Fondazione

Finanziato # % Ministero . .
dall'Unione europea {g‘a dell’'Universita [taliadomani | | C S C
NextGenerationEU “$=° edella Ricerca DI RIFRESA £ AESHIENZA Rasddi e T

Advanced course to FPGA programming

Piero Vicini, Ottorino Frezza, Francesca Lo Cicero, Francesco Simula,
INFN Rome1

(NN

Istituto Nazionale di Fisica Nucleare

Introduction to FPGA
Architecture

Advantages and limitations
Design Flow

Simulation tool

Course Overview

FPGA interconnection
Quick intro
AURORA Xilinx

Tools & Programming languages

Advanced VHDL

Vivado tool overview
o Design Flow
= Project creation
= |p core integration [//14;
. . OOI
= Simulation '
= Synthesis
= |Implementation
= Tcl scripting
o Timing analysis

o Custom IP Design & Integration
o FPGA Test & Debug

Advanced course to FPGA programming

©)

o O O

Test and Debug

Fine tuning

Timing and Resources analysis
Optimization

O
O\

Vivado Design Suite

Vivado provides an end-to-end environment for VHDL
design flow: everything from coding, simulation,
synthesis, verification, and hardware programming is
integrated in a single tool.

The -mode option in Vivado specifies the startup mode
» gui (default): Launches the graphical user interface.
vivado -mode gui
» tcl: Starts the interactive Tcl console.
vivado -mode tcl
- Batch:
» Run scripts without interaction
= Useful for automation with Tcl scripts.

» Usually combined with -source <script.tcl> command.

vivado -mode batch -source build.tcl

Advanced course to FPGA programming

VHDL design flow

Design Entry

| HDL | | Schematic | | IP Cores | Libraries
l t -—--

(Simulation) — =

Synthesis

|
23
.
0]
]
0
-

Netlist | :

(Slmu‘l'atlon) =

Timin Analyms) Test-bench

Back- nnotatlon

(Mapping)

(Place and Route)

nnnnn

onnonn
i
w
)
>
|=g=gugupa

(Programming)—*>

uuuuu

Vivado Design Entry

Design entry is the process of providing the design description to
the tool

VHDL design flow

Design Entry Methods in Vivado:
 HDL (VHDL / Verilog / SystemVerilog)
» Design described as source code.
» Most flexible and widely used method.
 IP Integrator (Block Design)
» Uses pre-built IP cores connected in a block diagram.
» Suitable for system-level designs (e.g., processors, memory
controllers, AXI interfaces).

[Design Entry

» Schematic Entry
» Design described by drawing circuits with logic symbols.
» Less common today, mainly for small designs.
* High-Level Synthesis (HLS) — Vitis HLS
» Algorithms described in C/C++/SystemC.
» Translated into HDL by Vivado HLS.

Advanced course to FPGA programming

| HDL | | Schematic | | IP Cores |‘]<' Libraries

i 1
(Simulation) <»—.

Netlist =

i

Test-bench

\ 4
(Simulation

)—]

[Timin Analys

Back-Annotation
F Y

: s) Test-bench

(Mapping)

(Place and Route)

}

(Programming)—*>

nnnnn

ononn
i
=g
)
>
ooooo

UUUUU

Vivado HDL-Based Design Entry

Describes digital designs using HDL source files

PROJECT MANAGER - project_[P

Sources ? 00X Project Summary

Q T = 4+ o Overview | Dashboard

= -

Design Sources (1)

i Edit
@ . Top(Behavioral) (Top.vhd) (2) Settings

clk_inst : clk_wiz_0 (clk_wiz_0.xci) Project name: project_IP
counter : c_counter_binary_0 (c_counter_binary_0.xci) Project location: /apotto/homel/homedirs/locicero/advanced_VHDL/project_IP
Constraints Product family: Virtex UltraScale+

Project part: Virtex UltraScale+ VCU118 Evaluation Platform (xcvu9p-flga2104-2L-¢)
Top module name: Top

arget language: Verilog

Simulator language: Mixed

Simulation Sources (1)
sim_1 (1)
® . th_ip_only_counter(Bchavioral) (Testbench.vhd) (1)

Utility Sources

Board Part
Display hame: Virtex UltraScale+ VCU118 Evaluation Platform
Board part name: Xilinx.com:vcull8:part0:2.4
Board revision: 2.0
Connectors: No connections
Repository path: Jopt/Xilinx/Vivado/2023.2/data/xhub/boards
URL: www.xilinx.com/vcull8
Board overview: Virtex UltraScale+ VCU118 Evaluation Platform
Changes
IP Sources Libraries Compile Order
Vivado automatically identifies the top-level « The automatic configuration can be overridden by

module of the design hierarchy and
determines the elaboration, synthesis, and
simulation order of all source files.

explicitly setting the top module and customizing the
compile order in the project settings.

