Computing in DarkSide

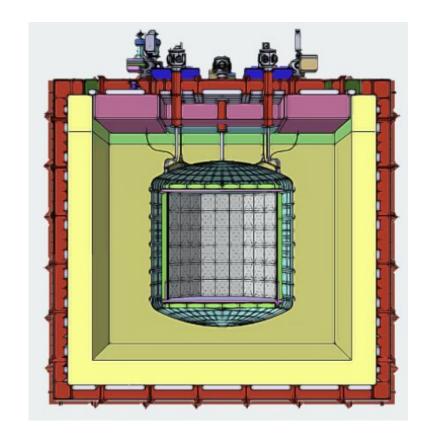
overview of 2026 requests and longer-term planning

What "DarkSide" means

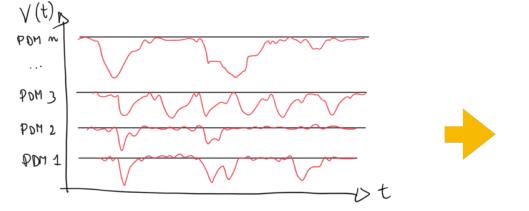
- DarkSide-50 (DS-50)
 - data taking 2013-2019
 - data analysis still ongoing (a few papers under submission)
- DarkSide-20k (DS-20k)
 - data taking ~2028-2038
 - simulation and software development started since 7+ years
 - support detector design choices
 - online / offline reconstruction
 - computing technical design report under INFN review
- smaller scale setups bridging/extending DS-50 and DS-20k
 - ReD (directionality, calibration for low-energy recoils)
 - Proto-0 (data taking ongoing)
 - photodetector characterisation facilities (PTF, NOA...)

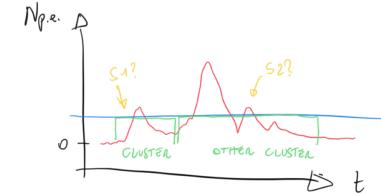
DS-20k: timeline and physics goals

- goal: discover dark matter (DM) and other new phenomena
 - WIMPs or other DM candidates,
 recoiling against nucleons/electrons
 - detector large enough to be sensitive to e.g. supernova neutrinos
- at LNGS: dual-phase liquid argon TPC + LAr inner veto (IV) + LAr outer veto (OV)
 - radio-pure materials and argon
 - O(100 Hz) background rate in TPC
 - 10y data taking, 2028-

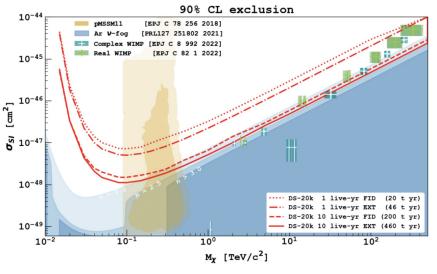


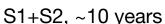
measure scintillation (S1) and ionisation (S2) signals

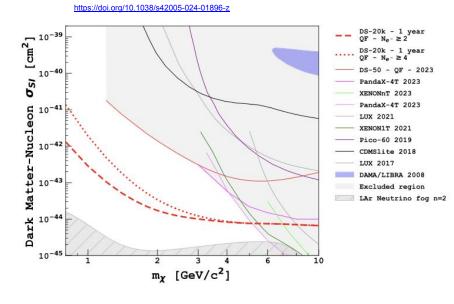

DS-20k as seen from DAQ/computing


- data acquisition: "trigger-less"
 - SiPM-based photodetectors, sensitive to single photo-electrons (PEs)
 - O(3000) channels
 (TPC+IV+OV), digitised at 125
 MS/s (16 b/S)
 - max TPC drift time: 3.5 ms
- O(300) collaborators
 - ~10% of which are active in analysing data
 - expected to grow as construction phase reaches completion
 - Europe/North America/South America/Asia

