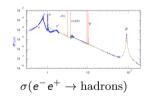


Muon g-2 or stress-testing the SM

legacy and implications of the FNAL g-2 experiment and theory progresses


Introduction

Roberto Frezzotti

Why is muon g-2 physics a stress-test for the Standard Model (SM) of fundamental interactions?

- \implies $g_{\mu}-2$ probes the strong interaction sector of the SM and its extensions to 0.2% precision ...
- ⇒ a consistency check requires theory predictions and experimental data with similar accuracy

What do we learn from the FNAL experiment and the related experimental and theoretical activity?

 \implies A few key lessons about *precision physics of the SM*: feasibility conditions, cost and reach

Muon g-2 ... or stress-testing the SM

- Experiments with muons (μ) in a magnetic field \vec{B} : observable $a_{\mu} \equiv \frac{g_{\mu} 2}{2}$
 - Magnetic moment $\vec{\mathcal{M}} = g \frac{q}{2\pi} \vec{S}$ $\vec{T} = \vec{\mathcal{M}} \times \vec{B}$, no quantum effects: $g_{\text{Dirac-fermion}} = 2$
 - Quantum fluctuations affect $\vec{S}_{\mu} \vec{B}$ coupling \Longrightarrow anomalous magnetic moment: $a_{\mu} = O(\frac{\alpha_{em}}{\sigma})$
- In the SM various contributions to a_{μ} : in terms of Feynman diagrams (much more than a cartoon)

$$a_{\mu} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{Had} \simeq 0.0011659207 + 0.0000000015 + 0.0000000715$$
 (errors: few 10^{-10})

- Probing via muons the ground state (vacuum) of Nature i.e. its content of particle-antiparticle pairs
 - at energy scales where gravity effects are fully negligible
 - is the vacuum particle-antiparticle content seen in experiment the same as expected from SM theory?

a_{μ} as a probe for "beyond the SM" (BSM) physics

- a_{μ} exp. relative precision, $\delta^{exp}a_{\mu}\sim 10^{-7}$, is to be compared with potential impact on it of BSM physics
- $\bullet \ \, \delta^{BSM} a_\mu = \frac{a_\mu^{BSM} a_\mu^{SM}}{a_\mu^{SM}} \;, \qquad \text{e.g.} \ \, \delta^{BSM} a_\mu \sim \frac{m_\mu^2}{M_{BSM}^2} \simeq \ \, 10^{-8} \; \frac{1 \text{TeV}^2}{M_{BSM}^2} \qquad \text{(if tree-level muon-BSM coupling)}$
- good potential for setting strong SM-constraints or even for BSM-discovery
- \implies provided the prediction a_{μ}^{SM} is known with similar relative accuracy ... i.e. one needs
 - ullet relative precision $\sim 10^{-7}$ in QED (5 loop PT) and ~ 0.1 –0.01 in EW (2 loop PT) sector: OK
 - ullet relative precision 10^{-3} in the hadronic sector of SM (due to $a_{\mu}^{Had}\sim 10^{-4}a_{\mu}$): challenging
- \implies a SM prediction of a_{μ}^{Had} with subpercent accuracy has been / can be achieved via
 - Lattice QCD+QED + Hadron Mass exp. input o Euclidean correlators $G(au) = \int d^3x \langle J_k^{em}(au, \vec{x}) J_k^{em}(0) \rangle$
 - ullet dispersive analysis of $e^-e^+ o$ hadrons exp. cross section data o $R^{\it Had}(E)$ ratio

On "good potential for SM-constraints or BSM-discovery": let us be realistic!

2010 - 2025: from hyper-optimism (SUSY, etc.) to over-pessimism (nothing) about Beyond-SM physics

It could have been / should now be different: SM is very nice & successful - but INCOMPLETE

- Nice & successful: mathematically consistent (renormalizable) \rightarrow hides what is beyond it!

 (unlike the Fermi theory of weak interactions: $G_F/\sqrt{2} = g_W^2/(8M_W^2) \Rightarrow$ breakdown at $E \sim M_W$!)
- Incomplete: many facts ... still we ignore where (in energy & couplings space) BSM physics lies!
 - matter-antimatter asymmetry (EW phase transition? CP-violation? B-violation ...)
 - no particle candidates for Dark Matter (astrophysics: hard to explain via modified gravity)
 - no quantum gravity & unsolved dark energy puzzles (astrophysics, cosmology)
 - tiny ν masses: may be included in SM framework; do they hint at $m_{\nu} \sim g_{BSM} M_{SM}^2/M_{BSM} \sim 10^{-12} M_{SM}$?

On "good potential for SM-constraints or BSM-discovery": other relevant processes!

- * SM effective theory viewpoint appears "convenient" to describe the impact on physics at $E \ll M_{BSM}$ of BSM physics at scale $\sim M_{BSM}$ entailing very massive and/or accidentally (quasi-GB) light new particles
- * $L_{BSM}^{eff} = O_{d5}^{\nu\nu\phi\phi}/M_{BSMa} + O_{d5}^{axion}/M_{BSMb} + O_{d6}^{SMEFT}/M_{BSMc}^2$ with unknown couplings in O_{dc}^{ox} terms and mass scales M_{BSMc} , that are to be constrained or directly revealed
- ★ A very incomplete list:
 - $\bullet \ \ R^{\textit{Had}}(\textit{E};\epsilon) \ \text{for} \ e^-e^+ \rightarrow \text{hadrons} \ , \ \dots \ a_{\mu}^{\textit{win}} \ \leftrightarrow \ \text{smeared} \ R^{\textit{Had}}(1.5 \textit{GeV}, 1.0 \textit{GeV}) \quad \textit{(predicted with} \sim 0.2\% \textit{prec.)}$
 - isospin rotated: $\tau^+ \to X_{loc}^{Had} I^+ \nu_I$, ... flavour singlet: $\pi^0 (\eta, \eta') \to \gamma \gamma$
 - leptonic hadron decays: ... $\pi^+(K^+) \to l^+\nu_l$ in QCD + QED (predicted with $\sim 0.2\%$ prec.)
 - semileptonic hadron decays: $K \to \pi I \nu_I \dots B_s \to D_s^- I^+ \nu$
 - rare processes (quantum effects in SM): $K \bar{K}$ oscillations $B_s \to l^- l^+ (\gamma)$
 - high-E processes involving Higgs boson (y_f 's, triple-h, indir.), EW (α , $\sin^2 \theta_W$), α_S couplings ...

Key: a few observables with high & robust precision in both experimental data and theory prediction

THANK YOU FOR PARTICIPATION!

ENJOY TODAY's TALKS & DISCUSSION