Advanced course to FPGA programming 5

Vivado IP-Based Design Entry

IP (Intellectual Property) core: reusable logic/design block
Make FPGA development faster and modular

Vivado supported IP:

Vivado IP Catalog
e Vendor-supplied (Xilinx) ~ PROJECT MANAGER :
& Settings Project Summary » IP Catalog X
= ores | Interfaces
* User-defined IPs Add Sources cores Lt
. . Language Templates all £ ol '[:‘ £ @ 0‘
* A custom hardware module (written in VHDL, e -
Verilog, or HLS) that is packaged into an IP Name A1
format v IP INTEGRATOR Vivac?o Repository
Create Block Design AIIlaInce Par‘tnelrs. .
Audio Connectivity & Processing
Open Block Design Automotive & Industrial
RTL IP Source Files imulation Generate Block Design AXI Infrastructure
:y'iiiﬂ\f:r:‘.f; AXIS Infrastructure

(XCIXCIX)

« GUl interface listing all available IP cores

| * | Organized by category: memory, communication...
» Allows configuration and instantiation of IPs
» By default, the IP catalog only displays IP cores
that are supported by the target part (or board) for

. th t ject.
e Third-party IPs © current projec

Advanced course to FPGA programming 6

Vivado: General IP Setting

IP settings are used to define various project-specific options for IP

¢ Settings [2]
Project Settings Isppecmf various settings associated to IP. /
General
- Eore Ot A core container is used in Vivado to store an
Synhesis Use Core Containers for 17 IP core and all generated output files in a
e ementer Siwetion single compressed binary file with the .xcix
o 7 Use Pref:ompnele' S|rn1.1|a1mn-||bran-es eXtenSIOH
Tool Settings ¥ Automatically generate simulation scripts for IP
e Upagrade IP
:Ui::l::; v Generate log file
Display Default IP Location
fepTalk Location that IP added to the project will have output products Sett|n the defaUIt IP |OCat|On W|” erS|St
Help and customizafion stored.
e SN =y rpm—s . across multiple Vivado sessions.

> Colors IP Cache

Seleclion Rules)
Out of Context per IP Synthesis needs to be used to take

Shortcuts advantage of IP Caching.
> Strategies Cache scope Lacal v

» Window Behavior
Cache location:

Clear Cache
I/';\

Advanced course to FPGA programming

Vivado: IP Generate Output products

The Generate Output Products step creates all the files required for synthesis, simulation, and
implementation of the IP

Generate Output Products X
The following output products will be generated.
PROJECT MANAGER - project P
P . Sources ? 00O X
review
O T =2 o = = + e
clk_wiz_0.xci (00C per IP) ~ IP (2)
Instantiation Template c_counter_binary_0 (14)
Synthesized Checkpoint (.dcp) Outp Ut prOdUCtS Instantiation Template (2)
) , . Synthesis (3)
Structural Simulation
delivered by the IP Simulation (3)

Implementation

- hd Change Log (1)
Synthesis Options c_counter_binary_0.dcp
Global ® c_counter_binary_0_sim_netlist.vhdl
B ® c_counter_binary_0_sim_netlist.v
°
I 1 et o I ® c_counter_binary_0_stub.vhdI

® c_counter_binary_0_stub.v

Run Settings
clk_wiz_0 (33)

®) On local host: Number of jobs: 24 v
On remote hosts
Launch runs on Cluster
Generate scripts only

Do not launch

.\3/’,. Hierarchy IP Sources Libraries Compile Order

Advanced course to FPGA programming 8

Vivado: IP Generate Output products

Generate Output Products X
The following output products will be generated.
* Global Synthesis: all design sources are synthesized
Preview
N together

clk_wiz_0.xci (0OOC per IP) ~

o en « Out-of-Context per IP (OOC): the Vivado tools

Structural Simulation synthesize the IP as a standalone module and produces

Implementation

For either Synthesis - a design checkpoint (DCP).
option, Vivado generates [Tsynthesis options Advantage:

HDL and XDC files for Global

the 1P and uses those o T —— o It improves synthesis time by avoiding IP re-synthesis
ttings during project runs.

files during synthesis and " ***™° , Di b J

during implementation. ® onloehes L2~ isadvantege:
On remote hosts o IP may not be fully optimized when integrated into the full
Launch runs on Cluster deSIQn

Generate scripts only

Do not launch

Advanced course to FPGA programming 9

Vivado: IP Source tab

The IP Sources tab provides a hierarchical view of all IP cores added
to the project.

» Allows access to IP configuration files, and generated output
products (such as HDL wrappers, simulation models, and

synthesis netlists)
* Tracks the generation status of each IP.

4F1 | IP to be synthesized OOC.
+F |IP to be synthesized with the project (global synthesis).

:B: Unmanaged IP. The purpose is for the user to make
modifications to unencrypted HDL sources or constraints.

f Locked IP that cannot be customized or regenerated due to
1__13 Vivado version mismatch or incompatible target device
settings.

Run report_ip_status for more details and
recommendations on how to fix this issue.

Advanced course to FPGA programming

PROJECT MANAGER - project_IP

Sources
Q T & +
IP (2)
c_counter_binary_0 (12)
clk_wiz_0 (33)
Instantiation Template (1)
Synthesis (12)
Simulation (10)
Implementation (4)
Change Log (1)
clk_wiz_0.dcp
® clk_wiz_0_sim_netlist.vhdl
@ clk_wiz_0_sim_netlist.v
@ clk_wiz_0_stub.vhdl

® clk_wiz_0_stub.v

Hierarchy IP Sources Libraries

Compile Order

?

- oo X

10

Vivado: IP Source tab

« By right-clicking on an IP core in the IP Sources tab, several operations can be performed

IP(2)
c_counter_binary_0 (12)
clk_wiz 0 (33)
Insta Source File Properties...
Syntl Enable Core Container
Simd & Re-customize IP...
Imple
Generate Output Products...
Chan
clk Reset Output Products...
® ckwn
® cl_wn Copy IP...
® clk w Open IP Example Design...
® ckw IP Documentation
Report IP Status
Copy File Into Project
Copy All Files Into Project
X Remove File from Project...
Disable File
Set Used In...
Copy Constraints Set...
Edit Constraints Sets...
Edit Simulation Sets...
4+ Add Sources...
Hierarchy IP cvuives civranics ot e

Source File Properties ?2 00X

clk_wiz_0.xci - -3

Enabled
Location: (apotto/homel/homedirs/locicero/ad

 The Source File Properties window shows |..

Part: xcvu9p-flga2104-2L-e

file-specific settings such as file type, library, |= o«

Modified: Yesterday at 17:29:14 PM

compile order, and usage (Synthesis, e o

Encrypted: No

Implementation, Simulation) in the design careCanre: o

Used In
» fI OW) Synthesis
" v} Implementation

) Simulation

< >
General Properties IP

 The Open IP Example Design option allows opening a
standalone Vivado project that demonstrates how to use the
selected IP core.

It includes pre-configured design sources, a testbench,
constraints, and sometimes simulation scripts to help

understand and validate the IP's functionality.

Advanced course to FPGA programming 11

FIFO

FIFO (First In First Out) is a method to organize a data buffer as a queue. N
« The FIFO is implemented using circular buffer. l D
» Write/read pointers act as selector for demux/mux on data.
« A Fifo control logic manage a write pointer (Head) and a read pointer (Tail),

necessary to avoid over-flow (or write Full) or under-flow (read empty).

* Port structure
= Standard / Native interface:

Simple write and read ports, single data bus. Behavior/ mode
= AXIl or bus-based FIFOs: = Standard FIFO:
Compatible with AXI4/AXI-Stream interfaces. First word appears on output port only after asserting
read_enable.
» Clocking scheme = First-Word Fall-Through (FWFT or Show-Ahead):
= Single-clock FIFO (synchronous): Write and read First written word appears immediately on the output
share the same clock. without asserting read_enable.

= Dual-clock FIFO (asynchronous): Write and read
operate on separate clocks.