How TPC signals look like



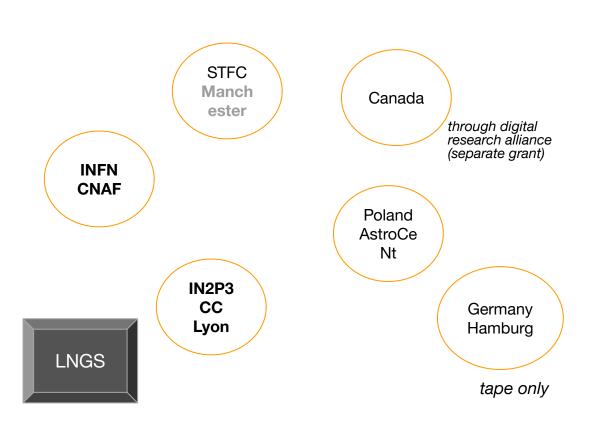



- z from t_{S2} - t_{S1}
- recoil type from S1 pulse shape
- xy from segmentation of light detection planes
- raw data = hits (filter) + waveform segments

Sensitivity to high- and low-mass WIMPs

S2-only, ~1 year

- computing technology should endure a ~15 years lifetime
- allocated resources should be enough to support fast turn-around of physics results


Computing today

how we have been working so far

Computing sites

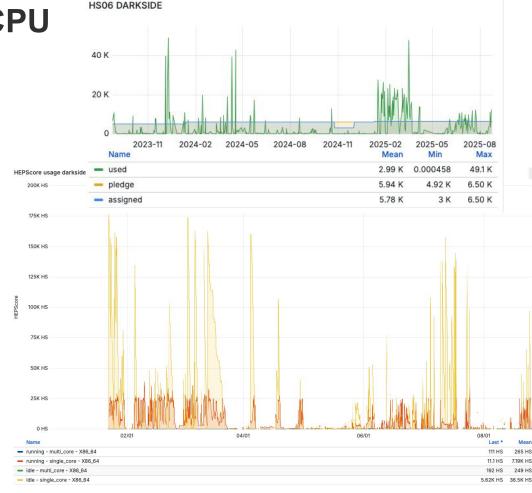
- DS-50: CNAF + FNAL
 - plus in-kind resources at IN2P3-CC (mainly simulation)
- today: CNAF is the main computing center
 - + IN2P3-CC (as in DS-50)
 - + opportunisticresources inManchester
- DS-20k: requested funding to extend beyond CNAF
 - grid-like model

Current pledges

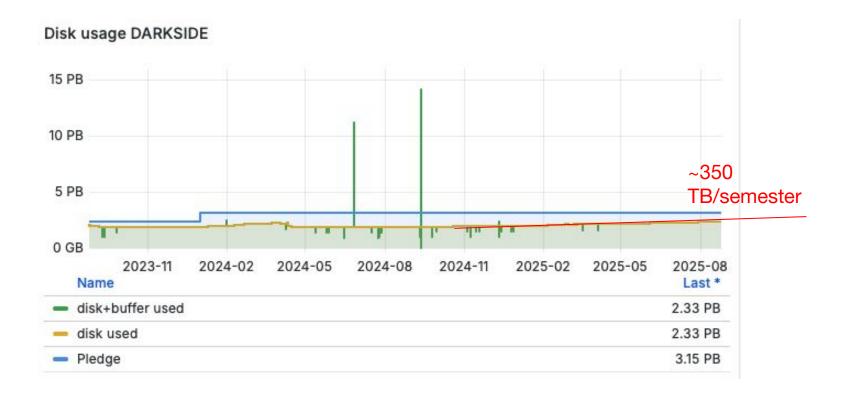
- one user interface
 - <u>ui-darks.cr.cnaf.infn.it</u>
- CNAF HTC: 6500 HS06
 - used via batch system (ad-hoc scripts)
- CNAF disk: 3150 TB
 - simulation + user (for all DS projects)
- CNAF tape: 1920 TB
 - datasets from all DS projects
 (dominated by DS-50 raw data)
- INFN Cloud: 1200 HS06, 200 TB
 - for current- and DS-20k-services

