [27]

aHVP, LO
µ = 688.8(3.4) × 10−10 , (2.19)

13This number, which relies on GS and BW parameterizations as described above, is quoted below in Sec. 2.3.5 as the main result from this
approach.
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• Pion form factor

〈π±(p′)|jµ(0)|π±(p)〉 = ±(p′ + p)µFVπ ((p′ − p)2)

σ(e+e− → π+π−) =
πα2

3s
β3
π|FVπ (s)|2

R
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Figure 16: Contributions to the KNT data compilation of the total hadronic R-ratio from the different hadronic final states below
1.937 GeV [31, 265]. The full R-ratio is shown in light blue. Each final state is included as a new layer on top in decreasing order
of the size of its contribution to aHVP, LO

µ . Figure adapted from Ref. [265].

they are known to be defective. (iii) Understand and minimize/avoid all possible bias that could be present in the
analysis. (iv) Incorporate full correlation information between different data points due to systematic uncertainties in
the combination to constrain the fits by using all available experimental data. (v) Evaluate and incorporate additional
theoretical systematic uncertainties arising from the analysis. (vi) Be fully open-access with regard to the sharing of
studies, results, and resulting combination data.

At the time of Ref. [1], the KNT data combination could accommodate tensions between the data sets, still achiev-
ing an acceptable fit quality. This was reflected in a global χ2/dof = 1.26 for the most important two-pion channel.
For the evaluation of the aµ integral, an energy-dependent chi-square inflation was used, which amounted to a 14%
error inflation for aπ

+π−
µ in the range 0.305 <

√
s < 1.937 GeV. This situation changed dramatically with the publi-

cation of the CMD-3 two-pion data [95, 96]. Despite sustained efforts by the community, coordinated by the Muon
g − 2 Theory and the RadioMonteCarLow 2 initiatives, see Secs. 2.2.1 and 2.4, no explanations for the discrepancy
have been found so far. With further dedicated efforts on the calculation of higher-order radiative corrections and their
implementation in MC generators, and new data analyses in the two-pion channel underway, the picture is not yet
settled. Therefore, the persistent strong tension with the previous data across the entire energy range in the dominant
π+π− channel means that the most precise data sets and their combination are highly inconsistent, and extra caution
should be taken before trying to proceed with the direct combination as before. KNTW have consequently refrained
from providing an updated compilation.

Instead, KNTW are taking the opportunity to fully scrutinize, overhaul, and modernize their analysis and data
combination procedure in preparation for crucial, new hadronic cross-section data expected in the future, particularly
for the π+π− channel, see Sec. 2.2. The aim is to improve all aspects of the data treatment, data combination, and
error estimation, and to provide a versatile and modern database and software tool for wider use. This is particularly
important given that current tensions in different evaluations of aHVP, LO

µ and in the e+e− → π+π− cross-section data
indicate either a discovery of new physics or a multi-method confirmation of the SM. Crucially, different analysis
choices in e+e− → hadrons data combinations by different groups can lead to different results and, in Ref. [1],
have been shown to differ at the level of the uncertainty on the combined cross section. It follows that future data-
driven determinations of aHVP, LO

µ must attempt to avoid analysis bias wherever possible, including any past or future
analysis choices on how to combine the available data. Consequently, implementing analysis blinding in data-driven
determinations of aHVP, LO

µ is paramount and critical before including new data whose impact on the resulting aHVP, LO
µ

will be influenced by such analysis choices. The first blinding scheme for data-driven evaluations of HVP has been
developed by KNTW and is in place as part of their new, ongoing KNTW analysis, see Fig. 17. The full blinding
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Contributions to integral and to its error

Data-Driven HVP
Dispersive Tensions

KNTW and Future Plans

Hadronic Data

∼ 250 measurements in > 50 hadronic
channels.

Dominated (> 70%) by e+e− → π+π−.

A. Wright (aidan.wright@liverpool.ac.uk) Dispersive g − 2 Update 3 / 16

talk by A. Wright, FCCP 2025, Capri, 29 Setember - 1 October 2025
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Methods for the hadronic cross section measurement

Energy scan

e+

Hadrons

e–

e+

Hadrons

e– �

Figure 1: The LO Feynman diagrams for the annihilation processes e+e− → hadrons (left) and e+e− → γ + hadrons with ISR (right). Reprinted
from Ref. [139].

The remainder of this section is organized as follows. In Sec. 2.2, the different experiments and methods, direct
scan and radiative return, are discussed. The hadronic cross section data is reviewed, with emphasis on the most
important channels and comparisons of data from different experiments for the same channel. This section also
includes a short discussion of radiative corrections and Monte Carlo generators, and of the possible use of spectral-
function data from hadronic τ decays. Section 2.3 contains short reviews of the most popular global analyses for the
HVP contributions to aµ. It also includes a discussion of additional constraints that can be used to further improve
the two-pion channel, a comparison of the different evaluations, and a conservative merging of the main data-driven
results. Section 2.4 discusses prospects for further improvements of the data-driven determination of aHVP

µ and Sec. 2.5
contains a short summary and the conclusions for this part.

2.2. Hadronic data
The dispersive approach for computing HVP contributions to the muon anomalous magnetic moment is based on

the availability of e+e− annihilation measurements of hadronic cross sections at energies below a few GeV. In this
section, we present a review of this data, where a wealth of precision results has been obtained in recent years.

2.2.1. Experimental approaches
The scan method. Until recently, measurements of annihilation cross sections were done by taking data at fixed CM
energies, taking advantage of the good beam energy resolution of e+e− colliders. Then the full accessible range was
scanned at discrete energy points. At each point the cross section for the process e+e− → X is directly obtained
through

σX =
NX

εX(1 + δ)Lee
, (2.5)

where NX is the observed number of X events, εX is the efficiency depending on the detector acceptance and the event
selection cuts, (1+δ) the radiative correction, and Lee the integrated e+e− luminosity obtained from registered leptonic
events with known QED cross sections (e+e− → e+e−, µ+µ−, or γγ). All quantities depend on the CM energy

√
s of

the scan point. The radiative correction takes into account the loss of events by ISR causing them to be rejected by
the selection, which usually imposes constraints on energy-momentum balance.

At LO the process is described by the Feynman diagram shown in Fig. 1. The beauty of e+e− annihilation is
its simplicity due to the purely leptonic initial state governed by QED and the exchange of a highly virtual photon
coupled to any charged particles (leptons or quarks). Thus strong interaction dynamics can be studied in a very clean
way as quark pairs are created initially out of the QCD vacuum.

