
Advanced course to FPGA programming

Piero Vicini, Ottorino Frezza, Francesca Lo Cicero, Francesco Simula,
INFN Rome1

Course Overview

FPGA interconnection
• Quick intro
• AURORA Xilinx

o Test and Debug
o Fine tuning
o Timing and Resources analysis
o Optimization

2Advanced course to FPGA programming

Tools & Programming languages
• Advanced VHDL
• Vivado tool overview

o Design Flow
 Project creation
 Ip core integration
 Simulation
 Synthesis
 Implementation
 Tcl scripting

o Timing analysis
o Custom IP Design & Integration
o FPGA Test & Debug

Introduction to FPGA
• Architecture
• Advantages and limitations
• Design Flow
• Simulation tool

Vivado Design Suite

Advanced course to FPGA programming 3

Vivado provides an end-to-end environment for VHDL
design flow: everything from coding, simulation,
synthesis, verification, and hardware programming is
integrated in a single tool.

VHDL design flow

The -mode option in Vivado specifies the startup mode
• gui (default): Launches the graphical user interface.

vivado -mode gui
• tcl: Starts the interactive Tcl console.

vivado -mode tcl
• Batch:

 Run scripts without interaction
 Useful for automation with Tcl scripts.
 Usually combined with -source <script.tcl> command.
vivado -mode batch -source build.tcl

Vivado Design Entry

Advanced course to FPGA programming 4

Design entry is the process of providing the design description to
the tool

Design Entry Methods in Vivado:
• HDL (VHDL / Verilog / SystemVerilog)

 Design described as source code.
 Most flexible and widely used method.

• IP Integrator (Block Design)
 Uses pre-built IP cores connected in a block diagram.
 Suitable for system-level designs (e.g., processors, memory

controllers, AXI interfaces).
• Schematic Entry

 Design described by drawing circuits with logic symbols.
 Less common today, mainly for small designs.

• High-Level Synthesis (HLS) → Vitis HLS
 Algorithms described in C/C++/SystemC.
 Translated into HDL by Vivado HLS.

VHDL design flow

Vivado HDL-Based Design Entry

Advanced course to FPGA programming 5

Vivado automatically identifies the top-level
module of the design hierarchy and
determines the elaboration, synthesis, and
simulation order of all source files.

• The automatic configuration can be overridden by
explicitly setting the top module and customizing the
compile order in the project settings.

Describes digital designs using HDL source files

Vivado IP-Based Design Entry

Advanced course to FPGA programming 6

IP (Intellectual Property) core: reusable logic/design block

• Vendor-supplied (Xilinx)

• By default, the IP catalog only displays IP cores
that are supported by the target part (or board) for
the current project.

• User-defined IPs

• Third-party IPs

Make FPGA development faster and modular

Vivado supported IP:

• A custom hardware module (written in VHDL,
Verilog, or HLS) that is packaged into an IP
format

Vivado IP Catalog

• GUI interface listing all available IP cores
• Organized by category: memory, communication...
• Allows configuration and instantiation of IPs

Vivado: General IP Setting

Advanced course to FPGA programming 7

A core container is used in Vivado to store an
IP core and all generated output files in a
single compressed binary file with the .xcix
extension.

Setting the default IP location will persist
across multiple Vivado sessions.

IP settings are used to define various project-specific options for IP

Vivado: IP Generate Output products

Advanced course to FPGA programming 8

Output products
delivered by the IP

The Generate Output Products step creates all the files required for synthesis, simulation, and
implementation of the IP

Vivado: IP Generate Output products

Advanced course to FPGA programming 9

• Global Synthesis: all design sources are synthesized
together

• Out-of-Context per IP (OOC): the Vivado tools
synthesize the IP as a standalone module and produces
a design checkpoint (DCP).
 Advantage:
o It improves synthesis time by avoiding IP re-synthesis

during project runs.
 Disadvantege:
o IP may not be fully optimized when integrated into the full

design

For either Synthesis
option, Vivado generates
HDL and XDC files for
the IP and uses those
files during synthesis and
during implementation.

Vivado: IP Source tab

Advanced course to FPGA programming 10

The IP Sources tab provides a hierarchical view of all IP cores added
to the project.

• Allows access to IP configuration files, and generated output
products (such as HDL wrappers, simulation models, and
synthesis netlists)

• Tracks the generation status of each IP.

Run report_ip_status for more details and
recommendations on how to fix this issue.

Vivado: IP Source tab

Advanced course to FPGA programming 11

• By right-clicking on an IP core in the IP Sources tab, several operations can be performed

• The Source File Properties window shows
file-specific settings such as file type, library,
compile order, and usage (Synthesis,
Implementation, Simulation) in the design
flow.

• The Open IP Example Design option allows opening a
standalone Vivado project that demonstrates how to use the
selected IP core.
It includes pre-configured design sources, a testbench,
constraints, and sometimes simulation scripts to help
understand and validate the IP's functionality.

Advanced course to FPGA programming 12

FIFO
FIFO (First In First Out) is a method to organize a data buffer as a queue.
• The FIFO is implemented using circular buffer.
• Write/read pointers act as selector for demux/mux on data.
• A Fifo control logic manage a write pointer (Head) and a read pointer (Tail),

necessary to avoid over-flow (or write Full) or under-flow (read empty).

• Clocking scheme
 Single-clock FIFO (synchronous): Write and read

share the same clock.
 Dual-clock FIFO (asynchronous): Write and read

operate on separate clocks.

• Behavior / mode
 Standard FIFO:
First word appears on output port only after asserting
read_enable.
 First-Word Fall-Through (FWFT or Show-Ahead):
First written word appears immediately on the output
without asserting read_enable.

• Port structure
 Standard / Native interface:
 Simple write and read ports, single data bus.
 AXI or bus-based FIFOs:

 Compatible with AXI4/AXI-Stream interfaces.

Xilinx provides the FIFO Generator IP for creating FIFO memories.

Hands-on
Exercise 0

Advanced course to FPGA programming 13

• Add a FIFO IP core using the FIFO Generator (found in Memory&Storage category) leaving all
default setting unchanged

• Create a top-level VHDL module named fifo_wrapper with the following interface:
GENERIC (data_width : integer:=32);
PORT (

clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
data_in : IN STD_LOGIC_VECTOR(data_width-1 DOWNTO 0);
valid_in : IN STD_LOGIC);

• Instantiate the FIFO in fifo_wrapper

• Create a new Vivado project (named FIFO_project)

14

FIFO_project

Tip: After generating the FIFO, you can use the Instantiation Template
provided by Vivado (in IP Sources tab) to correctly instantiate the
component in your VHDL code.
Advanced course to FPGA programming

• Connect the FIFO:
• din ⟵ data_in
• wr_en ⟵ valid_in
• Connect clk and rst to both the FIFO and the top module.
• Connect rd_en to '0' (the FIFO is not read)
• Leave FIFO output unconnected (open)

15

FIFO_project

Advanced course to FPGA programming

Fifo_wrapper
Fifo_generator_0

Data_in
Valid_in

rst
clk

din

wr_en

rd_en ‘0’

Advanced course to FPGA programming 16

Quick Guide to Vivado GUI
Create Project

Advanced course to FPGA programming 17

• Project Type determines the types
of source files that are associated
with the project.
o RTL project

 block design
 IntellectualProperty
 RTL sources
 VHDL, Verilog, SystemVerilog

Quick Guide to Vivado GUI
Project Setup

Advanced course to FPGA programming 18

For the first projects (RTL code simulation only), selecting an FPGA/board is not technically required.
However, Vivado requires a target to be specified, so we select the board we plan to use later.