Xilinx provides the FIFO Generator IP for creating FIFO memories.

Advanced course to FPGA programming 12

Hands-on

Exercise 0

FIFO_project

» Create a new Vivado project (named FIFO_project)

Part /0 Pin Count Awvailable 10Bs LUT Elements FlipFlops Block RAMs Ultra RAMs DSPs BUFGs

Gk Transceivers GTI
HoUSScfowh2892-2L-2 2882 G224 1303680 2607380 2016 ga0

9024 51440 40 0

« Add a FIFO IP core using the FIFO Generator (found in Memory&Storage category) leaving all
default setting unchanged

» Create a top-level VHDL module named fifo_wrapper with the following interface:
GENERIC (data_width : integer:=32);

PORT (

clk : IN STD_LOGIC;
rst: IN STD_LOGIC;
data_in: IN STD_LOGIC_VECTOR(data_width-1 DOWNTO 0);
valid_in: IN STD_LOGIC);
 Instantiate the FIFO in fifo_wrapper

Tip: After generating the FIFO, you can use the Instantiation Template

provided by Vivado (in IP Sources tab) to correctly instantiate the
component in your VHDL code.

Advanced course to FPGA programming

14

FIFO_project

Connect the FIFO:
 din «— data_in
e wr_en < valid _in

» Connect clk and rst to both the FIFO and the top module.
« Connect rd_en to '0' (the FIFO is not read)
» Leave FIFO output unconnected (open)

Fifo_wrapper

Fifo_generator_0

Data_in |
Valid_in

—0

clk
rst

Advanced course to FPGA programming 15

Quick Guide to Vivado GUI

Create Project

AMDZ
Vivado

ML Edition

Quick Start

Create Project >
Open Project >

Open Example Project >

Tasks

Manage IP >
Open Hardware Manager >

Vivado Store >

Learning Center

Documentation and Tutorials >
Quick Take Videos >
What's New in 2023.2 >

New Project

Project Name
Enter a name for your project and specify a directory where the project data files will be stored.

Project name: project_IP
Project location: |/apotto/homel/homedirs/locicero/advanced VHDL

Create project subdirectory

Project will be created at: .../locicero/advanced_VHDL/project_IP

Cancel

Advanced course to FPGA programming

16

Quick Guide to Vivado GUI

New Project

Project Type
Specify the type of project to create.

@) RTL Project

Project Setup

You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design planning and

analysis.

+| Do not specify sources at this time

Project is an extensible Vitis platform

Post-synthesis Project

You will be able to add sources, view device resources, run design analysis, planning and implementation.

1/0 Planning Project
Do not specify design sources. You will be able to view part/package resources.

Imported Project
Create a Vivado project from a Synplify Project File.

Example Project
Create a new Vivado project from a predefined template.

Advanced course to FPGA programming

* Project Type determines the types
of source files that are associated
with the project.

o RTL project
= block design
» [ntellectualProperty

= RTL sources
VHDL, Verilog, SystemVerilog

17

Quick Guide to Vivado GUI
Project Setup

For the first projects (RTL code simulation only), selecting an FPGA/board is not technically required.
However, Vivado requires a target to be specified, so we select the board we plan to use later.

Parts | Eoards

Feset All Filters

Category All W Package: All W Temperatura: All

Family: All v Speed: Al v Static power: Al

Search: uUS5c w (1 match)
Part /O Pin Count Awailakle [0Bs LUT Elements FligFlops Block RAMs Ultra RAMs D5Ps BUFGs Gb Transceivers
#euSScfavh2892-2L-2 2892 6524 1303680 2607380 2016 950 9024 51440 40

Advanced course to FPGA programming 18

Flow Navigator =

v PROJECT MANAGER
£ Settings
Language Templates

<F IP Catalog

v [P INTEGRATOR
Create Block Design
Open Block Design

Generate Block Design

v SIMULATION

-

?

PROJECT MANAGER - project_[P

Sources

Q

~ a
= s |+
Design Sources
Constraints
Simulation Sources
sim_1

Utility Sources

Quick Guide to Vivado GUI

AMDZ1
Vivado

ML Edition

Add Design Sources

Project Summary

o Overview | Dashboard

Add Sources X

Add Sources

This guides you through the process of adding and creating sources for your project

Add or create constraints

®) Add or create design sources Add Sources X

Add or Create Design Sources
Specify HDL, netlist, Block Design, and IP files, or directories containing those file types to add to your project. Create a new source

file on disk and add it to your project.