The advantages of the scan approach are (i) the well-defined CM energy (mass of the hadronic system), which
applies for both the process being investigated and background, thus limiting the number of sources for the latter,
and (ii) the very good energy resolution, typically ∼ 10−3 √s, allowing for the study of the line shape of narrow
resonances such as the ω and the φ. These good points have some negative counterparts, as data taking has to be
distributed at discrete values, leaving gaps without information, while being limited by the operating range of the
collider as luminosity usually drops steeply at lower energies. The consequence of this fact is that the wide range
of energies necessary for the dispersion integral has to be covered by a number of experiments at different colliders
of increasing energies. Thus, only for the region from threshold to 2 GeV, three generations of colliders have been
used. An additional complication of this situation is a lack of continuity in detector performance and therefore some
difficulties for evaluating systematic uncertainties in a coherent way.
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Figure 1: The LO Feynman diagrams for the annihilation processes e+e− → hadrons (left) and e+e− → γ + hadrons with ISR (right). Reprinted
from Ref. [139].
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scan and radiative return, are discussed. The hadronic cross section data is reviewed, with emphasis on the most
important channels and comparisons of data from different experiments for the same channel. This section also
includes a short discussion of radiative corrections and Monte Carlo generators, and of the possible use of spectral-
function data from hadronic τ decays. Section 2.3 contains short reviews of the most popular global analyses for the
HVP contributions to aµ. It also includes a discussion of additional constraints that can be used to further improve
the two-pion channel, a comparison of the different evaluations, and a conservative merging of the main data-driven
results. Section 2.4 discusses prospects for further improvements of the data-driven determination of aHVP

µ and Sec. 2.5
contains a short summary and the conclusions for this part.

2.2. Hadronic data
The dispersive approach for computing HVP contributions to the muon anomalous magnetic moment is based on

the availability of e+e− annihilation measurements of hadronic cross sections at energies below a few GeV. In this
section, we present a review of this data, where a wealth of precision results has been obtained in recent years.

2.2.1. Experimental approaches
The scan method. Until recently, measurements of annihilation cross sections were done by taking data at fixed CM
energies, taking advantage of the good beam energy resolution of e+e− colliders. Then the full accessible range was
scanned at discrete energy points. At each point the cross section for the process e+e− → X is directly obtained
through

σX =
NX

εX(1 + δ)Lee
, (2.5)

where NX is the observed number of X events, εX is the efficiency depending on the detector acceptance and the event
selection cuts, (1+δ) the radiative correction, and Lee the integrated e+e− luminosity obtained from registered leptonic
events with known QED cross sections (e+e− → e+e−, µ+µ−, or γγ). All quantities depend on the CM energy

√
s of

the scan point. The radiative correction takes into account the loss of events by ISR causing them to be rejected by
the selection, which usually imposes constraints on energy-momentum balance.

At LO the process is described by the Feynman diagram shown in Fig. 1. The beauty of e+e− annihilation is
its simplicity due to the purely leptonic initial state governed by QED and the exchange of a highly virtual photon
coupled to any charged particles (leptons or quarks). Thus strong interaction dynamics can be studied in a very clean
way as quark pairs are created initially out of the QCD vacuum.

The advantages of the scan approach are (i) the well-defined CM energy (mass of the hadronic system), which
applies for both the process being investigated and background, thus limiting the number of sources for the latter,
and (ii) the very good energy resolution, typically ∼ 10−3 √s, allowing for the study of the line shape of narrow
resonances such as the ω and the φ. These good points have some negative counterparts, as data taking has to be
distributed at discrete values, leaving gaps without information, while being limited by the operating range of the
collider as luminosity usually drops steeply at lower energies. The consequence of this fact is that the wide range
of energies necessary for the dispersion integral has to be covered by a number of experiments at different colliders
of increasing energies. Thus, only for the region from threshold to 2 GeV, three generations of colliders have been
used. An additional complication of this situation is a lack of continuity in detector performance and therefore some
difficulties for evaluating systematic uncertainties in a coherent way.
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• tagged analysis

• untagged analysis
• possible normalization to µ+µ−γ events

• independence of the absolute normalization
and of the vacuum polarization

• high stat µ+µ−γ required
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Overview of present experiments

Achim Denig Status of R measurements

Experiment Published
Method

Normalization Separation
π - µ - e

Future

KLOE
ISR untagged

ISR tagged
ISR untagged

Luminosity
Luminosity

µ+µ-g

Kinematics Track
Kinematics Track
Kinematics Track

ISR untagged
µ+µ-g

statistics x 7 

BABAR ISR tagged µ+µ-g Particle ID ISR tagged, separation
by polar angle, statistics x 2

BESIII ISR tagged Luminosity Particle ID (ML) ISR tagged, µ+µ-g,
statistics x 7, 1C kin. fit

BELLE-II
ISR tagged, µ+µ-g,

Particle ID

CMD-3 Energy scan e+e- Kinematics Track
Kinematics EMC

overall improvements

SND Energy scan e+e- Kinematics EMC overall improvements
ML for π – e separation

Overview Experiments – Past and Future

A. Denig, talk at FCCP 2025, Capri
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MC tools: radiative corrections and the pion structureThe inspiration: original 2010 report

Andrea Gurgone FCCP 2025 29 Sep 2025 4 / 20
Fulvio Piccinini (INFN, Pavia and GGI) Tor Vergata: Muon g − 2 or stress testing the SM 9 / 28



Recently used generators: general features

• for luminosity (Bhabha, µ+µ−, γγ production): NLO with multiphoton resummation (Parton Shower in

BabaYaga, YFS in KKMC, BHWIDE)

• for π+π− production: NLO with IS multiphoton resummation with structure functions (MCGPJ)

• for radiative processes: NLO (Phokhara). LO 2→ 3 with collinear LL Structure functions (AfkQED)

• Pion form factor in F×QED approximation: diagrams calculated in sQED with Fπ(q2) factorized with a

scale q2 able to guarantee the IR cancellation

Fulvio Piccinini (INFN, Pavia and GGI) Tor Vergata: Muon g − 2 or stress testing the SM 10 / 28



From R-ratio to aµ

• The evaluation of the dispersion relation for aµ is performed by different groups
• DHMZ M. Davier, A. Hoecker, B. Malaescu, Z. Zhang

• KNTW A. Keshavarzi, D. Nomura, T. Teubner, A. Wright

• CHKLS G. Colangelo, M. Hoferichter, B. Kubis, T.P. Leplumery, P. Stoffer

• interpolation between different energy points

• combination of all exclusive channels, considering the correlations between channels and between

experiments

• using general constraints, from analyticity, unitarity and crossing symmetry

having different approaches crucial to have more reliable results

Fulvio Piccinini (INFN, Pavia and GGI) Tor Vergata: Muon g − 2 or stress testing the SM 11 / 28



Situation at the time of WP20

 600  650  700  750

No New PhysicsNo New Physics

ETM-18/19
Mainz/CLS-19
FHM-19
PACS-19
RBC/UKQCD-18
BMW-17
Mainz/CLS-17
HPQCD-16
ETM-13

KNT-19
DHMZ-19
BDJ-19
Jegerlehner-18

RBC/UKQCD-18

aµ
HVP,LO . 1010

LQCD
Pheno.