Quick Guide to Vivado GUI
Project Setup

19

It is possible to add files individually (Add Files)
or all files in a directory (Add Directories).

Quick Guide to Vivado GUI
Add Design Sources

• To enable/disable source files select the Enable/Disable File right-click menu command.

Advanced course to FPGA programming 20

Quick Guide to Vivado GUI
Add Simulation Sources

Advanced course to FPGA programming 21

Quick Guide to Vivado GUI
Add IP from IP Catalog

To add an IP select it by double-clicking it in the IP catalog.

Previously created IP cores — typically in
XCI format — can also be added to the
project using Add Sources.

Specify the name and the location on disk to
store the IP.
Default: <project_name>.src/sources_1/ip/

The Customize IP window shows available parameters, which vary based on the IP core.

Advanced course to FPGA programming 22

Supported Interfaces
• Native
• AXI Memory Mapped
• AXI Stream Native Interface Signals for Common Clock FIFOs

• rst/srst: asynchronous/synchronous reset that initializes all internal pointers and output
registers.

• clk: all signals on the write and read domains are synchronous to this clock.
• din[n:0]: The input data bus used when writing the FIFO.
• wr_en : If the FIFO is not full, asserting this signal causes data (on din) to be written to the

FIFO.
• full : When asserted, this signal indicates that the FIFO is full. Write requests are ignored

when the FIFO is full, initiating a write when the FIFO is full is not destructive to the contents
of the FIFO.

• dout[m:0]: The output data bus driven when reading the FIFO.
• rd_en: If the FIFO is not empty, asserting this signal causes data to be read from the FIFO

(output on dout).
• empty: When asserted, this signal indicates that the FIFO is empty. Read requests are

ignored when the FIFO is empty, initiating a read while empty is not destructive to the FIFO.

FIFO Generator core is a fully verified first-in first-out (FIFO) memory queue
https://docs.amd.com/v/u/en-US/pg057-fifo-generator

Vivado Native FIFO Configuration

Vivado Native FIFO Configuration

Advanced course to FPGA programming 23

ECC (Error Correction Code) is an optional feature
that adds error detection and correction to the
FIFO's internal memory.
It is useful in critical system where data may be
corrupted by radiation, electrical noise, hardware
faults, ensuring that the data read from the FIFO is
the same as what was written.

Read Mode:
• Standard FIFO
• FWFT FIFO

• this implementation increases the
depth of the FIFO by 2 read words.

In the native port tab, it is possible to configure FIFO settings

Data port parameters:
• Width: number of bits per entry
• Depth: total number of entries in the memory

Native Ports tab

Advanced course to FPGA programming 24

Write Acknowledge: Generates
write acknowledge flag which
reports the success of a write
operation.

Overflow (Write Error):
Generates overflow flag which
indicates when the previous write
operation was not successful.

Valid Flag: Generates valid flag
that indicates when the data on the
output bus is valid.

Underflow (Read Error):
Generates underflow flag to
indicate that the previous read
request was not successful.

Status Flags tab

Vivado Native FIFO Configuration

Optional ports can be enabled in the Status Flags tab

Advanced course to FPGA programming 25

More Accurate Data Counts: This option
uses additional external logic to generate
more accurate data count signals,
which indicate the number of data words
currently stored in the FIFO.

Only available for independent clocks FIFO
with block RAM or distributed RAM, and
when using first-word fall-through.

Data Count: output signal
that indicates how many data
entries are currently stored in
the FIFO buffer.

Data Counts tab

Vivado Native FIFO Configuration

Data Counts tab: enables optional signals reporting the current FIFO fill level

Hands-on
Exercise 1

Advanced course to FPGA programming 26

FIFO project

Tip: Right-click fifo_generator_0 and select “Copy IP..." to duplicate the
existing FIFO IP core and modify only the necessary settings.

Advanced course to FPGA programming 27

• Modify fifo_generator_0 with the following configuration:

 Fifo implementation: Common Clock Distributed RAM

 Write/Read Width: 128 bits
 Write Depth: 16

 Write port handshaking - Overflow: Enabled
 Read port handshaking - Valid Flag: Enabled
 Read port handshaking - Underflow Flag: Enabled

 Data count Enabled

• Create another FIFO IP core, named fifo_native_FWFT_128bit, with the same configuration as fifo_generator_0,
except
 First-Word Fall-Through : Enabled

Native Ports tab

Status flag tab

Double-click
fifo_generator_0
to open the Customize IP
dialog.

Native Ports tab

Data Counts tab

Basic tab

FIFO project
• Update the fifo_generator_0 component and its instance in the top-level VHDL module (fifo_wrapper)
• Add fifo_native_FWFT_128bit to the top-level VHDL module (fifo_wrapper)
• Connect the FIFOs as shown below (with all outputs left unconnected)
• Add the provided testbench (/sim/TB_fifo_wrapper_exercise_1.vhd) and waveform Configuration File

testbench (/sim/tb_fifo_wrapper_behave.wcfg) .
• Run Behavioral simulation

Advanced course to FPGA programming 28

Fifo_wrapper

Fifo_generator_0

Data_in
Valid_in

rst
clk

din

wr_en
rd_en ‘0’

Fifo_native_FWFT_128bit

din

wr_en
rd_en ‘0’

Advanced course to FPGA programming 29

Open simulation

Add signals to waveform

• In the Objects window, locate the signal you want to observe
• Right-click on the signal and select "Add to Wave Window" or drag and drop it!
• Run or restart simulation to see signal transitions

Run simulation

Restart
simulation

Add divider to waveform
• Right-click on the waveform background (the empty area where signals are shown).
• Select "New Divider"
• Drag and drop signals into groups separated by dividers for better organization.

Manage signal display
• Right-click on the signal in the waveform

 Rename
 Signal Color
 Radix

Quick Guide to Vivado GUI
Simulation

FIFO project simulation

FIFO shows the first written data first-word fall-through (FWFT) implementation
increases the depth of the FIFO by 2 read words.

The empty flag
has latency

Same
inputs

FIFO project simulation

Same
inputs

The data_count signal reads 0 even when
there are 16 words stored in the FIFO

Advanced course to FPGA programming 32

FIFO Generator core is a fully verified first-in first-out (FIFO) memory queue

Supported Interfaces
• Native
• AXI Stream
• AXI MemoryMapped

Vivado AXI-Stream FIFO Configuration

AXI FIFOs operate only in First-Word
Fall-Through mode
• two additional read words added

to the FIFO depth.

AXI interface overview

Advanced course to FPGA programming 33

AXI is part of ARM AMBA, a family of micro controller buses first introduced in 1996.
https://docs.amd.com/v/u/en-US/ug1037-vivado-axi-reference-guide

• AXI4: For high-performance memory-mapped requirements

• AXI4-Lite: For simple, low-throughput memory-mapped communication

• AXI4-Stream: For high-speed streaming data

 Provides separate data and address connections for reads and writes, which allows simultaneous,
bidirectional data transfer.

 Requires a single address and then bursts up to 256 words of data

 Defines a single channel for transmission of streaming data.
 Can burst an unlimited amount of data.

Advanced course to FPGA programming 34

AXI-Stream overview

The AXI interface protocol uses a two-way valid and ready handshake mechanism.
• The information source uses the valid signal to show when valid data or control information is

available on the channel.
• The information destination uses the ready signal to show when it can accept the data

AXI4-Stream FIFO Generator Interface Signals

Advanced course to FPGA programming 35

AXI4 Stream port tab

Vivado AXI-Stream FIFO Configuration

• TDATA NUM BYTES: The number of bytes
transferred per cycle

• TID: Data stream identifier
• TDEST: Provides routing information for the data

stream.

