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The Muon g − 2 experiment @FNAL

gµ − 2 @BNL (up to 2006) =⇒ transfer to Fermilab =⇒ gµ − 2 @FNAL

Muon g − 2 Coll., PRL 135 (2025)

aexp
µ = 1 165 920 715(145) × 10−12 [124 ppb] 4-fold improvement thanks to the

Muon g − 2 Collaboration!

aµ exp. @FNAL ended! A fully independent meas. of aµ expected at JPARC. 1



Can we match, on the theory side, the experimental accuracy on aµ?
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The Muon g − 2 Theory Initiative

The muon g − 2 TI has been established in 2017 with the aim of matching
the precision of the SM-theory prediction for aµ with the experimental one.

https://muon-gm2-theory.illinois.edu

• Composed by experts in lattice QCD,
dispersive approach, perturbative
calculations. . .

• First white paper (WP20) out in 2020
[Physics Reports 887 (2020)].

• An update (WP25) has been published in
Sep. 2025 [Physics Reports 1143 (2025)] =⇒

• Last TI meeting at IJCLab (Orsay) in
September.
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Introduction: the magnetic moment of a lepton

The magnetic moment µ of a charged object parameterizes
the torque that a static magnetic field exerts on it.

For a charged spin-1/2 particle:

µ = g
e

2m
S

g is the well-known gyromagnetic factor.

In QFT the response of a charged lepton (say a muon µ) to a static and uniform e.m.
field is encoded in (k = p1 − p2)

⟨µ(p2)|Jν
em(0)|µ(p1)⟩ = −ieū(p1)Γν(p1, p2)u(p2)

Lorentz invariance and e.m. current conservation constrain Γν -structure:

Γν(p1, p2) = F1(k2)γν +
i

2mµ
F2(k2)σνρkρ + P-violating terms

4



The muon anomalous magnetic moment

Gyromagnetic factor gµ related to form-factors F1(k2) and F2(k2) through
gµ = 2 [F1(0) + F2(0)]

• Electric charge conservation =⇒ F1(0) = 1.

• At tree level in the SM: F2(0) = 0 =⇒ gµ = gDirac
µ ≡ 2.

The muon anomalous magnetic moment:

aµ =
gµ − 2

2
= F2(0)

non-zero only at loop level. Contributions from all SM (and BSM) fields. E.g.

Since it is very precisely measured it is a crucial probe of the completeness of the SM. 5



The muon magnetic moment in the SM

aµ can be decomposed into QED, weak and hadronic contributions

aµ = aQED
µ︸ ︷︷ ︸

>99.99%

+ aweak
µ + ahad

µ︸︷︷︸
non-perturbative

• The QED contribution to aµ is completely dominant. LO (1-loop)
contribution evaluated by J. Schwinger in 1948

=⇒ aQED,1−loop
µ = α

2π

• Since Schwinger’s calculation many more QED-loops included... 6



The QED contribution aQED
µ

Two-loops QED contributions to aµ

To match experimental accuracy ∆aexp
µ ≃ O(10−10) several orders in the

perturbative α expansion need to be considered

aQED
µ =

α

2π
+

∞∑
n=2

Cn
µ

(
α

π

)n

• Number of Feynman diagrams quickly rises with n: 1, 7, 72, 891, 12672, ...

• Heroic effort to compute them up to five-loops [T. Aoyama et al. PRLs, 2012]

C6
µ

(
α

π

)6
≃ C6

µ × 10−16 requires unnaturally large C6
µ ≃ O(106) to be relevant!!

aQED
µ = 116 584 718.931(104) × 10−11 ✓
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The weak contribution aweak
µ

aweak
µ defined as the sum of all loop diagrams containing at least a W, H, Z.

• Smallest of the three contributions due to Fermi-scale suppression:

aweak
µ ∝ α2

W

m2
µ

M2
W

≃ O(10−9)

Sample of one-loop weak diagrams:

• At target precision of ∼ 0.1 ppm two-loops calculation is sufficient [Czarnecki et
al PRD (2006), Gnendiger et al PRD (2013)]. 3-loop contribution totally negligible.

aweak
µ = 154.4 (4) × 10−11 ✓
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The hadronic contribution ahad
µ

Contributions to ahad
µ at target accuracy of O(10−10):

ahad
µ = aHVP,LO

µ︸ ︷︷ ︸
O(7×10−8)

+ aHlbl
µ︸︷︷︸

O(10−9)

+ aHVP,NLO
µ︸ ︷︷ ︸
O(10−9)

+ aHVP,NNLO
µ︸ ︷︷ ︸
O(10−10)

HVP, LO =⇒ ⇐= Hlbl

• NLO and NNLO HVP contributions relevant at target accuracy. At NLO:

• However, they can obtained from same non-perturbative input of aHVP,LO
µ .