	Y0
CPU [HS06]	7700
Disco [TB]	3350
Tape [TB]	1920
HPC [Mcore*hours]	0

- IN2P3 provides in-kind about 300 HTC cores, used mainly for simulation
- pilot allocation in Manchester (from Oct 2025): 90 HTC cores (4 GB), 400 TB disk, 230 TB tape
- similar funding requests placed in other countries

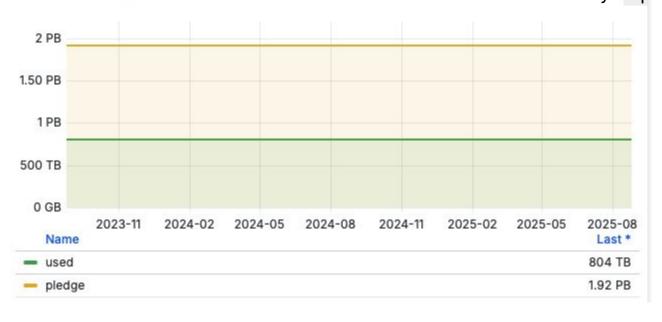

Ongoing software/computing activities

Project	Activity	Where
detector design	simulation	CNAF
core software	development	CNAF
DS-20k	Monte Carlo	CNAF, IN2P3
	reconstruction	CNAF
	data management, workload management	INFN-Cloud
	databases	INFN-Cloud
DS-50	storage	CNAF (, FNAL)
	data analysis	CNAF
ReD	storage, data analysis	CNAF
DS-Proto0	storage, data analysis	CNAF
photodetector characterisation	storage, data analysis	CNAF
	databases	CNAF


Last year's experience: CPU

- until 2024, CPU usage mostly in "bursts"
 - which correspond to different simulation campaigns
- more intensive since early 2025
 - higher precision needed for physics perspective studies
 - stress-test of reconstruction software for computing TDR ("data challenges")
 - analysis of DS-Proto0 data
 - increase of user base

Last year's experience: disk



Last year's experience: tape

Tape usage DARKSIDE

- dominated by DS-50 data
- will move there ReD / Proto-0 / photodetector characterisation data once analysis phase is over

Last year's experience: INFN-Cloud

- used for test deployments of grid middleware for DS-20k
- 1200 HS06 in 2025
 - kubernetes cluster for pandaWMS instance (highest resource usage)
 - software release build (docker/apptainer) and CVMFS publisher node
 - NB: actual CVMFS deployment is on WP1 DataCloud (i.e. not accounted for in requests)
 - prototype calibration database (in usage for DS-Proto0)
 - data management "user interface"
 - NB: actual resources (rucio) deployed on the WP6 kubernetes cluster (i.e. not accounted for in requests)
 - same for WP1's for the rucio database instance

Next year?

- 1000 TB disk increase at CNAF
 - extrapolating the usage increase observed in 2025 (simulation, reconstruction, data challenge) - +700 TB
 - +500 TB data from DS-Proto0 and photodetector characterisation facilities
 - -200 TB from moving first DS-Proto0 runs and older simulation to tape
- 3500 HS06 HTC increase at CNAF
 - +50%, based on observed usage and effective HS06 <-> cores conversion (which brings to updated extrapolations)
- tape at CNAF unvaried

	Y0	Y0+1
CPU [HS06]	7700	15000
Disco [TB]	3350	4450
Tape [TB]	1920	1920
HPC [Mcore*hours]	0	

	CPU		DISCO		TAPE			
	HS06	kEuro	Range temporale mesi	ТВ	kEuro	тв	kEuro	Infrastruttura (Tier1, <u>Cloud,</u>)
INCREMENTO	+3500	+35		+1000	+100	0	+0	CNAF Tier-1
PLEDGE RICHIESTO (attuale + incremento)	10000	100	12	4150	415	1920	19.2	CNAF Tier-1
INCREMENTO	+3800	+38	12	+100	+10			INFN-Cloud
PLEDGE RICHIESTO (attuale + incremento)	5000	50	12	300	30			INFN-Cloud
INCREMENTO				+100	+10			LNGS
PLEDGE RICHIESTO (attuale + incremento)				100	10			LNGS

Next year?