• TSTRB: The byte qualifier that indicates whether the
content of the associated byte of TDATA is valid

• TKEEP: The byte qualifier that indicates whether the
content of the associated byte of TDATA has to be
trasfer

• TLAST: Indicates the boundary of a packet.

Hands-on
Exercise 2

Advanced course to FPGA programming 36

• Copy fifo_generator_0 in fifo_native_128bit
• Remove from the project fifo_generator_0
• Create another FIFO IP core, named fifo_AXI_stream_128bit, with the following configuration

 Interface Type: AXI Stream

 TDATA NUM BYTES: 16

 FIFO Implementation type: Common Clock Distributed RAM
 FIFO DEPTH:16

37

FIFO project

Config tab

Basic tab

AXI4 stream Ports tab

Advanced course to FPGA programming

• Add to the top-level VHDL module:
 An instance of fifo_native_128bit
 An instance of fifo_AXI_stream_128bit;
 Generic

o FIFO_MODE: string - use this generic with a generate statement to select between the FIFO
configurations (NATIVE FWFT / STANDARD NATIVE / AXI_STREAM)

 Ports:
o data_out : out std_logic_vector(31 downto 0);
o valid_out : out std_logic
o Read_enable: in std_logic (connected to NATIVE FIFO rd_en / AXI4 FIFO m_axis_tready)
o Ready : out std_logic (connected to NATIVE FIFO not full/ AXI4 FIFO s_axis_tready)
o Empty: out std_logic

FIFO project

Advanced course to FPGA programming 38

FIFO project

Advanced course to FPGA programming 39

Fifo_wrapper

Fifo_native_128bit

Data_in
Valid_in

rst

clk

din

wr_en rd_en

Fifo_native_FWFT_128bit
din

wr_en
rd_en

Fifo_axi_stream_128bit

m_axis_tready

full

s_axis_tready

valid_out

data_out

Read_enable

ready

empty
full empty

Vivado Simulation

Simulation verifies the functional correctness of the design before hardware implementation.

• Vivado provides a simulator to check functionality
throughout the design process

Advanced course to FPGA programming 40

Advanced course to FPGA programming 41

Vivado Simulator

• Vivado simulator does not support waveform tracing of some HDL objects, such local variables.

• Simulation sources are organized into simulation sets in
the Sources window

• Different simulation sets enable verification with multiple
independent testbenches

• Only one set can be active at a time

• Simulation sources can be assigned to a specific set
when added to the project

VHDL TestBench

The source provides input to the DUT in several ways:
• Assign constant values - Useful for small, predefined test cases.
• Read values stored in a separate file - Useful for larger test datasets or data generated externally;

allows flexibility and easy updates without modifying the code
• Algorithmically ”on-the-fly - Input vectors are created dynamically during simulation

Advanced course to FPGA programming 42

VHDL test bench (TB) is a piece of code meant to verify the functional correctness of HDL model

The Sink collects DUT output, which should be verified against expected results:
• Expected response must be known exactly
• Comparison between DUT output and the expected response can be performed automatically
• Responses can be optionally saved to files for offline analysis or debugging.

ENTITY test_tb IS
END test_tb;

ARCHITECTURE structural OF test_tb
IS
 component entity_to_test is
 …
 end component;
-- Signal/constant declaration
…
BEGIN
-- Stimulus generator
…

DUT: enity_to_test
port map(
….
);
-- Response cheker
…
END behavior;

VHDL TestBench
Entity

(no port)

Architecture

Components/signals
declaration

Component instantiation

Stimulus generation

Advanced course to FPGA programming 43

Sink

• Making realistic TB is sometimes hard

• Verification cannot prove correctness:
it can show the existence of bugs, but
not their non-existence!

• Test bench may have mistakes
• False interpretation
• Test bench codes may have bugs

• Good to have different persons writing
the actual code and test bench

VHDL Simple TestBench

• Simple TB:
o Instantiates the design under test (DUT)
o Generates stimulus

 Not automatically– handwritten code
trying to spot corner cases

 Poor reusability
 Provides limited verification coverage

Advanced course to FPGA programming

o Verifying DUT output by manually
inspecting simulation waveforms is error-
prone and unreliable, especially for large
datasets or subtle corner cases. Automatic
checking ensures correctness,
repeatability, and efficient detection of
mismatches

co
ns

ta
nt

s

Suitable only for very simple designs!

44

Advanced course to FPGA programming 45

• Stimulus for DUT is read from an input file and modified in the source component

For each stimulus file, the designer can prepare the expected output trace.
It can be automatically compared to the response of DUT, either in VHDL or using command line
tool diff for file.

• The response is modified in the sink and written to the output file

Not synthesizable!

File- based TestBench

46

1. Required package
To use file operations, you must include:
 use std.textio.all;
 use ieee.std_logic_textio.all; 2. Declaring a file inside architecture

file input_file : text open read_mode is “in_file.txt";
file output_file: text open write_mode is “out_file.txt";

• read_mode → open file for reading.
• write_mode → open file for writing.

3. Working with lines
Add an intermediate type line to
process file content.
 variable L : line;

4. A) Reading from a file
 variable val : <type>;
 while not endfile(input_file) loop -- keep reading until file ends
 readline(input_file, L); -- get one line from file
 hread/read(L, val); -- extract <type> from line
 end loop;

4. B) Writing to a file
variable val : <type>;
write(L, val); -- write val into line
writeline(output_file, L); -- flush line to file

File- based TestBench

Advanced course to FPGA programming 47

read
• Part of the textio library.
• Reads standard data types such as integer, real, bit, etc.

hread
• Part of the std_logic_textio library.
• Used to read std_logic or std_logic_vector values from a text file.
• Can read values in hexadecimal ("0F") or binary ("1010") notation.

File- based TestBench

VHDL Smart Test Bench

Advanced course to FPGA programming 48

Circuit’s response affects further stimulus - TB is reactive
E.g., source writes FIFO (=DUT) until it is full, then it does something else…

Advanced course to FPGA programming 49

Hands-on
Exercise 3

Advanced course to FPGA programming 50

FIFO Project simulation

• Use the simple testbench TB_fifo_wrapper_constant.vhd available in /sim to simulate the
FIFO_wrapper entity configured in AXI_STREAM mode (add the TB in a new simulation_set
named “sim_constant”)

• Remember to activate new simulation set!

co
ns

ta
nt

s

AXI_STREAM FIFO

FIFO_wrapper

32 Data_in

Wr_enable
Wr_ready

Constant Rd_enable

Advanced course to FPGA programming 51

FIFO Project simulation

• integer'image is a built-in
VHDL function that converts
an integer value into a
string representation that
can be printed or reported.

TB_fifo_wrapper_constant.vhd

Advanced course to FPGA programming 52

FIFO Project simulation

• to_hstring is a standard VHDL-
2008 function (it doesn’t exist in
VHDL-93 or 2002).
It converts a bit or logic vector
into a hexadecimal string, very
useful for readable messages in
simulation.

• The stop procedure from the std.env package
terminates the simulation cleanly

TB_fifo_wrapper_constant.vhd

Advanced course to FPGA programming 53

FIFO Project simulation

To use Vivado-2008 to_hstring function, make sure that the file TB_fifo_wrapper_constant.vhd is
set to VHDL-2008 language type.