Pheno+LQCD

Figure 44: Compilation of recent results for aHVP, LO
µ in units of 10−10. The filled dark blue circles are lattice results that are included in the “lattice

world average”. The average, which is obtained from a conservative averaging procedure in Sec. 3.5.1, is indicated by a light blue band, while the
light-green band indicates the “no new physics” scenario, where aHVP, LO

µ results are large enough to bring the SM prediction of aµ into agreement
with experiment. The unfilled dark blue circles are lattice results that are older or superseded by more recent calculations. The red squares indicate
results obtained from the data-driven methods reviewed in Sec. 2. See Table 8 for more information on the results included in the plot. Adapted
from Ref. [443].

are not included in the averages.
The lattice results for the dominant light-quark connected contribution aHVP, LO

µ (ud), shown in the upper-right
panel of Fig. 45, exhibit a similar spread in central values as those for aHVP, LO

µ . There is a 2.4σ tension between
the results with lowest (ETM-18/19 [17, 377]) and highest (Mainz/CLS-19 [15], PACS-19 [13]) central values, while
BMW-17 [10], RBC/UKQCD-18 [11], FHM-19 [14], and Aubin et al.-19 [16] lie in between. In HPQCD-16 [376],
the light-quark connected contribution is not defined in the same way as in this review, as it is evaluated there at
the physical charged pion mass. As a result it cannot be directly compared to lattice results for aHVP, LO

µ (ud) and
is therefore omitted from Fig. 45. As discussed in Sec. 3.2, aHVP, LO

µ (ud) is sensitive to the long-distance (large
Euclidean time) behavior of the vector-current correlator, which is the region where the correlator suffers from a StN
problem. It is possible that the above tension is related to the different strategies employed to control and model this
important region. Further investigations, including comparisons of other intermediate quantities with different levels
of sensitivity to the short- and long-distance contributions, would be useful. The fact that the tension between different
results is larger than the individual errors may be an indication that some systematic effects are underestimated. We
expect that this situation will improve in future high-precision studies, which will enable more refined analyses of the
underlying systematic errors.

The strange- and charm-quark connected contributions aHVP, LO
µ (s) and aHVP, LO

µ (c) are shown in the upper-right
and lower-left panels of Fig. 45 respectively. These quantities are already calculated at close to target precision.
The results for aHVP, LO

µ (s) and for aHVP, LO
µ (c) from Refs. [10, 11, 17, 358, 377] are nicely consistent. However, the

PACS-19 [13] result for aHVP, LO
µ (s) is in 1σ tension with the other lattice results while for aHVP, LO

µ (c) it is in almost
2σ tension with the rest. The strange- and charm-quark connected contributions, while insensitive to FVEs and StN

81

T. Aoyama et al., Phys. Rept. 887 (2020) 1

aHVP−LO
µ = 6931(40) · 10−11
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Results on the experimental side after WP20: CMD-3

• new measurement of σ(e+e− → π+π−)

@VEPP-2000 in strong tension with previous

experiments (even CMD-2!)

F.V. Ignatov et al., Phys. Rev. Lett. 132 (2024) 23; Phys. Rev. D109 (2024) 11
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Figure 14: Significance of the difference between pairs of the three most precise e+e− → π+π− cross section measure-
ments (BaBar [139, 174], CMD-3 [96], KLOE [132–135]) for narrow energy intervals of 50 MeV or less (left) and larger energy
intervals (right) indicated by the horizontal lines. Figures taken from Ref. [166].

into account the correlations of the uncertainties, see Fig. 14. The largest observed tensions are between CMD-3 and
KLOE, going beyond 5σ on the ρ peak [166]. The impact of these tensions on the comparison of the experimental
result to the SM expectation for aµ is displayed in the Fig. 5 from Ref. [166] (see more detailed discussion below).

The presence of these tensions among experimental measurements represents a clear indication of underestimated
uncertainties. This calls for a conservative uncertainty treatment in combination fits and in the determination of
the averaging weights, as implemented in the DHMZ approach [1, 263]. These systematic tensions go well beyond
the effects accounted through the local χ2/dof rescaling. This had already motivated the inclusion of the dominant
BaBar–KLOE systematic by DHMZ, since the studies reported in Ref. [263]. However, the tensions are larger now
and therefore require one to understand their actual source.

Impact of higher-order photon emissions: the implications of a unique “(N)NLO” BaBar study. As discussed in
Sec. 2.2.4, the higher-order photon emissions (i.e., in addition to the hard ISR photon), were studied in-situ with
BaBar data [176], for the first time at NLO and NNLO, in the e+e− → µ+µ−γ and e+e− → π+π−γ channels. This
allows one to test the most frequently used MC generators, Phokhara and AfkQed. The “(N)NLO” order counting
in data and simulations is performed based on the number of additional photons in the final state, having the energy
above some given threshold.

It is found that the rate of “NLO” small-angle ISR in Phokhara is higher than in data, while the data/MC ratios for
large-angle photon emissions are consistent with unity [176]. An independent confirmation of the Phokhara problem
has been provided by the measurement of the π+π−π0 channel performed by the Belle-II Collaboration [185]. The
“NNLO” contributions are also clearly observed in data, while they are missing in Phokhara. At the same time,
AfkQed provides a reasonable description of the rate and energy distributions for “(N)NLO” data.

The discrepancies observed between BABAR and Phokhara in the energy distributions of additional ISR photons
reveal Phokhara shortcomings that cannot be fully interpreted due to the absence of complete NNLO MC generators.
A full range of scenarios with extremes labeled 1 and 2, has been considered according to presently unknown NNLO
calculations [166]. Scenario 1 questions the validity of Phokhara at the NLO level in addition to missing NNLO,
while in scenario 2 the discrepancy observed by BABAR would originate solely from missing NNLO. The realistic
situation is expected to lie between these two extremes. These findings have triggered further studies performed by
BESIII and KLOE. Tests of MC generators regarding the µµ/ππ mass distributions are now available (see Secs. 2.2.3,
2.2.5, and 2.4) which confirm the validity of NLO Phokhara at the 1% level (where the uncertainties of the other
generators employed in the comparisons are relevant too). This is to be compared with a systematic uncertainty of
0.5% for Phokhara as quoted in the KLOE/BESIII publications. However, similar comparisons should be done for
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• At present no explanation found for the

difference of results of CMD-3 w.r.t. other

experiments

• tensions also in other channels
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Figure 20: Cross-section data and combined fits to all data sets for e+e− → K+K− (data from Refs. [102, 288, 317, 318], left) and e+e− → KS KL
(data from Refs. [104, 125, 288, 288], right), respectively. Both are shown focused on the ϕ peak region. Figure adapted from Ref. [46].

which results in an estimate of the EM charged-to-neutral kaon mass difference (∆M2
K)EM = 2.12(18) × 10−3 GeV2

and allows one to disentangle EM from quark-mass-induced effects in ∆M2
K = M2

K± − M2
K0 . This separation serves as

important input to the discussion of IB in Sec. 2.7.3. In particular, the scheme implicitly defined by Eq. (2.34), and
the resulting mass decomposition in Eq. (2.37), agree well with the FLAG-recommended convention in lattice QCD,
see Sec. 3.2.