It is possible to add files individually (Add Files)
or all files in a directory (Add Directories).

+A
In... Name Library Location
o 1 integer_multiplier.vhd xil_defaultlib /apotto/homel/homedirs/locicero/advanced_VHDL/integer_multiplier/src
Add Files ” Add Directories H Create File

Scan and add RTL include files into project

Copy sources into project

» To enable/disable source files select the Enable/Disable File right-click menu command.

19

Quick Guide to Vivado GUI

Add Simulation Sources

v PROJECT MANAGER ISources 2 _0O0OG X Project Summary
% Settings | Add Sources
Language Templates j Add Sources
1F IP Catalog AM D ‘ This guides you through the process of adding and creating sources for your project
I*\/I/I_I\E’c?tgno Add or create constraints

v IPINTEGRATOR Add or create design sources

Create Block Design) .
®) Add or create simulation sources

Open Block Design

Generate Block Design

v SIMULATION ()

Run Simulation

Advanced course to FPGA programming

Cancel

20

Quick Guide to Vivado GUI
Add IP from IP Catalog

To add an IP select it by double-clicking it in the IP catalog.

The Customize IP window shows available parameters, which vary based on the IP core.

Binary Counter (12.0)

@ Documentatiol IP Location @& Switch to Defaults
IP Symbol Inform Component Nang€ c_counter_binary_0
Show disabled ports

Basic Control

Implement using Fabric v A

Output Width 16 [1-256]

Increment Value (Hex) |1 Range: 1...FFFF

Loadable

Restrict Count
Final Count Value (Hex) '1
CLK QI[15:0]

Count Mode UpP
Sync Threshold Output

Threshold Value (Hex) 1

v

>

| OK | | Cancel |

Advanced course to FPGA programming

Specify the name and the location on disk to
store the IP.

Default: <project_name>.src/sources_1/ip/

Previously created IP cores — typically in
XCI format — can also be added to the
project using Add Sources.

21

Vivado Native FIFO Configuration

FIFO Generator core is a fully verified first-in first-out (FIFO) memory queue
https://docs.amd.com/v/u/en-US/pg057-fifo-generator

Supported Interfaces

* Native

* AXI Memory Mapped

 AXI Stream

p
— FIFO_WRITE

< full
p din[31:0]
P wr_en

— FIFO_READ
« empty
< dout[31:0]
p rd_en

clk

srst

Native Interface Signals for Common Clock FIFOs

rst/srst. asynchronous/synchronous reset that initializes all internal pointers and output
registers.

clk: all signals on the write and read domains are synchronous to this clock.

din[n:0]: The input data bus used when writing the FIFO.

wr_en : If the FIFO is not full, asserting this signal causes data (on din) to be written to the
FIFO.

full : When asserted, this signal indicates that the FIFO is full. Write requests are ignored
when the FIFO is full, initiating a write when the FIFO is full is not destructive to the contents
of the FIFO.

dout[m:0]: The output data bus driven when reading the FIFO.

rd_en: If the FIFO is not empty, asserting this signal causes data to be read from the FIFO
(output on dout).

empty: When asserted, this signal indicates that the FIFO is empty. Read requests are
ignored when the FIFO is empty, initiating a read while empty is not destructive to the FIFO.

Advanced course to FPGA programming 22

Vivado Native FIFO Configuration

In the native port tab, it is possible to configure FIFO settings

Native Ports tab

Basic Mative Ports Status Flags Data Counts Summary

Read Mode "
Read Mode: — FIFO_WRITE
Standard FIFO First Word Fall Th h —
. Standard FIFO C@ansrt 0 s vers e o> .
d FWFT FIFO Data Port Parameters — p wren
® th|S Implementatlon inCI'eaSGS the Asymmetric Port Width II — FIFO_READ wr_rst_busy
depth of the FIFO by 2 read words. Write Width 1231024 — empti rd_rst_busy
Write Depth 15 v (Actual write Depth: 16 N @
— P rd_en
Read Width —
Data port parameters: Clkt
i H ctusl Read Depth: - SIS
« Width: number of bits per entry * Actual Resd Depth: 16
* Depth: total number of entries in the memory ECC, Output Register and Power Gating Options
ECC Hard ECC
ECC (Error Correction Code) is an optional feature v output Registers Embedded Registers v

that adds error detection and correction to the
FIFO's internal memory.