Advanced course to FPGA programming 54

Drawbacks
• Verifying correctness is difficult, typically done

via waveform inspection or Tcl console
• Providing many input vectors is time-

consuming

FIFO Project simulation

Advanced course to FPGA programming 55

Input Handling Solution:
• Use the Force Constant option

(available from wave window right-
click menu)- allows fixing a signal to
a constant value, overriding the
assignments made within the HDL
code
 simple but time-consuming and

not easily reproducible

FIFO Project simulation

Advanced course to FPGA programming 56

Input Handling Solution:
• Use the Force Constant option

(available from wave window right-
click menu)- allows fixing a signal to
a constant value, overriding the
assignments made within the HDL
code
 simple but time-consuming and

not easily reproducible

Input Handling Solution 2:
• Automatically create input vectors

FIFO Project simulation

LFSR

Advanced course to FPGA programming 57

Linear Feedback Shift Register (LFSR) is a shift-register whose input bit is a linear
function of its previous state.

 The initial value of the LFSR is called seed
 The operation of the register is deterministic, so the stream of values produced by the register is

completely determined by its current (or previous) state.

 An LFSR with a well-chosen feedback function can produce a sequence of bits that appears
random and has a very long cycle.
 Applications of LFSRs include generating pseudo-random numbers

Advanced course to FPGA programming 58

Hands-on
Exercise 4

59

• Create a new testbench (in a new simulation set called sim_lfsr) for the top-level module including the
Data_generator component with its package (provided in /src directory).

• generates NUM_DATA pseudo random data using a LFSR.
• Stops writing when wr_ready is deasserted

• Activate the new simulation set.
• Run the simulation

FIFO Project simulation

entity data_generator is
 generic (

NUM_DATA : integer := 2
 DATA_WIDTH : integer := 32);
port (
clk : in std_logic;
rst : in std_logic;
wr_ready : in std_logic;
data_out : out std_logic_vector(DATA_WIDTH -1 downto 0);
wr_en : out std_logic);

end entity;

AXI_STREAM FIFO

FIFO_wrapper

Rd_enable
Data

generator
1

60

FIFO Project simulation
Data_generator.vhd

• The new value is calculated, according to the MODE
constant, by the generate_next_data function
defined in data_generator_pkg

<NUM_DATA

=NUM_DATA

!

Coun<NUM_DATA

Count<NUM_DATA &

!

Advanced course to FPGA programming 61

Hands-on
Exercise 5

• In the new testbench add a data_checker component to verify FIFO output against the expected sequence
(generated by a second Data Generator instantation)

• Run behavioral simulation

Advantages:
• Automatic verification of outputs against expected values
• Immediate detection of mismatches with error reports

FIFO Project simulation

entity data_checker is
 generic (
 DATA_WIDTH: integer := 5;
 NUM_DATA : integer := 2);
 port (
 clk : in std_logic;
 rst : in std_logic;
 valid : in std_logic;
 data_in : in std_logic_vector(DATA_WIDTH-1 downto 0);
 re_enable : out std_logic;
 test_ok : out std_logic;
 data_received : out std_logic;
 expected_data : in std_logic_vector(DATA_WIDTH-1 downto 0);
 expected_valid: in std_logic;
 ready : out std_logic);
end entity;

AXI_STREAM FIFO

FIFO_wrapper

Data
generator

Data
generator

Data
Checker

Advanced course to FPGA programming 63

Hands-on
Exercise 6

Advanced course to FPGA programming 64

Create new simulation set adding:
• Data_Reader (provided in /sim):

• Reads a data (std_logic_vector/integer) from a file (file_data)
• Sends the data as std_logic_vector output (with length DATA_WIDTH)
• Waits for the handshake signal (receiver_ready) before reading the next data

FIFO Project simulation

entity data_Reader is
 generic (
 FILE_TYPE : string := "integer";
 FILE_DATA : string := "file_data.txt";
 DATA_WIDTH : integer := 32
);
 port (
 clk : in std_logic;
 rst : in std_logic;
 receiver_ready : in std_logic;
 data : out std_logic_vector(DATA_WIDTH - 1 downto 0);
 valid : out std_logic ;
 data_read : out integer; -- Number of data words read
 eof : out std_logic
);
end entity;

Advanced course to FPGA programming 65

• Add output_writer (provided in /sim):
• Receives std_logic_vector (of length DATA_WIDTH) data
• Converts and writes number_of_data data as integers to an output file (file_out_name)

FIFO Project simulation

entity output_writer is
 generic (
 DATA_WIDTH : integer := 5;
 FILE_OUT_NAME : string := "file_results.txt");
 port (
 clk : in std_logic;
 rst : in std_logic;
 send_complete : in std_logic; -- Data transmission process has finished sending all data
 data_in : in std_logic_vector(DATA_WIDTH - 1 downto 0);
 valid_in : in std_logic;
 number_of_data : in integer; -- Number of data words to write
 data_written : out std_logic -- Indicates data has been written
);
end entity;

66

Add a comparator (provided in /sim):
• file_comparator:

• Compare file_actual and file_expected
• Check for mismatches

FIFO Project simulation
entity File_comparator is
 generic (
 FILE_EXPECTED : string := "file_in_0.txt";
 FILE_ACTUAL : string := "file_in_1.txt");
 port (
 trigger: in std_logic; -- Start comparison when
 -- asserted ('1')
 compare_ok : out std_logic);
end entity;

Advanced course to FPGA programming

File
comparator

output
writer

Data
Reader

AXI_STREAM FIFO

FIFO_wrapper

• Write a TB to connect all these entities
• Run simulation

67

Vivado RTL Linter

Vivado includes an RTL linter that checks for code pattern that, while legal, might cause potential
issues in the design.

Advanced course to FPGA programming

• Detects coding issues, unconnected signals, multiple drivers, inferred latches, and other
potential RTL problems.

• Improves design quality
• Reduces debugging time during simulation and synthesis

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/List-of-Linter-Rules

68

Vivado Synthesis

Synthesis is the process of transforming a Register Transfer Level (RTL) specified design into a
gate-level representation.

Advanced course to FPGA programming

Only a subset of VHDL is synthesizable — the part that can be mapped to
hardware.
• Synthesizable constructs:

• Clocked processes, combinational logic (if, case)
• Registers, signals, arrays, fixed-range integers

• Non-synthesizable constructs (simulation only):
• File I/O (textio), delays (wait for), assertions
• Loops with dynamic or unknown bound

• Some construct, such as floating-point number or complicated operators,
are too complex to be synthesized automatically.

• IEEE defines a subset of VHDL that is suitable for RT-level synthesis in IEEE standard 1076.6. E

69

Design Constraints

Advanced course to FPGA programming

Design constraints specify the requirements that ensure correct functionality on the board.

• In Vivado constraints are usually specified in a XDC file (Xilinx Design Constraints).
• By default, all XDC files added to a constraint set are used for both synthesis and

implementation.
• XDC constraints are applied sequentially and are prioritized based on clear precedence

rules.

• Over-constraining or under-constraining design makes timing closure difficult.

• If your project contains an IP that uses its own constraints, the corresponding
constraint file does not appear in the constraints set.