Hence we shall discuss only the latter.
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How important are hadronic contributions?

The uncertainty in the theory prediction for aµ dominated by the hadronic
contribution, despite its smallness

Dominant source of uncertainty is aHVP,LO
µ

• Hadronic contributions are fully non-perturbative.

• Two main approaches to evaluate them:

Dispersive approach:

• Relates full aHVP,LO
µ to e+e− → hadrons

cross-section via optical theorem.

• For Hlbl (only) low-lying intermediate-states
contributions can expressed in terms of
transition form-factors TFFs.

Lattice QCD:

• Only known first-principles SM method to
evaluate both aHVP

µ and aHlbl
µ .

• In the past the accuracy of the predictions
were not good enough. The situation
changed in the last years. 10



Summary of current status for aHlbl
µ from WP25

aHlbl
µ occurs at O(α3). Related to 2 → 2 (generally virtual) photon scattering

• In the dispersive framework [Colangelo et al. JHEP09 (2015)]
one isolates the dominant intermediate-states contributions:

• parameterized by transition form-factors. E.g. for the π0-pole

T ⟨0|Jµ(q)J
ν (0)|π0(p)⟩ = −iϵ

µναβ
qαpβFπ0γ∗γ∗ (q

2
, (q − p)2)

In lattice QCD one evaluates directly:

Πµνρσ = T ⟨0|Jµ
J

ν
J

ρ
J

ν |0⟩

Very complex calculation, but only
O(10%) precision needed.

•

• Since WP20, three new lattice
results for the Hlbl appeared.

• LQCD calculations of aHlbl
µ

≈in line with the dispersive result.
WP25 average has < 10% errors!
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The LO hadronic-vacuum-polarization (HVP) contribution

aHVP,LO
µ is the largest of the hadronic contributions.

• Until ’20 LQCD calculations well above percent level accuracy.

• However, aHVP,LO
µ is related to σ(γ∗ → hadrons) through optical theorem. . .

• In terms of the e+e− → hadron cross-section or actually the R-ratio:

R(E) =
σ(e+e−(E) → hadrons)
σ(e+e−(E) → µ+µ−)

• one has a very simple formula for aHVP,LO
µ

aHVP,LO
µ =

∫ ∞

mπ

dE R(E) K̃(E)︸ ︷︷ ︸
analytic function 0

0.5
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1.5

2

2.5
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m
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aHVP,LO
µ from the dispersive approach

The central idea is to replace R(E) → Rexp(E) and use previous formula.
e+e− → hadrons measured since ’60 in various experiments

Inclusive measurement of Rexp(E) obtained summing more than fourty
exclusive channel measurements (comb. of various exp. , dominated by π+π−).

Experimental R-ratio Status in 2020/2021
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The CMD-3 result [Phys. Rev. Lett. 132 (2024)]

A new measurement of e+e− → π+π− with CMD detector at VEPP-2000 in 2023,
found significant deviations from previous measurements

• Systematic uncertainty underestimated? (Talk by F. Piccinini this afternoon).

• At the moment the situation of exp. e+e− → hadrons needs to be clarified.

• However, since 2020 LQCD calculations reached the subpercent precision level... 14



aHVP,LO
µ from lattice QCD

On the lattice, evaluating aHVP,LO
µ is easier than aHlbl

µ , but < 1% accuracy needed!

The QCD input is the 2-point Euclidean correlation function of e.m. currents:

C(t) =
1
3

∫
d3x ⟨0|Ji

em(t, x)Ji
em(0)|0⟩ Ji

em =
2
3

ūγiu −
1
3

d̄γid −
1
3

s̄γis +
2
3

c̄γic

aHVP,LO
µ =

∫ ∞

0
dt K(t)︸︷︷︸
analytic kernel

C(t) K(t)
t≫m−1

µ→ t2 [Enhancement of C(t) tail]
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C(t ≫ a) ∼ e−2mπt C(t)
∆C(t) ∼ e−mπt

[G. Parisi, 1984]

a
3
C
(t
)

u
d
−

qu
ar

ks

t [fm]

Large times noisy

Main difficulties for subpercent accuracy:
• Exponential S/N problem at large t.

• Large lattice volumes V = L3 required to
fit the light ππ states.

• Isospin-breaking effects α3, α2(md − mu)
needs to be computed at target accuracy.
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First LQCD-result with < 1% errors by BMWc [Nature 593 (2021)]

• It quickly became evident that, to clarify
the differences with the data-driven
approach, a detailed examination of
R(E) was essential.