2.7. Applications of dispersive representations

2.7.1. Correlations with other observables
Having a dispersive representation for the 2π cross section allows one to study interesting correlations with

other low-energy observables, see, e.g., Ref. [320]. First, the resulting values of the P-wave ππ phase shift at
s0 = (0.8 GeV)2 and s1 = (1.15 GeV)2, which enter as fit parameters in Ω1

1(s) via the Roy-equation solution, can
be compared to partial-wave analyses [321, 322]. The result of the global VFF fit proves consistent with these partial-
wave solutions, but appreciably more precise, to the extent that the corresponding phase shift enters as input for
global analyses of ππ scattering [323]. Surprisingly, even for the fits to CMD-3 the change in these phase-shift values
is small [146, 269], essentially realizing scenario (2) from Ref. [320] in which all changes occur in the conformal
polynomial GN

in(s), see Sec. 2.6.1. This observation could potentially allow one to discriminate among the 2π data sets
using additional input from e+e− → 4π, πω data, and work in this direction is ongoing [324, 325].

Next, in addition to studying δϵ , the results for the ω pole parameters in VFF fits can be contrasted to determina-
tions from e+e− → 3π and e+e− → π0γ, see Sec. 2.6.2. While the sensitivity cannot compete with the 3π channel,
some deficit in Mω tends to remain, correlated with δϵ (in line with a similar observation in Ref. [139] in the context
of GS fits).

Finally, once the pion VFF is determined, the pion charge radius follows via the sum rule

⟨r2
π⟩ = 6

dFV
π (s)
ds

∣∣∣∣∣
s=0
=

6
π

∫ ∞

4M2
π

ds
Im FV

π (s)
s2 , (2.35)

defining another low-energy observable that could help discriminate among the 2π data sets in case lattice-QCD
calculations [326–329] at the required level of precision became available. For such a comparison, the improvements
in the evaluation of the inelastic contributions in Ref. [146] become critical, since, with the imaginary part entering
in Eq. (2.35) in principle up to arbitrarily high energies, ⟨r2

π⟩ displays an increased sensitivity to GN
in. In particular, the

hybrid representation of Ref. [146] leads to significantly smaller uncertainties in ⟨r2
π⟩ than the unconstrained Omnès

representation Eq. (2.25), see Fig. 21, but in all fits the hybrid representation relies on BaBar data above 1.4 GeV.
Therefore, the main results of Ref. [146] for the pion charge radius are based on the hybrid representation, fit to a
combination of all data sets apart from SND20 and CMD-3, as well as the constrained Omnès representation, fit to
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Recent news on the experimental side: BaBaR

• New blind analysis of 460 fb−1 integrated luminosity confirms the results of 2009

Summary and outlook
• New blind BaBar analysis (460 fb⁻¹) confirms the 𝜋+𝜋− contribution to 𝑎𝜇.

• Independent method (angular fits, no PID) removes dominant 2009 systematic.

• Unblinded 𝜇𝜇𝛾 spectrum agrees with QED, validating the approach.

• 𝜋𝜋 cross section consistent with 2009, with reduced systematics in 0.5–1.4 GeV.

• Results:

• Below 0.5 GeV: 𝑎𝜇
𝜋𝜋 = 58.0 ± 5.5 stat. ± 1.7 syst.  × 10−10

• 0.5–1.4 GeV: 𝑎𝜇
𝜋𝜋 = 456.2 ± 2.2 stat. ± 1.7 syst. × 10−10

• Robustness shown by excellent agreement with 2009.

23

Léonard’s talk

Zhiqing’s talk

More information in Lepton Photon 2025 talks:

Léonard’s talk : New precise measurement of the 𝑒+𝑒− → 𝜋+𝜋−(𝛾) cross section with BaBar

Zhiqing’s talk : Review of HVP calculations via 𝑒+𝑒− measurements

Davier, Lutz, Malaescu, Zhang, Polat, Pinto, talk at Muon g − 2 Theory Initiative meeting, IJCLab, Orsay, 8-12 September 2025
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Very recent SND analysis of 2018 data→ tension with BaBaR and KLOE
A. Kupich, talk at Muon g − 2 Theory Initiative, IJCLab, Orsay, 8-12 September 2025

• SND data vs fitData �t

Fit results: Mρ = 775.56 ± 0.16 MeV, Γρ = 149.69 ± 0.33 MeV,
Mω = 782.36 ± 0.06 MeV, Γω = 8.723 ± 0.07 MeV,

Brω→2π = 1.67 ± 0.023 %, ϕρω=0.131 ± 0.01, χ2/n.d.f. = 1.7

Kupich A. Status of e+e− → π+π− analysis with SND at VEPP-2000 16/24

• CMD-3 vs SND
Comparison with CMD-3 (UNBLINDED)

Deviation from our �t, green area � systematics, blue one - total uncertainty

aµ × 1010= 431.11 ± 3.52 vs. CMD-3: aµ × 1010= 433.62 ± 3.76

Kupich A. Status of e+e− → π+π− analysis with SND at VEPP-2000 22/24

• BaBaR data vs SNDComparison with BaBar (UNBLINDED)

BaBar results deviation from our �t, green area � systematics, blue
one - total uncertainty

aµ × 1010= 431.11 ± 3.52 vs. BaBar: aµ × 1010= 423.87 ± 2.06

Kupich A. Status of e+e− → π+π− analysis with SND at VEPP-2000 21/24

• KLOE vs SNDComparison with KLOE (UNBLINDED)

Deviation from our �t, green area � systematics, blue one - total uncertainty
Kupich A. Status of e+e− → π+π− analysis with SND at VEPP-2000 23/24

aππµ · 1010 = 431.11± 3.52 vs aππ CMD−3
µ · 1010 = 433.62± 3.76, aππ BaBar

µ · 1010 = 423.87± 2.06
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progress on the theory side (A. Gurgone, FCCP 2025, Anacapri, 8-12 September 2025)The RadioMonteCarLow 2 effort

• RadioMonteCarLow 2 is a community effort focused on Monte Carlo tools

and radiative corrections for e+e−collisions at low energies (
√
s < few GeV)

• The goal is to assess the current state of MC codes, make them accessible,

and further improve them where needed

↪→ A living repository of MC generators and benchmark results

• Close collaboration between theorists and experimental collaborations

↪→ BESIII, CMD-3, KLOE . . .