70Advanced course to FPGA programming

Synthesis Constraints

• RTL Attributes
 directives embedded in the HDL code; they usually choose the mapping style of certain part of the logic,

preserving certain registers and nets, or controlling the design hierarchy in the final netlist.
o DONT_TOUCH
o BLACK_BOX
o MARK_DEBUG
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Synthesis-Attributes

• Timing Constraints
 define clocks, delays, and timing requirements

o create_clock
o create_generated_clock
o set_input_delay
o set_output_delay
o set_clock_groups
o set_false_path
o set_max_delay
o set_multicycle_path

Categories of Synthesis Constraints:

71Advanced course to FPGA programming

Synthesis Constraints

• Create clock

• set false path

A primary clock is a clock that defines a timing reference for the design

create_clock -period <arg> [-name <arg>] [-waveform <args>] [<objects>]

<objects>: List of clock source ports, pins or nets

Waveform: Clock edge specification (necessary to define a clock with a
duty cycle other than 50%).

A false path is a logically existing but functionally non-existent connection in a circuit that is excluded from
timing analysis to improve timing closure

set_false_path [-setup] [-hold] [-rise] [-fall] [-from <args>] [-to <args>]

<args>: list of path startpoints/endpoint or clocks

72

Vivado Synthesis Results

Advanced course to FPGA programming

Design views
• The Device window provides a graphical view of the device, placed logic objects, and connectivity.
• Package window displays the physical characteristics of the target Xilinx part.

 This window is used primarily during the I/O planning process or during port placement.
• The Schematic window allows selective expansion and exploration of the logical design.

 You can generate a Schematic window for any level of the logical or physical hierarchy
 select a logic element in an open window, such as a primitive or net in the Netlist window
 use the Schematic command in the popup menu to create a Schematic window for the

selected object.

The Design View tools allow you to navigate between the logical and physical views of your design,
making analysis, debugging, and implementation planning much easier

73

Vivado Synthesis Results

Advanced course to FPGA programming

• Reports provide early feedback on area, timing, and power consumption.
 Timing analysis is useful to ensure that paths have the necessary

constraints for effective implementation. The synthesized design uses an
estimate of routing delay to perform analysis (only timing analysis after
implementation -place and route- includes the actual delays for routing).

 Design Rule Checks (DRCs) check the design and report on common
issues

Tasks on synthesized design:

• Update/add constraints

• Configure and implement debug cores for test and debug.

Advanced course to FPGA programming 74

Hands-on
Exercise 7

Advanced course to FPGA programming 75

Create a new project (FIFO_project_IP)
• Add fifo_wrapper_128bit (in /src)
• Add design sources (used in FIFO_project):

• Fifo_wrapper
• Data generator
• Data checker
• FIFO IPs
• Data Reader
• Output writer
• File_comparator

FIFO Project IP
entity fifo_wrapper_128bit is
 generic (
 FIFO_MODE : string := “AXI_STREAM";
 FIFO_TEST_INPUT : boolean := true;
 FIFO_TEST_OUTPUT : boolean := true;
 FIFO_TEST_MODE : string := "lfsr" ;
 --lfsr test
 TESTED_DATA : integer := 10;
 -- file
 file_data_integer : string := "input.txt";
 file_data_out_integer : string := "output.txt"

);
 port (
 clk : in std_logic;
 rst : in std_logic;
 data_in : in std_logic_vector(127 downto 0);
 valid_in : in std_logic;
 ready : out std_logic;
 read_enable : in std_logic;
 data_out : out std_logic_vector(127 downto 0);
 valid_out : out std_logic;
 test_ok : out std_logic
);
end fifo_wrapper_128bit;

Simulation sources

Advanced course to FPGA programming 76

FIFO_wrapper

256

clk

Valid_in
ready

• FIFO_test = false

FIFO_wrapper_128bit

FIFO Project IP

Data_in

rst

Valid_out

Read_enable
Data_out

Test_ok0

Advanced course to FPGA programming 77

FIFO_wrapper

256 Data_in

Wr_enable
Wr_readyData

generator

Data
Checker

output
writer

File
comparator

Data Reader

FIFO_test_input= true
FIFO_ test_type= lfsr

FIFO_ test_type= file

FIFO_wrapper_128bit

FIFO Project IP

Test_ok

FIFO_test_output= true

Advanced course to FPGA programming 78

Exercise:
• Add FIFO_wrapper_top_synt (in /src) and use this entity only for synthesis
• Run simulation (using sim/TB_fifo_wrapper_128bit.vhd)
• Perform RTL linter and eventually solve reported issues
• Run synthesis
• Open the synthesized design

FIFO Project IP

Advanced course to FPGA programming 79

FIFO Project IP
RTL Linter

WARNING ASSIGN-5: Found bit(s) not assigned for signal ‘signal’
• Some bits of a signal are never assigned a value.
• Check if the signal is really needed (if it’s not connected to anything, remove the assignment

or the signal)
• If signal is used only in some conditional generate blocks, but not in all configurations, define

it in generate block

Advanced course to FPGA programming 80

FIFO Project IP
RTL Linter

WARNING ASSIGN-10: Found bit(s) not read for IO port ‘port’
• One or more bits of an input/output port are never used
• Check whether the port is really needed
• If port is used only in some conditional generate blocks (and not in all configurations), the

warning can be safely ignore.

Advanced course to FPGA programming 81

FIFO Project IP
RTL Linter

WARNING INFER-1: inferred latch for signal ‘signal’
• combinational logic doesn’t assign a value to a signal in every possible condition, so it

infers a latch to “remember” the previous value.

• Try to solve this issue…

Advanced course to FPGA programming 82

• Create a Source constraint
• Add the required timing constraints (using Edit Timing constraints or

Constrants Wizard under the Synthesized Design section)
• Rerun the synthesis

FIFO Project IP
Synthesized design

• In the Sources window right-click xdc file and select Set as Target Constraint File.

• Create a Source Constraint.

83

FIFO Project IP
Edit Timing Constraints

• Select Create Clock

• Double click to create a
clock constraint

• Set Source object

• Set Clock name (clk)

FIFO Project IP
Edit Timing Constraints

• From the Find names of type drop-down list, select
I/O Port

• Click the Find button

• press the right arrow to move clk to the selected
names text box.

• Select clk in the found results text box

• press Set

FIFO Project IP
Edit Timing Constraints

• Clock Period

• Specify Rise/Fall edge (define the duty cycle)

Advanced course to FPGA programming 86

FIFO Project IP
Edit Timing Constraints

• Select Set False Path in Exception category

• Double click to create a false-path constraint

• Set Start Point

FIFO Project IP
Edit Timing Constraints

• From the Find names of type drop-down list, select
I/O Port

• Click the Find button

• press the right arrow to move clk to the selected
names text box.

• Select rst in the found results text box

• press Set

• Save constraints

FIFO Project IP
Synthesized design

[Synth 8-7080] Parallel synthesis criteria is not met: appears when the tool decides that using multiple threads
would not improve (or might even slow down) the compile time

• For Small or Simple Design the overhead of parallelizing tasks outweighs the benefit

[Synth 8-7129] Port data_in[127] in module fifo_wrapper_128bit is either unconnected or has no load

[Synth 8-3332] Sequential element (gen_checker_lsfr.data_checker_inst/FSM_onehot_state_reg[4]) is unused
and will be removed from module fifo_wrapper_128bit.
Vivado usually encodes FSMs as one-hot, meaning that each state is represented by a separate flip-flop (one bit
per state).
If one of these bits is never asserted during synthesis analysis, then Vivado determines that:
The state is never reached, or
The state is reached but has no observable impact on outputs.
As a result, it removes that flip-flop and the logic connected to it.

Advanced course to FPGA programming 89

FIFO Project IP
Constraints wizard

Fill in only the frequency (100 MHz)
for the missing primary clock
in the design

90

Timing analysis

Advanced course to FPGA programming

The data fed to a flip-flop must be stable before the clock edge and after the clock edge.