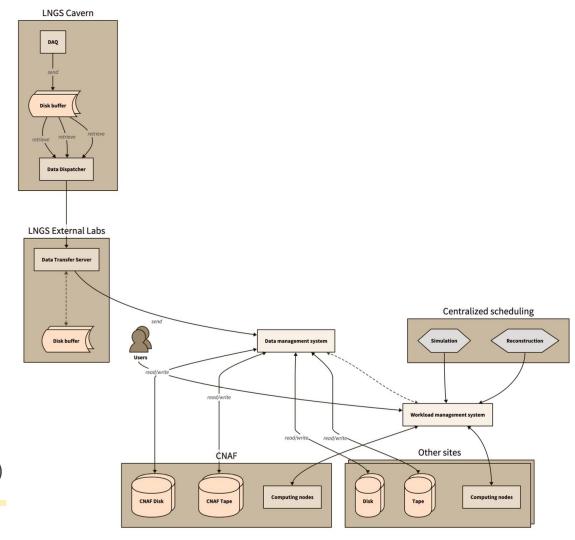
- +3800 HS06 and +200 TB on INFN Cloud
 - consolidation of panda deployment and its integration with rucio
 - development of DS-20k database (started mid-2025)
- funded elsewhere (DS-20k costbook): 100 TB disk buffer at LNGS and data transfer server
 - in the LNGS external labs, integrated with rucio

	Y0	Y0+1
CPU [HS06]	7700	15000
Disco [TB]	3350	4450
Tape [TB]	1920	1920
HPC [Mcore*hours]	0	

		CPU		DISCO		TAPE			
	HS06	kEuro	Range temporale mesi	ТВ	kEuro	тв	kEuro	Infrastruttura (Tier1, <u>Cloud,</u>)	
INCREMENTO	+3500	+35		+1000	+100	0	+0	CNAF Tier-1	
PLEDGE RICHIESTO (attuale + incremento)	10000	100	12	4150	415	1920	19.2	CNAF Tier-1	
INCREMENTO	+3800	+38	12	+100	+10			INFN-Cloud	
PLEDGE RICHIESTO (attuale + incremento)	5000	50	12	300	30			INFN-Cloud	
INCREMENTO				+100	+10			LNGS	
PLEDGE RICHIESTO (attuale + incremento)				100	10			LNGS	

Issues for the short term

- user interface (UI) starts being insufficient
 - 4 processors, 8 GB
 - too many concurrent users [e.g. 5 users on August 25]
 - P(one runs interactively and eats up all resources) is high
 - a few instances in 2025 where ssh access was broken
 - younger people reasonably like vscode which halts the machine soon
 - solutions (besides discouraging interactive usage): load-balancing? larger UI? autokill?
- is testing tape carousel a possibility?
 - requested in TDR review, to reduce foreseen disk allocation for DS-20k
 - the challenge here is to measure the amount of the 20 PB total we could park on tape while still being able to reprocess them ~once a year
 - in parallel, we are exploring the possibility to do this at IN2P3 CC


Computing tomorrow

a glimpse at the DS-20k TDR

A map for DS-20k

- main challenge: significant scaling up w.r.t. DS-50
 - quantitative and qualitative
- storage buffer @ LNGS
 - underground + CED
 - ~1 week (100 TB) each
 - mitigate risk of network outage
- grid-like model for storage and processing
 - CNAF Tier-1 + other sites
 - 1 full INFN replica on disk and tape
 - another distributed elsewhere
 - central reconstruction/simulation
 - users analyse data via workload-management system (WMS)
 - users access data via data-management system (DMS)