• 7 codes: AfkQed, BabaYaga@NLO, KKMC, MCGPJ, McMule,

Phokhara, Sherpa

• 3+3 processes (both for energy scan and radiative return):

• e+e− → e+e−(γ)

• e+e− → µ+µ−(γ)

• e+e− → π+π−(γ) radiomontecarlow2.gitlab.io

Andrea Gurgone FCCP 2025 29 Sep 2025 2 / 20
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progress on the theory side (A. Gurgone, FCCP 2025, Anacapri, 8-12 September 2025)The sequel: updated 2025 report

Andrea Gurgone FCCP 2025 29 Sep 2025 5 / 20
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progress on the theory side (A. Gurgone, FCCP 2025, Anacapri, 8-12 September 2025)Organisation in Working Packages

• WP1 & WP2: fixed-order QED

• WP3: hadronic final states (mainly pions)

• WP3: all-order QED (resummation)

• WP5: experimental inputs

Andrea Gurgone FCCP 2025 29 Sep 2025 6 / 20
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progress on the theory side (A. Gurgone, FCCP 2025, Anacapri, 8-12 September 2025)Pion treatment

• F×sQED: Diagrams are computed in scalar QED and multiplied by a global form

factor Fπ(q
2), where q2 is chosen to ensure the cancellation of IR divergences

↪→ q2 = m2
ππ for ISC, q2 = s for FSC and mixed

• GVMD: The form factor is written as a sum of Breit-Wigner functions. The

propagator-like form allows one to solve the loop integral with standard techniques

Fπ(q
2) =

N∑

v=0

cv
Λ2
v

Λ2
v − q2

with Λ2
v = m2

v − imvΓv

• FsQED: Under the general assumptions unitarity and analyticity, the form factor

is decomposed using the dispersion relation

Fπ(q
2)

q2
=

1

q2 − λ2
− 1

π

∫ ∞

4m2
π

ds ′

s ′
ImFπ(s

′)

s ′(q2 − s ′)

Andrea Gurgone FCCP 2025 29 Sep 2025 8 / 20
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di-pion final state: charge asymmetry

AFB

(√
s
)

=
σF − σB
σF + σBThe charge asymmetry: accepted version of BabaYaga paper
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After adding the Principal Value pole, the discrepancy is gone. The two approaches yield to the same results (up
to FF limitations) 41

E. Budassi et al., JHEP05 (2025) 196 [arXiv:2409.03469]

• FsQED and GVMD approaches give very similar predictions

• Relevant differences with the FxsQED approach (for exclusive angular observables)
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Another possible way: τ decay data

• In the limit of isospin invariance, the normalized invariant mass spectrum of the τ decay for I = 1 channel

τ± → X±ντ is proportional to the corresponding isovector final state production cross section

e+e− → X0

• measured differential B(τ → π−π0ντ ) =⇒
dσ(e+e− → π+π−)/dmπ+π−

• Isospin Breaking effects source of large

uncertainties

23.5 24 24.5 25 25.5 26 26.5 27 27.5

B(τ– → ντπ
–π0)     (%)

Belle

CLEO

ALEPH

DELPHI

L3

OPAL

τ average

e+e− average

CMD2 03 (0.61-0.96)

CMD2 06 (0.37-0.52, 0.6-1.38)

SND 06 (0.39-0.97)

KLOE 08 (0.59-0.97)

BABAR 09 (0.3-mτ)

KLOE 10 (0.32-0.92)

τ decays

e+e– CVC

25.24 ± 0.01 ± 0.39

25.44 ± 0.12 ± 0.42

25.49 ± 0.10 ± 0.09

25.31 ± 0.20 ± 0.14

24.62 ± 0.35 ± 0.50

25.46 ± 0.17 ± 0.29

25.42 ± 0.10

24.84 ± 0.14 ± 0.22

25.03 ± 0.22 ± 0.22

24.82 ± 0.22 ± 0.22

24.810 ± 0.33 ± 0.22

24.47 ± 0.22 ± 0.22

25.15 ± 0.18 ± 0.22

24.53 ± 0.22 ± 0.22

Figure 21: The measured branching fractions for τ− → π−π0ντ compared to the predictions from the e+e− → π+π− spectral functions, applying
the IB corrections. The long and short vertical error bands correspond to the τ and e+e− averages, respectively. Reprinted from Ref. [176].

black points in Fig. 19 (bottom right), showing an increasing effect above the ρ peak that appears uncomfortably
large. Unlike γ–Z mixing on the Z resonance, well established theoretically and experimentally, the description
of photon mixing with a strongly interacting ρ may be affected by significant difficult-to-assess uncertainties. The
correction [178], shown in Fig. 22, seems to overestimate the observed difference.

Concluding this part, it appears that, at the required precision to match the e+e− data, the present understanding
of the IB corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals.
It remains a possibility, however, that the alternate lattice approach, discussed in Sec. 3.4.2, may provide a solution to
this problem.

2.2.7. Radiative corrections and Monte Carlo generators
For the scan experiments at Novosibirsk, an event generator MCGPJ [192] is used. Its theoretical precision was

estimated to be better than 0.2%. It simulates e+e−, µ+µ−, π+π−, K+K−, and KLKS final states. The code was cross-
checked against BHWIDE [143] for the e+e− final state and against KKMC [193] for the µ+µ− final state. Agreement
at a level of 0.2% was found in both cases.

For the luminosity measurements, MCGPJ [192] or BABAYAGA@NLO [144] event generators are used. The
accuracy of the BABAYAGA@NLO is 0.1%, which was cross-checked by comparisons with the BHWIDE event
generator.

In most of the experiments that used the radiative-return method [58, 60, 61, 65, 73, 82], the PHOKHARA event
generator was used in the experimental analyses. The generator evolved from its first versions [149, 194], where
only ISR corrections were included at NLO. The missing ISR NNLO corrections were also estimated there. They
can be at most 0.3%, which was confirmed later in Ref. [195]. They will be included soon at the leading logarithmic
approximation [196]. The other NLO corrections were added gradually for final states with two hadrons and µ+µ−

33

R. Aliberti et al., Phys. Rept. 1143 (2025) [arXiv:2505.21476]
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Results on aµ of different groups
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Figure 26: Dispersive theoretical predictions for aHVP, LO
µ [ππ], based on various measurements of e+e− → π+π−, fit/interpolated and complemented

for the uncovered mass ranges (percentages of the integral covered by each measurement are shown), for the three approaches “CHKLS,” “DHMZ,”
and “KNTW” as detailed in the main text. The gray band indicates the result from WP20, including the error inflation due to the BaBar–KLOE
tension. The experiments above the dashed line entered the result for WP20, whilst those below are new measurements since then. The numerical
values shown are reproduced in Table 5.

by construction more precise than the integrals derived from one measurement alone (i.e., a measurement covering the
low- and/or high-mass range can be misleadingly “penalized” when comparing the uncertainties). A local χ2-based
uncertainty rescaling is performed when necessary, although there are relatively little tensions in the relevant mass
regions.