• The setup time is the amount of time required for the input to a
flip-flop to be stable before a clock edge.

• The hold time is the minimum amount of time needed for the
input to a flip-flop to be stable after a clock edge.

register-to-register timing path

The data:
• is launched inside the device by a sequential cell, which is clocked by the

source clock.
• propagates through some internal logic before reaching a sequential cell

clocked by the destination clock

To reliably save the data into the flip-flop, the arrival time of the data required to meet the setup and hold time
requirements

91

Timing analysis

Advanced course to FPGA programming

Setup and hold slack is defined as the difference between the required time (based on setup and
hold time) and the arrival time of the data at the endpoint.

ts
th

Positive hold slackPositive setup slack

ts
th

Negative hold slack

ts
th

Negative setup slack

Setup Slack Optimization Strategies
• Simplify or pipeline long combinational paths
• Break critical paths into shorter stages
• Constrain Clock Properly
• Analyze Multi-cycle & False Paths

Hold Slack Optimization Strategies
• Balance Data Paths
• Add intentional delay (LUTs or buffers) to

short combinational paths

Advanced course to FPGA programming 92

Hands-on
Exercise 8

Advanced course to FPGA programming 93

• Analyze Timing Summary

FIFO Project IP

• Create a new TB (DUT: FIFO_wrapper_top_synt)
• Run post-synthesis simulations

Advanced course to FPGA programming 94

FIFO Project IP
Vivado Post Synthesis Simulation verifies the functionality of the synthesized netlist.
• Check that synthesized RTL (with or without estimated delays) behaves as expected.
• Detect logical errors introduced by synthesis optimizations.
• Compare results with RTL simulation to ensure correctness.
• Not include FPGA routing or placement delays (timing is idealized).

In post-synthesis simulation:
• The design being simulated is no longer VHDL

source code, but a netlist generated by synthesis
(e.g., .dcp).

• All generic values are already resolved and hard-
coded during synthesis (generic map cannot be
used in the testbench)

• Delete the generics from the entity and re-run simulation

Vivado Implementation

Advanced course to FPGA programming 95

Implementation is the process of mapping, placing, and routing the synthesized design onto
the FPGA.
• Converts the synthesized netlist into a design that can physically run on the target device.
• Optimizes the logical design trying to ensure the design meets timing, area, and resource

constraints.

• Physical constraints define a relationship between logical design objects
and device resources such as:
 Package pin placement.
 Absolute or relative placement of cells, including Block RAM, DSP, LUT,

and flip-flops.
 Floorplanning constraints that assign cells to general regions of a device.
 Device configuration settings.

Compile time is impacted by :
• Netlist complexity and utilization
• Timing constraints and optimization

Physical constraints

Advanced course to FPGA programming 96

PACKAGE_PIN defines a specific assignment, or placement, of a top-level port to a physical
package pin on the device.

set_property PACKAGE_PIN <pin> [get_ports <port_name>]
• Port_name must exactly match the top-

level HDL port names.
• Pin_name must correspond to valid pins

for specific FPGA package.

set_property IOSTANDARD <standard> [get_ports <port>]

• Automatic Pins Assignment (when Synthesized Design is opened)
• Tools → I/O Planning → Autoplace I/O Ports

• GUI Pins Assignment
• I/O Port tab (in Implemented Design)

• IOSTANDARD: Specifies the electrical
standard used by the I/O pin.

• <standard> is the name of the I/O
standard (e.g., LVCMOS33, LVTTL,
SSTL15, etc.).

• XDC command

Vivado Post Implementation simulation

Advanced course to FPGA programming 97

Post-Implementation Simulation (Post-SYNT)
• Verify the actual behavior of the implemented design.
• Detect timing violations (setup, hold, propagation delays).
• Compare results with post-synthesis simulation to ensure correctness.

• Includes all routing and placement delays.
• Crucial for timing-critical designs.
• Helps catch errors not visible in RTL

simulation.

Vivado: Bitstream Generation and Flash Programming

Advanced course to FPGA programming 98

Bitstream Generation converts the implemented design into a binary file (bitstream).

• Bitstream is device-specific.

• Bitstream contains all configuration data to program the FPGA.
• Bitstream can be directly loaded to FPGA via JTAG or stored in non-volatile Flash memory.
• Flash memory allows FPGA to boot with the design automatically at power-up.

Vivado Hardware manager

Advanced course to FPGA programming 99

• Click Open Target → Open New Target.
• Wait for the connection to the hardware to complete

• In the Hardware Server Settings page, type the name of the server (or select Local server if the target is on the
local machine) in the Connect to field.

• Program the device using the previously created .bit bitstream by right clicking the device and selecting
Program Device.

Vivado Hardware Manager allows you to connect to physical FPGA devices, program the
bitstream, and perform real-time debugging.

Advanced course to FPGA programming 100

Hands-on
Exercise 9

Advanced course to FPGA programming 101

• Add the required physical constraints (in const_pin.xdc)
• Run implementation
• Open the implemented design
• Generate Bitstream

FIFO Project IP

Synthesis Report Timing Summary

Implementation Report Timing Summary

Vivado automatically fixes hold time violations during
implementation, inserting delay buffers on short paths

Vivado: tcl

Advanced course to FPGA programming 102

TCL (Tool Command Language) is a scripting language used to automate tasks in Vivado.
• Supports design creation, synthesis, implementation, simulation, and bitstream generation.

• The source command is used to execute a tcl script in Vivado
By default, source command prints in the Tcl console all Tcl statements that are executed as comments
(a comment always starts with the # character).
Command echoing can be suppressed by adding the -notrace option as follows:
 source -notrace run.tcl

• Automate repetitive tasks and workflows.
• Ensure design reproducibility.

• Vivado provides a Tcl interface that can be accessed through:
• Integrated Tcl console in the GUI
• Interactive Tcl mode (vivado –mode tcl)
• batch mode for running scripts automatically (vivado –mode batch)

Vivado: tcl

Advanced course to FPGA programming 103

Common tcl uses in Vivado
• Creating and managing projects:

create_project
• Adding design and constraint files:

add_files
• Generating IP:

create_ip
• Running synthesis and implementation:

launch_runs synth_1 wait_on_run synth_1 launch_runs impl_1
• Running simulation:

launch_simulation

Note: Every GUI operation is mirrored in Tcl console and Vivado keeps track of all these commands in
the so journal file (.jou).

Tip: You can easily reproduce the entire flow at any time by
executing the journal file with the -source option when
invoking vivado at the command line (save the original journal file
as vivado.tcl before, otherwise the file will be overwritten)

Vivado: Makefile

Advanced course to FPGA programming 104

Makefiles can be used to automate Vivado builds by calling Tcl scripts.

Note: According to Makefile syntax, instructions inside each target MUST BE IDENTED USING
A TAB CHARACTER !

Benefits:
• Automates repetitive tasks
• Reproducible builds

Advanced course to FPGA programming 105

Hands-on
Exercise 10

Advanced course to FPGA programming 106

FIFO Project IP

Exercise:
In the /tcl dir
• Open create_project.tcl and gen_wrapper.tcl
• Configure the directory paths (e.g., for sources, constraints, outputs) according to your

environment.
• Type make to see the list of available targets
• Generate and simulate AXI_STREAM mode with FIFO_TEST=true

Improvements:
• Write a Tcl script to automate the generation of bitstream.
• Add the Tcl command to the Makefile

Improvements:
• Generate and silmulate all configurations.