• In 2022-2023, our efforts primarily
focused on the LQCD computation of the
so-called Euclidean-time windows of the
HVP.
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The Euclidean windows to test e+e− → hadrons

To perform stringent tests of R(E) we are not bound to aHVP,LO
µ∫ ∞

0
dt K(t) C(t)︸ ︷︷ ︸

lattice, SM

= aHVP,LO
µ =

∫ ∞

Mπ

dE K̃(E) Rexp(E)︸ ︷︷ ︸
dispersive, experimental⇓ ⇓∫ ∞

0
dt K(t) C(t) Θw(t)︸ ︷︷ ︸

lattice, SM

= aw
µ =

∫ ∞

Mπ

dE K̃(E) Rexp(E) Θ̃w(E)︸ ︷︷ ︸
dispersive, experimental
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• ΘSD + ΘW + ΘLD = 1. w = {SD, W, LD} probe R(E) at different energies.

• aSD/W very precise on the lattice =⇒ may enhance differences with Rexp(E). 17



The short- and intermediate-distance windows

In 22-24 several LQCD results for aW
µ and aSD

µ . Many appeared before CMD3.

intermediate-distance =⇒ E ≲ 1 GeV (ππ, πππ)

230 235 240 245 250 255

Rexp(E)

before CMD3

aW
µ × 1010

Fermilab/HPQCD/MILC-24

BMW-24

RBC/UKQCD-23

ETM-22

Mainz/CLS-22

BMW-20

short-distance =⇒ Large E ≳ 1GeV
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Rexp(E)

before CMD3

aSD
µ × 1010

Fermilab/HPQCD/MILC-24

BMW-24

ETM-22

Mainz/CLS-22

• A big achievement for the lattice community.

• Striking tension with Rexp(E)-based results for aW
µ which is dominated by

e+e− → ρ → π+π−. High-energy part of R-ratio in line with experiments.

• In PRL 130 (2023), we (ETMC) used the HLT method to compute the
energy-smeared R(E), reaching conclusions consistent with aW

µ analysis. 18



The short- and intermediate-distance windows

In 22-24 several LQCD results for aW
µ and aSD

µ . Many appeared before CMD3.

Rσ(E) =

∫ ∞

0

dω R(ω) N(E − ω, σ)︸ ︷︷ ︸
Gaussian
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• A big achievement for the lattice community.

• Striking tension with Rexp(E)-based results for aW
µ which is dominated by

e+e− → ρ → π+π−. High-energy part of R-ratio in line with experiments.

• In PRL 130 (2023), we (ETMC) used the HLT method to compute the
energy-smeared R(E), reaching conclusions consistent with aW

µ analysis. 18



aHVP,LO
µ in the WP25

Fall 2024: surge of new LQCD results!

RBC/UKQCD – Phys. Rev. Lett. 134 (2025)
Mainz/CLS – JHEP 04 (2025) 098
Fermilab/HPQCD/MILC – Phys. Rev. Lett. 135 (2025)
ETMC – Phys. Rev. D 111 (2025)
BMW/DMZ – ePrint: 2407.10913

The Muon g−2 Theory Initiative combined all published LQCD results, yielding a
robust lattice prediction for the LO–HVP contribution to aµ.

Common decompositions of aHVP,LO
µ adopted:

• Flavour-based:

aHVP,LO
µ = aHVP,LO

µ (ud) + aHVP,LO
µ (s) + aHVP,LO

µ (c) + aHVP,LO
µ (disc)︸ ︷︷ ︸

a
HVP,LO
µ (iso)

+ δaHVP,LO
µ︸ ︷︷ ︸

isospin breaking

• Isospin-based: aHVP,LO
µ = aHVP,LO

µ (I=1) + aHVP,LO
µ (I=0) + δaHVP,LO

µ

• Window-based: aHVP,LO
µ = aSD

µ + aW
µ + aLD

µ (also decomposed in flav./isospin)

As some groups provide only partial results, the averaged value can vary slightly with the chosen

decomposition. The WP25 working groups have thoroughly tested different combinations to

ensure the stability of the global average. 19



Collection of partial results from WP25

aHVP,LO
µ (iso) = aHVP,LO

µ (ud) + aHVP,LO
µ (s) + aHVP,LO

µ (c) + aHVP,LO
µ (disc) 20



Final results from WP25

Adopting the lattice results for aHVP,LO
µ leads to an upward shift of the SM prediction,

bringing it into full agreement with the current world-average value for aexp
µ . The

WP25 result (black point) still carries substantially larger uncertainties than the
experimental measurement. 21



A new result for aHVP,LO
µ (iso) from ETMC to appear soon!

We employ the isospin-based decomposition:
aHVP,LO

µ (iso) = aHVP,LO
µ (I = 1) + aHVP,LO

µ (I = 0)

I = 1: Continuum extrapolation performed at fixed

V = L3 = (5.46 fm)3
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• Achieved competitive accuracy on both the I = 0 and I = 1 contributions. We
will likely end up with a < 1% precision for aHVP,LO

µ (iso).