The “KNTW” numbers are solely based on the KNT19 combination [31, 265] and are, in particular, deliberately
not including the CMD-3 data (see Sec. 2.5.2 for further details). The combination is fully model-independent,
incorporates experimental correlation information in data fits for the full available energy range whilst simultaneously
avoiding procedural systematic biases (such as the d’Agostini bias in correlated χ2 fits [409, 410]), and determines
additional systematic uncertainties.

The “DHMZ” result employs a spline-based relatively-local averaging (minimization of χ2 with correlations),
with weight derivation accounting for different point-spacing/binning (see Sec. 2.5.1 for further details). All existing
data are used on the full mass ranges where combinations are employed. The combination procedure is also validated
through a closure test.

The “DHMZ” and “KNTW” direct integration methods yield similar values in most cases (differences not exceed-
ing much more than 1 unit), except for the BESIII integral, where some difference (of about 3 units) arises due to the
larger range on which the combined data are employed and the differences of methodologies discussed above and in
WP20. The “CHLKS” points show lower uncertainties in a few cases, since the additional theoretical constraints in
a global fit reduce the uncertainties in the resulting integral. This reduction is most effective in cases in which the
data are relatively scarce in some energy region—the extreme case concerning the ability to extrapolate in a robust
manner into regions in which no data were taken—and in which the systematic uncertainties, most prominently from
the truncation of the conformal expansion, are small. In the latter case, as for CMD-3, the limited knowledge of exact
correlations of the systematic uncertainties in experiment becomes more critical, suggesting to somewhat enlarge the
fit uncertainties, see Secs. 2.2.1 and 2.6.1.

58

R. Aliberti et al., Phys. Rept. 1143 (2025) [arXiv:2505.21476]
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Situation of WP25
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Figure 27: Summary of current data-driven evaluations of HVP, propagated to aSM
µ (the yellow band indicates aexp

µ , the gray band the WP20 SM
prediction based on the e+e− data sets above the dashed line and the remainder from WP20, in particular, the WP20 HLbL value; the data point
labeled WP20∗ indicates the shift upon using WP25 input for the other contributions besides LO HVP). The τ point corresponds to WP25 in Fig. 13,
with the third, outmost error including the additional uncertainties beyond the 2π channel (the remainder of HVP is taken from WP20, the other
contributions from WP25). The other points use input from the various e+e− → π+π− experiments according to Fig. 26 (again with HVP remainder
from WP20 and the other contributions from WP25), where for each experiment the central values are obtained as simple average of the three
combination methods, the inner ranges as simple average of the uncertainties obtained in each method, and the outer ranges reflect the maximal
range covered by all methods (the percentages indicate how much of the 2π contribution to the HVP integral is covered by each measurement). We
emphasize that these ranges are merely meant to illustrate the current spread, they cannot be interpreted as uncertainties with a proper statistical
meaning. The numerical values follow from Tables 1 and 5. The experimental world average has been updated including the final results from the
Fermilab experiment.

scenarios considered in Ref. [166]. Further analysis by BESIII indicated that the large effect predicted for the
BESIII measurement did not account for specific corrections implemented in the BESIII analysis [411]. More-
over, both KLOE and BESIII demonstrated agreement at the 1% level for the mass spectra for various event
generators, which differ in their simulation of higher-order corrections [165, 411]. As a result of these studies,
it was concluded that scenario 1 in Ref. [166] seems unlikely, and the shortcomings of Phokhara most likely
do not explain the seen differences between different measurements.

• The RadioMonteCarLow 2 initiative is committed to improving the theoretical predictions for hadron and lepton
production at low-energy e+e− colliders by bringing the available MC generators to NNLO+ precision. In the
first phase, a review of the existing state-of-the-art available generators has been concluded [145]. The compar-
ison was performed by using approximated experimental selections as benchmarks. The study will continue by
incorporating additional important selection variables. Moreover, Ref. [145] presents a detailed discussion of
the different classes of higher-order radiative corrections for both direct-scan and ISR processes, identifying a
critical class of virtual ISR corrections that, due to resonance enhancement, could contribute to the cross section
at the relevant level (as first pointed out in Ref. [144]). A similar effect in the C-odd asymmetry in direct-scan
experiments was observed by CMD-3, demonstrating that such structure-dependent radiative corrections can
indeed far exceed estimates in a form-factor-times-sQED prescription [141, 142]. Actual improvements to
the codes are expected to take place during the next Phase II. To ultimately investigate the accuracy of event
generators, high-quality codes with different approaches in simulating the radiative corrections are needed for
cross-checks (both for energy scan and ISR experiments). The ongoing extension of the BabaYaga@NLO,
Phokhara, McMule, and additional codes are important steps in that context.
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R. Aliberti et al., Phys. Rept. 1143 (2025) [arXiv:2505.21476]
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Looking ahead, the space-like approach (MUonE)

? G. Abbiendi, C.M. Carloni Calame, U. Marconi, C. Matteuzzi, G. Montagna, O. Nicrosini, M. Passera, F. Piccinini,
R. Tenchini, L. Trentadue, G. Venanzoni,
Measuring the leading hadronic contribution to the muon g-2 via µe scattering
Eur. Phys. J. C 77 (2017) no.3, 139 - arXiv:1609.08987 [hep-ph]

? C. M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni,
A new approach to evaluate the leading hadronic corrections to the muon g-2

Phys. Lett. B 746 (2015) 325 - arXiv:1504.02228 [hep-ph]
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Master formula

aHLO
µ =

α

π

∫ 1

0

dx (1− x) ∆αhad[t(x)]

t(x) =
x2m2

µ

x− 1
< 0

e.g. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

Hadronst

? ∆αhad(t) can be directly measured in a (single) experiment involving

a space-like scattering process and aHLO
µ obtained through numerical integration

Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

? A data-driven, inclusive evaluation of aHLO
µ , but with space-like data
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From time-like to space-like evaluation of aHLO
µ (see next talk by G. Cantatore)

Time-like 7→ Space-like
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7→ Time-like: combination of many experimental data sets, control of RCs better than O(1%) on hadronic

channels required

7→ Space-like: in principle, one single experiment, it’s a one-loop effect, very high accuracy needed
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Kernel functions for aHVP
µ

• LO: α
π

(1− x)

A novel approach to determine the leading
hadronic contribution to the muon g-2, measuring
the effective electromagnetic coupling in the space-
like region via scattering data, was proposed a few
years ago [33]. The elastic scattering of high-energy
muons on atomic electrons has been identified as an
ideal process for this measurement, and a new ex-
periment, MUonE, has been proposed at CERN to
measure the shape of the differential cross section
of muon-electron elastic scattering as a function of
the space-like squared momentum transfer [34–36].