Course Overview

FPGA interconnection
• Quick intro
• AURORA Xilinx

o Test and Debug
o Fine tuning
o Timing and Resources analysis
o Optimization

107Advanced course to FPGA programming

Tools & Programming languages
• Advanced VHDL
• Vivado tool overview

o Design Flow
 Project creation
 Ip core integration
 Simulation
 Synthesis
 Implementation
 Tcl scripting

o Timing analysis
o Custom IP Design & Integration
o FPGA Test & Debug

Introduction to FPGA
• Architecture
• Advantages and limitations
• Design Flow
• Simulation tool

Vivado: User-defined IP

Benefits
• Reusability across multiple projects
• Integration into block designs
• Parameterization and GUI support

A User-Defined IP is a custom hardware module (written in VHDL, Verilog, or HLS) that is packaged
into an IP format

Advanced course to FPGA programming 108

Vivado IP packager allows
• Create and package files and associated data in an IP-XACT standard format.
• Add IP to the Vivado IP catalog.
• Deliver packaged IP to an end-user in a repository directory or in an archive (.zip) file.

Before packaging RTL as an IP, it is recommended to:
• Verify simulation results
• Validate sources through synthesis and implementation

Advanced course to FPGA programming 109

Hands-on
Exercise 11

Advanced course to FPGA programming 110

FIFO Project IP

• Open project FIFO_project_axi_stream_test
• Disable FIFO_wrapper_top_synt
• Generate project IP

Improvements:
• Write a Tcl script to automate the creation and configuration of the IP.
• Add the Tcl command to the Makefile to easily launch IP generation

from the command line.

Advanced course to FPGA programming 111

FIFO Project IP

To Create a Custom IP
• Prepare RTL project
• Tools → Create and Package New IP
• Fill out metadata (Name, version, vendor, library ..)
• Define interfaces and ports (AXI, clock, reset, etc.)
• Customize IP behavior (parameters, GUI options)
• Package IP

Advanced course to FPGA programming 112

FIFO Project IP

113

FIFO Project IP

WARNING: The clock interface clk does not specify a frequency value (FREQ_HZ).
The frequency parameter is used by the tools for simulation and timing analysis.

Set 100000000

Advanced course to FPGA programming 114

FIFO Project IP
WARNING: Bus Interface 'clk' does not have any bus interfaces associated with it.
The tool expects some bus interfaces to be connected to clk but finds none.
If the IP do not use any bus interface (e.g., AXI, APB), the warning is harmless

• Set Interface definition axis_rtl

Advanced course to FPGA programming 115

FIFO Project IP
AXI stream master IF

Advanced course to FPGA programming 116

FIFO Project IP
AXI stream slave IF

Advanced course to FPGA programming 117

FIFO Project IP
AXI stream IFs

• Connect clock clk to both AXI stream interfaces

Advanced course to FPGA programming 118

FIFO Project IP

Advanced course to FPGA programming 119

FIFO Project IP

IP appears in the IP Catalog, ready for reuse

Course Overview

FPGA interconnection
• Quick intro
• AURORA Xilinx

o Test and Debug
o Fine tuning
o Timing and Resources analysis
o Optimization

120Advanced course to FPGA programming

Tools & Programming languages
• Advanced VHDL
• Vivado tool overview

o Design Flow
 Project creation
 Ip core integration
 Simulation
 Synthesis
 Implementation
 Tcl scripting

o Timing analysis
o Custom IP Design & Integration
o FPGA Test & Debug

Introduction to FPGA
• Architecture
• Advantages and limitations
• Design Flow
• Simulation tool

Vivado: Test and Debug

Advanced course to FPGA programming 121

After generating the bitstream, it is possible to test and debug the design directly on the
FPGA using Vivado's built-in tools:

• Integrated Logic Analyzer (ILA) core : perform in-system debugging of post-implemented
• To monitor signals in the design
• To trigger on hardware events and capture data at system speeds.

• Virtual I/O cores (VIO) can both monitor and drive internal FPGA.
• T his debug core needs to be instantiated in the RTL code

Integrated Bit Error Ratio Tester (IBERT) enables in-system serial I/O validation and debug.
• To measure and optimize high-speed serial I/O links in FPGA-based system. AMD recommends using

the IBERT Serial Analyzer design when you are interested in addressing a range of in-system debug
and validation problems from simple clocking and connectivity issues to complex margin analysis and
channel optimization issues.

Vivado: ILA

Advanced course to FPGA programming 122

• Add debug nets
 Mark signals for debug in the source HDL as well as the post synthesis netlist.

attribute mark_debug : string;
attribute mark_debug of sine : signal is "true";

This method gives the highest probability of preserving HDL signal names after synthesis.
This can prevent optimization that might otherwise occur to that signal.

 Right-click and select Mark Debug or Unmark Debug on a synthesized netlist.
• This method is flexible
• Does not require HDL source modification
• Synthesis might not preserve the signals due to netlist optimization involving absorption or

merging of design structures.

The ILA core can be inserted post synthesis in the Vivado design flow or instantiated in RTL code.

• Run the Set Up Debug wizard.

Post-synthesys design flow

Vivado: ILA

Advanced course to FPGA programming 123

• Generate an ILA IP

• Add IP to the design

Number of probes port (in Native type)

Probe Port Panels to configure width of each Probe

RTL instantiation

Type of interface ILA should be debugging

Number of registers addeed to the probes

Each probe input is connected to trigger
comparators

Advance trigger option enables trigger state machine
to write trigger sequence in Vivado Logic Analyzer

Advanced course to FPGA programming 124

Hands-on
Exercise 12

Advanced course to FPGA programming 125

Exercise:
• Add debug net on data_recv (with mark_debug attribute in data_checker)

and on test_ok (using GUI)
• Run SetUP Debug wizard to add the corresponding ILA

FIFO Project IP

Advanced course to FPGA programming 126

Mark signals for debug in the source HDL

FIFO Project IP

entity data_checker is
 …
end entity;

architecture FSM of data_checker is
….
 signal count : integer range 0 to NUM_DATA := 0;
.
 -- Mark this signal for debug
 attribute mark_debug : string;
 attribute mark_debug of data_recv : signal is "TRUE";

begin

Nets corresponding to signals marked for debug in HDL are automatically listed in the Debug window
under the Unassigned Debug Nets folder.

Advanced course to FPGA programming 127

• Right-click on test_ok net and select Mark Debug

FIFO Project IP

• Run Set Up Debug Wizard

The relevant XDC commands
that insert the ILA core(s) is
generated.
Remember to save project!

Advanced course to FPGA programming 128

FIFO Project IP
SetUp Debug Wizard

Design Schematic

Vivado: VIO

Advanced course to FPGA programming 129

The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal
FPGA signals in real time.

• Generate a VIO IP

• Add IP to the design

Number of input probe ports

Number of output probe ports

Probe_in/out Ports Panels
Use the Probe Width field to set the width of each probe port

Vivado IP Integrator

Advanced course to FPGA programming 130

The Vivado IP Integrator enables the development of complex system designs by instantiating and
interconnecting IP from the Vivado IP catalog.

The Block Design is a graphical representation of a hardware system, created and managed through
the Vivado IP Integrator.

• It enables users to create modular, reusable, and scalable hardware systems efficiently within
the Vivado environment.