• Technical details on the lattice QCD calculation are in backup, if you are
curious! 22



Summary

Where are we?

aHVP−LO
µ

• In 2020, the BMW collaboration reported a
discrepancy between its result for aHVP,LO

µ

and the dispersive determination.

• Recent independent LQCD calculations have
substantially confirmed the BMW findings.

• The updated SM prediction for aHVP,LO
µ

from WP25, based on LQCD inputs, is now
consistent with the experimental value aexp

µ .

• Further improvements in lattice QCD
precision are required to match experimental
accuracy.

• All major collaborations are actively pursuing
this goal. Within ETMC, we will soon
release a new result for aHVP,LO

µ (iso) and
are currently working on δaHVP,LO

µ .

e+e− → hadrons

• Lattice QCD has revealed an inconsistency
between previous e+e− → hadrons
measurements and the SM prediction.

• The 2022/2023 LQCD window results
have been instrumental in highlighting this
issue.

• Possible explanations include unaccounted
systematic effects in the experimental
measurement — more will be discussed in
the following talks.

• The recent CMD-3 result may offer
valuable insight into this discrepancy.

• The situation remains open and requires
further clarification.
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Thank you for the attention
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Basics of LQCD

The theoretical framework for lattice calculations is QFT in Euclidean time
(obtained through Wick-rotation t → −iτ)

⟨ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ = 1
Z

∫
[dϕ] ϕ(x1)ϕ(x2) . . . ϕ(xn) exp(−SE [ϕ])

The infinite-dimensional path integral is discretized on a 4-dimensional grid
(the lattice) : xµ → nµa, which provides an UV (1/a) and IR (1/L) cut-off.

• We evaluate lattice path integral using MC methods.

• In QCD generate a stream of gauge configurations
{U1, . . . , UN } distributed according to e−SE [U ],
then. . .

⟨Ō⟩ = 1
N

N∑
i=1

O[Ui] =⇒ σŌ ∝ 1√
N

• Repeat the calculation for different L and lattice
spacings a and extrapolate to a, 1/L → ∞.
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Generating gauge configurations

Generating state-of-the-art gauge-field configurations is an extremely expensive
task, which requires massive HPC resources.

GPU-cluster Marconi100 at CINECA, Bologna.
Ceased its activities in 2023. . .

. . . replaced by LEONARDO,
the 4th fastest supercomputer in the world.

• Within the LQCD community, it is
customary for researchers to form
collaborations where gauge
configurations are produced and then
shared among the members.

• Each collaboration has its own
favoured lattice discretization:
Wilson-clover, Twisted-mass,
Staggered, Domain Wall, Overlap...

• =⇒ Important for checks of
universality.

The Extended Twisted-Mass Collaboration (ETMC) has recently produced a ”luxury”
set of gauge configurations, corresponding to (five) lattice spacings

a ∈ [0.049, 0.09] fm, spatial volumes L3 up to L ≃ 7.6 fm and Nf = 2 + 1 + 1

physical flavours. 26



Simulation details

Four physical-point Nf = 2 + 1 + 1 ensembles, with a ∈ [0.049 fm − 0.080 fm]. L ∼ 5.1 fm

and L ∼ 7.6 fm to control Finite Size Effects (FSEs).

ID V/a4 a (fm) L (fm)
B64 643 × 128 0.0795 5.09
B96 963 × 192 0.0795 7.64
C80 803 × 160 0.0682 5.46
D96 963 × 192 0.0569 5.46
E112 1123 × 224 0.0489 5.46

• Iwasaki action for gluons.

• Wilson-clover twisted mass fermions at
maximal twist for quarks (automatic O(a)
improvement).
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Our strategy

We perform the continuum-limit extrapolation (a → 0) at fixed volume (L ≃
5.46 fm):

and then, the infinite-volume extrapolation (L → ∞):

using the ensembles B64-B96, corresponding to L ≃ 5.1 fm and L ≃ 7.6 fm.

• In the case of I = 0 contribution, finite-size effects (FSE) are extremely small.
• For I = 1, dominated by π+π− states, FSEs are sizable! Our strategy is to use

the Meyer-Lellouch-Luscher-Gounaris-Sakurai (MLLGS) model to describe the
finite-size effects, after checking that the model describes the B64-B96 data
reasonably (model-validation). 28



Validation of the MLLGS model

We have compared our predictions for the MLLGS model against our data for the
correlator corresponding to the I = 1 contribution.
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gρππ = 5.6(3),mρ = 775 MeV,Mπ0 = 112(7) MeV

The lattice MLLGS model we employ takes into account the distortion of the ππ

spectrum occurring in twisted-mass LQCD.
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Collection of partial results from WP25 (II)

Separation of aHVP,LO
µ into an

isospin-symmetric term + δaHVP,LO
µ is

scheme-dependent. Great effort in the
WP25 to match all results to a reference

scheme!

Many independent results for aW
µ (ud).

All in very good agreement!
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