In this paper we investigate the HVP contribu-
tions to the muon g-2 in the space-like region. At
LO, simple results are long known and form the ba-
sis for present lattice QCD and future MUonE de-
terminations of aHVP

µ (LO). Our goal is to provide
simple analytic expressions to extend the space-like
calculation of the aHVP

µ contribution to NNLO.

2. The HVP contribution at leading order

2.1. Time-like method

Consider the hadronic component of the vacuum
polarization (VP) tensor with four-momentum q,

iΠµν
h (q) = iΠh(q2)

(
gµνq2 − qµqν

)

=

∫
d4x eiqx〈0|T {jµem(x)jνem(0)} |0〉, (1)

where jµem(x) is the electromagnetic hadronic cur-
rent and Πh(q2) is the renormalized HVP function
satisfying the condition Πh(0) = 0. The function
Πh(q2) cannot be calculated in perturbation the-
ory because of the non-perturbative nature of the
strong interactions at low energy. Yet, the optical
theorem

ImΠh(s) = (α/3)R(s), (2)

where α is the fine-structure constant and the R-
ratio is

R(s) =
σ(e+e− → hadrons)

4πα2/(3s)
, (3)

allows to express the imaginary part of the hadronic
vacuum polarization in terms of the measured cross
section of the process e+e− → hadrons as a function
of the positive squared four-momentum transfer s.
This result forms the basis for the time-like method.

The LO hadronic contribution to the muon g-2,
due to the O(α2) diagram shown in Fig. 1, can be

µµ

Figure 1: The leading, O(α2), hadronic contribution to the
muon g-2. The red blob indicates the HVP insertion.

calculated integrating experimental time-like (i.e.
q2 > 0) data using the well-known formula [37–39]

aHVP
µ (LO) =

α

π2

∫ ∞

s0

ds

s
K(2)(s/m2) ImΠh(s),

(4)
where m is the muon mass and s0 = m2

π0 is the
squared neutral pion mass. Defining

z =
q2

m2
(5)

and the rationalizing variable

y(z) =
z −

√
z(z − 4)

z +
√
z(z − 4)

, (6)

the second-order function K(2)(z) for z ≥ 0 is

K(2)(z) =
1

2
− z +

(
z2

2
− z
)

ln z

+
ln y(z)√
z(z − 4)

(
z − 2z2 +

z3

2

)
. (7)

For z ≥ 0, K(2)(z) is real, positive and monotonic
(it has no cut for 0 ≤ z ≤ 4). At z = 0, K(2)(0) =
1/2, while for z → +∞ the asymptotic behaviour of
this kernel function is K(2)(z) → 1/(3z), therefore
vanishing at infinity.

2.2. Space-like method

The time-like expression for aHVP
µ (LO) provided

by Eq. (4) can be rewritten using the dispersion
relation satisfied by K(2)(z) [40],

K(2)(z) =
1

π

∫ 0

−∞
dz′

ImK(2)(z′)
z′ − z , z > 0. (8)

Indeed, replacing K(2)(s/m2) in Eq. (4)
with Eq. (8) and integrating over s via the

2

• NLO
E. Balzani, S. Laporta, M. Passera, Phys. Lett. B834 (2022) 137462

A.V. Nesterenko, J. Phys. G49 (2022) 5, 055001;

J. Phys. G50 (2022) 2, 029401

subtracted dispersion relation satisfied by Πh(q2),

Πh(q2)

q2
=

1

π

∫ ∞

s0

ds

s

ImΠh(s)

s− q2 , q2 < 0, (9)

we obtain the space-like expression

aHVP
µ (LO) = − α

π2

∫ 0

−∞

dt

t
Πh(t) ImK(2)(t/m2).

(10)
The function K(2)(z), real for any z ≥ 0, has

a cut along the negative real axis z < 0 with the
imaginary part

ImK(2)(z + iε) = π θ(−z)
[
z2

2
− z +

z − 2z2 + z3/2√
z(z − 4)

]

= π θ(−z)F (2)(1/y(z)), (11)

where

F (2)(u) =
u+ 1

u− 1
u2. (12)

The iε prescription, with ε > 0, indicates that, in
correspondence of the cut, the function ImK(2)(z)
is evaluated approaching the real axis from above.

If in Eq. (10) one uses the explicit expression for
ImK(2)(t/m2) of Eq. (11) and changes the integra-
tion variable from t to x = 1 + 1/y via the substi-
tution

t(x) =
m2x2

x− 1
, (13)

obtained from Eq. (6), one finds [41]

aHVP
µ (LO) =

α

π

∫ 1

0

dxκ(2)(x) ∆αh(t(x)), (14)

where the space-like kernel is remarkably simple,

κ(2)(x) = 1− x (15)

and ∆αh(t) = −Πh(t) is the (five-flavor) hadronic
contribution to the running of the electromagnetic
coupling in the space-like region, α(t) = α/(1 −
∆α(t)).

Equation (14) (or forms equivalent to it) is used
in lattice QCD calculations of aHVP

µ (LO) (see e.g.
[42] and a discussion in [7]) and forms the basis for
the MUonE proposal to determine aHVP

µ (LO) via
muon-electron scattering data [33–36].

We close this Section noting that, in Fig. 1, a
virtual photon can be emitted and reabsorbed by
the HVP insertion of the LO diagram. These irre-
ducible hadronic contributions, although of higher

4a 4b

e, τ

4c 4d

Figure 2: Sample O(α3) diagrams contributing to the HVP
corrections to the muon g-2.

order in α, are normally incorporated into the time-
like determination of aHVP

µ (LO) via the inclusion of
final-state radiation corrections in the R-ratio (see
e.g. [7, 8]).1 For a comparison, also space-like eval-
uations of aHVP

µ (LO) should therefore incorporate
these higher-order corrections, including them in
∆αh(t) in Eq. (14). In this respect, the fully inclu-
sive measurement of ∆αh(t) expected from MUonE
is ideal [43].