Main requirements for DS-20k computing

- support analysis for ~5 years after experiment completion
- storage redundancy (disk vs tape, geographical)
- sustain 60 MB/s raw data output, peaks of 200 MB/s
 - 2 PB/year for 10 years
- redundant buffers against network outages
 - main critical items: underground-to-LNGS, LNGS-to-internet
- support data access control at all stages
 - and blinding!
- multi-site computing, at CNAF and elsewhere, as transparent for the user as possible
 - middleware should support integration of computing resources as they become available
- system sized to allow few months of turnaround for delivery of physics results
 - centralize production and "event skimming" to reduce costs

The current analysis model

- RAW data are hits and consolidated information from waveform segments from the O(10k) SiPM channels
 - organised in time slices corresponding to a given time interval (~1 s)
- reconstruction first identifies pulses, and then combines pulses into events
 - e.g.: WIMP should give one S1 pulse followed by one S2 pulse within t_{drift}
 - this association is often delicate
- current model assumes hit information is not propagated to higher-level formats
 - e.g. DATA_EVENT is a TTree organised per event, with pulse information but no info on what was seen by channel #4553
 - this makes reconstructed data lighter, but requires access to RAW data for reprocessings
- to minimize CPU usage, users access DATA_EVENT reprocessings are only performed centrally
 - but still they need to be performed (new algorithms, bug fixes...)
 - our sizing of necessary resources is based on a target turn-around
 - few days in the commissioning phase, few months in year 10+

Expected longer-term impact on resources at CNAF

- in the TDR we propose to extend computing beyond CNAF
 - interest in other countries at providing computing resources (hardware & peopleware)
 - CNAF would still provide core resources (1:1 = CNAF:elsewhere)
- CPU need can be projected to be almost flat after commissioning
- disk need increases 2 PB/year

tape carousel being explored as an

alternative for older data in the TDR we foresee this allocation to be reviewed by RRB every few years

	Y0	Y0+1	Y0+2	Y0+3	Y0+4
CPU [HS06]	7700	15000	20000	30000	30000
Disco [TB]	3350	4450	6000	9350	11350
Tape [TB]	1920	1920	6000	7920	9920
HPC [Mcore*hours]	0				

Main items and challenges / 1

- join LHCOne to exploit higher bandwidth from LNGS to CNAF
 - upgrade of connection from 10 Gbps to 100 Gbps foreseen in the next few years
- use WLCG tools to ease (en-passant-) integration of additional resources
 - rucio for data management
 - successful deployment thanks to WP6 team
 - challenge: make it a stable solution for the next ~15 years
 - workload management
 - no one-size-fits-all solution: considered pandaWMS and DIRAC
 - adapted panda to DS-20k use case with support from core developers
 - mostly successful, few items to be ironed out
 - clearly a challenge "WMS-as-a-service" would be the best option...
 - software distribution via CVMFS
 - successful deployment on DataCloud CVMFS instance
 - IAM based authN/authZ
 - experiment IAM deployed by CNAF

Main items and challenges / 2

- deployment of services on INFN-Cloud
 - extremely valuable asset from our point of view (thanks!!!)
 - XXX-as-a-service helps experiments (like DS-20k) where computing person power and expertise are naturally more limited than at LHC
 - we think support from INFN on transition from "pilot" to "production" stages would be precious for the success of the experiment
 - example: deployment of database on cloud resources would require high-availability
 - accounting (resources, technical support...) should reflect this
 - brings a strategy question for INFN!