Advanced course to FPGA programming 131

Hands-on
Exercise 13

Advanced course to FPGA programming 132

• Create a new project for Alveo U55 board
• Create a Block Design and instantiate:

o FIFO_wrapper
o ILA (for test_ok signal)
o VIO (connected to reset signal)
o Utility_buffer (from differential to single-ended clock)

• Generate BD wrapper
• Create the constraint File modifying the port names as needed to match your design .
• Generate the bitstream

Design Project

Advanced course to FPGA programming 133

Design project
To use the custom IP FIFO_wrapper you need to add a user IP repository.

• Specify the location of the IP definition

Advanced course to FPGA programming 134

Design project

• Create a new block design

• Add IP Blocks using
the IP Catalog

• Configure parameters for each IP block (e.g., data width, clock settings, interface types).

Advanced course to FPGA programming 135

Design project

• Expose VIO clk as a top-level port - right-click a
port and choose “Make External”

• Connect clk to fifo_wrapper and to ila

• Connect Blocks manually - click and drag from one port to another - or using "Run Connection
Automation" to automatically generate necessary connections

Advanced course to FPGA programming 136

Design project

• Validate the Design to check for errors or missing
connections in the block design.

• Create HDL Wrapper

Backup

Advanced course to FPGA programming 137

Vivado Usage Modes

Advanced course to FPGA programming 138

Vivado supports two main usage modes:

• Non-Project Mode
 Designer has full control over the flow,

deciding when to run synthesis,
implementation, writing bitstream, etc.

 No project database is created → only
the specified files and results are
generated.

• Project Mode
 Vivado manages source files, constraints,

runs, and results inside a project directory.
 Supports Incremental compilation

139

Incremental Synthesis

Advanced course to FPGA programming

Vivado Synthesis can be run incrementally : the tool puts incremental synthesis info in the generated
DCP (Design CkeckPoint) file that can be referenced in later runs.
It detects when the design has changed and only re-runs synthesis on sections of the design that
have changed

Incremental Synthesis box to
• use a known checkpoint
• use the last checkpoint created (default)
• disable incremental synthesis

Strategy: describes how aggressive synthesis is
with optimizations across partitions.
• Quick turns off most optimizations
• Aggressive turns on more and repeat

synthesis on certain sections
• Off tells synthesis not to use the incremental

synthesis information in the DCP file.
• Default

140

Incremental Synthesis

Advanced course to FPGA programming

When the reference run is performed, the tool partitions out the design as it is performing synthesis.
When the incremental run is started, it compares the elaborated design with the reference run and
identifies the changed modules.

The information on how much of the design and what parts of the design were re-synthesized
can be found in the “Incremental Synthesis Report Summary.”

Advantages:
• Faster for small changes – only modified

partitions are re-synthesized.
• Preserves previous optimizations – keeps

placement, timing, and routing of
unchanged partitions.

Disadvantages:
• Limited benefit for large changes
• Potential QoR degradation preserving

unchanged partitions may prevent global
optimizations, affecting timing or area efficiency.

• Complex flow management – requires careful
partitioning and checkpoint handling to avoid
inconsistent results.

• Less effective for small designs – designs with
few partitions may synthesize faster with a full
synthesis.

141

Advantages of VHDL
•Enforces stricter rules, in particular strongly typed, less permissive and error-prone
•Initialization of RAM components in the HDL source code is easier (Verilog initial blocks are less
convenient)
•Package support
•Custom types
•Enumerated types
•No reg versus wire confusion

Advantages of Verilog
•C-like syntax
•More compact code
•Block commenting
•No heavy component instantiation as in VHDL

VHDL allows buffer port mode when a signal is used both
internally, and as an output port when there is only one
internal driver. Buffer ports are a potential source of errors
during synthesis, and complicate validation of post-
synthesis results through simulation.

	Diapositiva numero 1
	Course Overview
	Diapositiva numero 3
	Diapositiva numero 4
	Diapositiva numero 5
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	Diapositiva numero 9
	Diapositiva numero 10
	Diapositiva numero 11
	Diapositiva numero 12
	Hands-on�Exercise 0�
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Diapositiva numero 19
	Diapositiva numero 20
	Diapositiva numero 21
	Diapositiva numero 22
	Diapositiva numero 23
	Diapositiva numero 24
	Diapositiva numero 25
	Hands-on�Exercise 1
	Diapositiva numero 27
	Diapositiva numero 28
	Diapositiva numero 29
	Diapositiva numero 30
	Diapositiva numero 31
	Diapositiva numero 32
	Diapositiva numero 33
	Diapositiva numero 34
	Diapositiva numero 35
	Hands-on�Exercise 2
	Diapositiva numero 37
	Diapositiva numero 38
	Diapositiva numero 39
	Diapositiva numero 40
	Diapositiva numero 41
	Diapositiva numero 42
	Diapositiva numero 43
	Diapositiva numero 44
	Diapositiva numero 45
	Diapositiva numero 46
	Diapositiva numero 47
	Diapositiva numero 48
	Diapositiva numero 49
	Diapositiva numero 50
	Diapositiva numero 51
	Diapositiva numero 52
	Diapositiva numero 53
	Diapositiva numero 54
	Diapositiva numero 55
	Diapositiva numero 56
	Diapositiva numero 57
	Diapositiva numero 58
	Diapositiva numero 59
	Diapositiva numero 60
	Diapositiva numero 61
	Diapositiva numero 62
	Diapositiva numero 63
	Diapositiva numero 64
	Diapositiva numero 65
	Diapositiva numero 66
	Diapositiva numero 67
	Diapositiva numero 68
	Diapositiva numero 69
	Diapositiva numero 70
	Diapositiva numero 71
	Diapositiva numero 72
	Diapositiva numero 73
	Diapositiva numero 74
	Diapositiva numero 75
	Diapositiva numero 76
	Diapositiva numero 77
	Diapositiva numero 78
	Diapositiva numero 79
	Diapositiva numero 80
	Diapositiva numero 81
	Diapositiva numero 82
	Diapositiva numero 83
	Diapositiva numero 84
	Diapositiva numero 85
	Diapositiva numero 86
	Diapositiva numero 87
	Diapositiva numero 88
	Diapositiva numero 89
	Diapositiva numero 90
	Diapositiva numero 91
	Diapositiva numero 92
	Diapositiva numero 93
	Diapositiva numero 94
	Diapositiva numero 95
	Diapositiva numero 96
	Diapositiva numero 97
	Diapositiva numero 98
	Diapositiva numero 99
	Diapositiva numero 100
	Diapositiva numero 101
	Diapositiva numero 102
	Diapositiva numero 103
	Diapositiva numero 104
	Diapositiva numero 105
	Diapositiva numero 106
	Course Overview
	Diapositiva numero 108
	Diapositiva numero 109
	Diapositiva numero 110
	Diapositiva numero 111
	Diapositiva numero 112
	Diapositiva numero 113
	Diapositiva numero 114
	Diapositiva numero 115
	Diapositiva numero 116
	Diapositiva numero 117
	Diapositiva numero 118
	Diapositiva numero 119
	Course Overview
	Diapositiva numero 121
	Diapositiva numero 122
	Diapositiva numero 123
	Diapositiva numero 124
	Diapositiva numero 125
	Diapositiva numero 126
	Diapositiva numero 127
	Diapositiva numero 128
	Diapositiva numero 129
	Diapositiva numero 130
	Diapositiva numero 131
	Diapositiva numero 132
	Diapositiva numero 133
	Diapositiva numero 134
	Diapositiva numero 135
	Diapositiva numero 136
	Diapositiva numero 137
	Diapositiva numero 138
	Diapositiva numero 139
	Diapositiva numero 140
	Diapositiva numero 141