3. The HVP contribution at NLO

The hadronic vacuum polarization contribution
to the muon g-2 at NLO, aHVP

µ (NLO) has been
studied as early as in Ref. [44]. It is due toO(α3) di-
agrams that can be classified as follows (see Fig. 2).
Class (4a) comprises diagrams with one single HVP
insertion in one of the photon lines of the two-loop
QED diagrams contributing to the muon g-2, with-
out any VP insertion due to electron or tau loops.
Class (4b) contains diagrams with one HVP and
one additional VP due to an electron or tau loop.
Class (4c) consists of the single diagram with two
HVPs. Class (4d) diagrams contain internal radia-
tive corrections to the HVP. As discussed in the
previous Section, this contribution is not consid-
ered as part of aHVP

µ (NLO), although of the same
order in α, because it is already incorporated into
aHVP
µ (LO). Analogously, the O(α4) contributions

obtained by adding to the diagrams of classes (4a),

1Note that, consistently, the lower limit of integration
in Eq. (4) has been chosen to be s0 = m2

π0 , the threshold of

the π0γ cross section.

3

• NNLO

E. Balzani, S. Laporta, M. Passera, Phys. Lett. B834 (2022) 137462
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Figure 6: Sample O(α4) diagrams contributing to the HVP corrections to the muon g-2.

The sum of the NNLO contributions is, therefore,

aHVP
µ (NNLO) = a(6a)µ + a(6b)µ + a(6bll)µ + a(6c)µ + a(6d)µ .

(28)

It is positive and of O(10−10) [16].

4.1. Class (6a)

The contribution of class (6a) can be written in
the time-like form [16]

a(6a)µ =
α3

π4

∫ ∞

s0

ds

s
K(6a)(s/m2) ImΠh(s). (29)

The sixth-order function K(6a)(z) is not known in
exact form, but an approximate series expansion in
the parameter r = m2/s, with terms up to fourth
order, was computed in [16]. This expansion con-
tains powers rn of degree n = 1, 2, 3, 4, multiplied
by constants, ln r, (ln r)2 and (ln r)3 terms. Follow-
ing a procedure similar to that described at NLO,
we exploited generating integral representations to
fit all the rn, rnln r, rn(ln r)2, and rn(ln r)3 terms
of the K(6a)(s/m2) expansion,

K(6a)(s/m2) = r

∫ 1

0

dξ

[
L(6a)(ξ)

ξ + r
+
P (6a)(ξ)

1 + rξ

]
(30)

where

L(6a)(ξ) = G(6a)(ξ) +H(6a)(ξ) ln ξ + J (6a)(ξ) ln2ξ
(31)

and

G(6a)(ξ) = g
(6a)
0 + g

(6a)
1 ξ + g

(6a)
2 ξ2+ g

(6a)
3 ξ3,

H(6a)(ξ) = h
(6a)
0 + h

(6a)
1 ξ + h

(6a)
2 ξ2+ h

(6a)
3 ξ3,

J (6a)(ξ) = j
(6a)
0 + j

(6a)
1 ξ + j

(6a)
2 ξ2+ j

(6a)
3 ξ3,

P (6a)(ξ) = p
(6a)
0 + p

(6a)
1 ξ + p

(6a)
2 ξ2+ p

(6a)
3 ξ3, (32)

obtaining the coefficients g
(6a)
i , h

(6a)
i , j

(6a)
i and p

(6a)
i

(i = 0, 1, 2, 3) reported in Table 1.

Inserting the integral representation of Eq. (30)
in Eq. (29), the integral over s can be performed
using the dispersion relation satisfied by Πh(q2).
With simple changes of variables we obtain

a(6a)µ =
(α
π

)3∫ 1

0

dx κ̄(6a)(x) ∆αh(t(x)), (33)

where, for 0 < x < xµ = (
√

5− 1)/2 = 0.618 . . .,

κ̄(6a)(x) =
2− x

x (1− x)
P (6a)

(
x2

1− x

)
, (34)

7
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Summary

−40 −30 −20 −10 0 10 20

1010 × (aSM
µ − aexp

µ )

CMD-3

SND20

BESIII

KLOE

BaBar

CMD-2

SND06

τ

Lattice HVP Avg. 1

WP25

BNL-06

FNAL-21

FNAL-23

FNAL-25

Figure 83: Summary of the current SM prediction for aµ in comparison to experiment (red band and data points). The final WP25 prediction is
denoted in black and via the blue band, it derives from the LO HVP result defined by the lattice-QCD “Avg. 1” shown in blue, see Eq. (3.37). The
gray band indicates the WP20 result, based on the e+e− experiments above the first dashed line. These experimental ranges, as well as the ones for
SND20 and CMD-3 that appeared after WP20, are produced as in Fig. 27; they are meant to illustrate the current situation, but cannot be interpreted
as uncertainties with a proper statistical meaning. The τ point refers to Eq. (2.23), the numerical results are collected in Table 5. In all cases except
for the gray WP20 band the LO HVP results are combined with WP25 values for the remaining contributions, as summarized in Table 1. The figure
has been updated after the announcement of the final results from the Fermilab experiment, including the corrections to the previous experimental
points as detailed in Ref. [8].

obtain
aHLbL
µ = 112.6(9.6) × 10−11 (phenomenology + lattice) , (9.2)

where the uncertainty includes a scale factor S = 1.5. With this average, the NLO contribution in Eq. (5.70) slightly
changes to aHLbL, NLO

µ (phenomenology + lattice) = 2.8(6) × 10−11, and the total HLbL contribution becomes

aHLbL
µ + aHLbL, NLO

µ = 115.5(9.9) × 10−11 (phenomenology + lattice) . (9.3)

Combining Eqs. (9.1) and (9.3) with the QED and EW contributions from Eqs. (7.27) and (8.12), we obtain for the
final SM prediction

aSM
µ = 116 592 033(62) × 10−11 , (9.4)

which can be compared to the current experimental average [5–8, 10–13]48

aexp
µ = 116 592 071.5(14.5) × 10−11 . (9.5)

At the current level of precision there is no tension between the SM prediction and the experimental world average:

∆aµ ≡ aexp
µ − aSM

µ = 38(63) × 10−11 . (9.6)

This marks a significant shift from the conclusions of WP20, which is driven by the developments relating to the HVP
LO contribution, as can be seen in Table 33 and Fig. 83.

48This paper was posted on arXiv on May 28, 2025. Sections 2 to 8 and all numbers pertaining to the SM prediction have remained unchanged,
but the experimental world average has been updated according to the E989 announcement on June 3, 2025 [8], and the description in Secs. 0, 1,
and 9 has been adapted accordingly. In particular, the experimental results in abstract, Table 1, Figs. 27, 40, and 83, and Sec. 9 have been updated.
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• the puzzle(s) of the data driven approaches
• new data, new analysis and new simulation tools will be crucial to clarify the situatio
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