Backup slides

which I will probably remove before converting to PDF

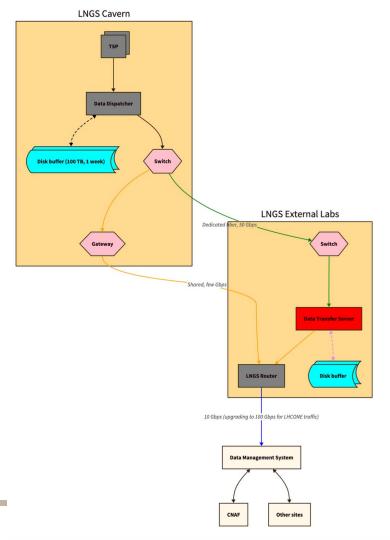
Data acquisition (DAQ)

- cannot sustain rate in scope mode: SiPM waveforms are preprocessed by DAQ
 - uncommon for direct detection searches
- raw data := hits + waveform segments (WFS)
- design rate in "physics mode": 60 MB/s
 - up to 200 MB/s during commissioning/calibration

data taking mode	rate	notes
physics	100 Hz in the TPC	DM search
laser calibration	100 Hz external trigger	~daily
random trigger	100 Hz external trigger	unbiased measurement of noise and hit-finding efficiency
calibration	100 Hz + source rate	radioactive sources (in calibration system or dissolved in LAr)
random waveform	<10 Hz	unprocessed waveform, to monitor preprocessing performance

Raw data format

- waveform digitisers (WFDs) "prepare" raw data
 - hits and WFS
 - from groups of channels
- time-slice processors (TSPs) merge channel information together
 - 1 s slices, overlapping in time
 - follow expandable event data model (EDM), custom binary
- data merger sorts them and writes RAW data files on disk
- monitoring and possibly fast online analysis also happen
 - at different stages (merger, TSPs...)


this is when offline computing starts

slice start marker [int4] run type [int4] run number [int4] detector conditions flags [int4] slice ID [int32] timestamp [int32] ns timestamp [int32] slice end marker [int32] # blocks in slice [int32] block 1 element type [int16] block 1 element version [int16] block 1 element multiplicity [int32] block 1 element size [int32] block 2 element type [int16] block 2 element version [int16] block 2 element multiplicity [int32] block 2 element size [int32] block N element type [int16] block N element version [int16] block N element multiplicity [int32] block N element size [int32] TPC WFS block specifier [2xint32] TPC hit block specifier [2xint32] IV hit block specifier [2xint32] OV hit block specifier [2xint32] TOP wf sum block specifier [2xint32] BOT wf sum block specifier [2xint32]

Data flow and data management / 1

- two lines connecting underground DAQ room (in LNGS Hall-C) to the world
 - 50 Gbps optical fiber for experiment data, dedicated to DS-20k
 - few Gbps shared fiber for service tasks (e.g. software updates, remote shifts)
- data transfer server bridges experiment network and LNGS network
 - ultimately connected to internet via GARR
- funding (O(50k€)) to be requested to INFN this year
 - Hall-C fiber + transceivers + switch + data transfer server
- in this picture, bottleneck is the LNGS-GARR connection
 - 10 Gbps, to be upgraded to 100 Gbps
 - in parallel: associating DS-20k to LHCOne (as e.g. Xenon) to exploit dedicated bandwidth

Data flow and data management / 2

- 1 run ($^{\sim}$ 6h) = 1.2 TB
 - ~15'000 physics runs total over 10 y
- 130 files (MIDAS' "subruns") per run
 - 10 GB each
 - determined (and configurable) at the level of the data merger
 - actual file size to be optimised based on data management pilots
 - stress-test rucio+FTS
 - first tests to start soon involving LNGS-CNAF and CNAF-Manchester transfer
- RAW files are organised per time slice
- promptly processed (and reprocessed) to reconstruct events

Analysis model

- reconstruction takes time slices, identifies pulses and reconstructs events
 - current implementation allows splitting into intermediate steps
- key difference w.r.t. LHC: hit information is kept in RAW data alone, and must be accessed for event reconstruction
 - i.e. intermediate ("PULSE") data formats are not an augmentation of the RAW data format
 - the equivalent of ATLAS' ESD would be larger than the RAW data
- this means RAW data should be available on disk (which is the cost driver)
 - TAPE acts only as a backup
- reconstruction scheduled centrally, includes skimming to pre-select events
 - to be used for blinding and for end-user analysis
 - exact application of blinding requires more thought and extensive testing
 - end-user on Y10 will analyse a fraction (~10%) of the 70 TB of reconstructed data
- use same computing resources for reconstruction and user analysis
 - priority to central scheduling
- see T. Hessel's presentation

The problem of end-user analysis

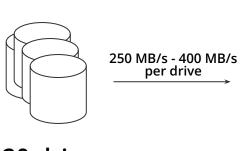
- full 10Y dataset in EVENT format: ~70 TB
 - skimming may reduce them to ~7 TB of interesting data, and users run on them in batch via the WMS
 - it should be possible to go back to RAW data information (e.g. hits) from this "skimmed" data format
- this brings the challenge of supporting end-user analysis
 - basic option: "Tier-3 equivalent" (access to user interface at CNAF or local institution clusters)
 - recent tests of Jupyter over CNAF batch system
 - direct and dask-based access to datasets
 - does not scale well
 - today, single darkside-ui@cnaf with N_{cores} < N_{users}
 HSF efforts may bring better solutions on the market
- architecture / pilots to be developed in the coming future

Authentication and authorisation

- ideal model: IAM-based authentication and authorization
 - DS-50: legacy DS VOMS, used mainly for data transfers by few users
 - DS-20k: Indigo-IAM instance setup by CNAF, to be used by "everyone" for "everything"
 - integrated with EduGAIN
 - three different groups (enabling user/production/blind data access)
 - more on this in the data management part
- current status: IAM for computing, but "collaboration tools" still require separate accounts
 - LNGS account for critical resources within LNGS VPN
 - INFN-AAI account for access to agendas, CNAF, and other services
 - problem: the INFN policy does not allow all collaborators to get an account
 - in contact with INFN responsibles to sort these issues out, but will take time

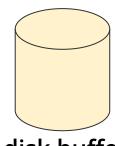
Data management system

- specific requirement: DMS should enable blinding data
 - "embargo"
- we chose rucio as our DMS
 - pilot deployed successfully with INFN Cloud support
- embargo is not supported directly: delegated to storage configuration
 - IAM releases token with requested storage scope when authorised
 - implemented via IAM scope policy, tested successfully
 - dataset-level permission restrictions within rucio will be supported in a future version of rucio
 - would require syncronised mapping of IAM users
 - in contact with rucio developers
- additional layer of complication brought by how panda uses rucio
 - user token vs service account



Beyond standard CPUs

- software development uses state-of-the-art languages and tools
 - heavily python-based, using e.g. numpy, scipy
- this should simplify the extension to new architectures
 - ARM, RISC-V...
 - containerisation should help building dedicated releases
 - panda already used in integration of ARM resources at ATLAS
- GPUs and other accelerators to improve reconstruction?
 - testing started for xyzE, underlying python tools make it easy
- GPUs for accelerating machine learning (ML)
 - ongoing development for ML at trigger level (supernovae) and reconstruction level (pulse finding / event building)
 - explorative USA/Canada funding requests placed for a dedicated machine in DAQ farm
 - will use next years to exploit possibility to extend requests also for core computing
- bottom line: potential for development, but not in the baseline strategy yet



Tape @ CNAF (VERY preliminary)

20 drives, shared

> ATLAS/CMS/LHCb: ~5 each DS-20k: 1-2?

disk buffer, shared

> ATLAS: 860 TB, reserved DS-20k: 300 TB, shared

e.g. N-3 years of RAW data

~2 weeks of RAW data

~1 day to process them (or move them

3 days (automatic)

elsewhere)

- takes 1-2 months to retrieve 1Y data
- same for writing them on tape!
- limits possibility of full data reprocessing

⇒ need

more CPUs (700 if reco speed is 50 lives-s)

cost-benefit analysis