Initialization

It is useful in critical system where data may be ¥/ Reset Fin

corrupted by radiation, electrical noise, hardware Reset Type Synchronous Reset v
faults, ensuring that the data read from the FIFO is Full Flags Reset Value 0

the same as what was written. ¥ Dout Reset Value 0 (Hexd

Read Latency: 2

Advanced course to FPGA programming 23

Vivado Native FIFO Configuration

Optional ports can be enabled in the Status Flags tab

Write Acknowledge: Generates
write acknowledge flag which
reports the success of a write
operation.

Overflow (Write Error):
Generates overflow flag which
indicates when the previous write
operation was not successful.

Status Flags tab

Basic MNative Ports Status Flags Data Counts Summary

Optional Flags

[Almost Full Flag Almost Empty Flag

Handshaking Options

Write Port Handshaking

Write Acknowledge Owerflow

Read Port Handshaking

walid Flag Underflow Flag

Programmable Flags

Programmable Full Type Mo Programmable Full Threshold
Full Thresheld Assert Walue 14

Full Threshold Negate Walue 13

Programmable Empty Type Mo Programmable Empty Threshold
Empty Threshold Assert Walue 2

Empty Threshold Negate Walue 3

Advanced course to FPGA programming

Valid Flag: Generates valid flag
that indicates when the data on the
output bus is valid.

Underflow (Read Error):
Generates underflow flag to
indicate that the previous read
request was not successful.

24

Vivado Native FIFO Configuration

Data Counts tab: enables optional signals reporting the current FIFO fill level

Data Counts tab

Basic Native Ports Status Flags Data Counts Summary

Data Count Ontions

Data Count

Data Count Width 4 [1-4]
Write Data Count Width 4 [1-4]
Read Data Count Width 4 [1-4]

Advanced course to FPGA programming

Data Count: output signal
that indicates how many data
entries are currently stored in
the FIFO bulffer.

More Accurate Data Counts: This option
uses additional external logic to generate
more accurate data count signals,
which indicate the number of data words
currently stored in the FIFO.

Only available for independent clocks FIFO

with block RAM or distributed RAM, and
when using first-word fall-through.

25

Hands-on

Exercise 1

FIFO project

* Modify fifo_generator_0 with the following configuration: | Double-click

. : . fifo_generator_0
Fifo implementation: Common Clock Distributed RAM [Basic tab to open the Customize IP

- dialog.
- Native Ports tab

Write/Read Width: 128 bits
Write Depth: 16

Write port handshaking - Overflow: Enabled

Read port handshaking - Valid Flag: Enabled - Status flag tab
Read port handshaking - Underflow Flag: Enabled

Data count Enabled - Data Counts tab

==

Create another FIFO IP core, named fifo_native_ FWFT_128bit, with the same configuration as fifo_generator_0,
except

= First-Word Fall-Through : Enabled } Native Ports tab

Tip: Right-click fifo_generator_0 and select “Copy IP.." to duplicate the
existing FIFO IP core and modify only the necessary settings.

Advanced course to FPGA programming 27

FIFO project

Update the fifo_generator_0 component and its instance in the top-level VHDL module (fifo_wrapper)
Add fifo_native_ FWFT_128bit to the top-level VHDL module (fifo_wrapper)
Connect the FIFOs as shown below (with all outputs left unconnected)

Add the provided testbench (/sim/TB_fifo_wrapper_exercise_1.vhd) and waveform Configuration File

testbench (/sim/tb_fifo_wrapper_behave.wcfq) .
Run Behavioral simulation

Fifo_wrapper
Fifo_native_ FWFT_128bit

/;:) din

—> |Wr_en

rd en|——*0Q’

clk
rst

Data_in
Valid _in

Fifo_generator_0

Advanced course to FPGA programming 28

Flow Navigator

Quick Guide to Vivado GUI

Open simulation

S PROJECT MANAGER - integer_m

v PROJECT MANAGER

£+ Settings

Sources

Qa T ¢ +

Add Sources

Language Templates

Design Sources (1)

Constraints

{F IP Catalog Simulation Sources (1)
sim_1 (1)
v IP INTEGRATOR @ . TB_integer_muli

Utility Sources

Create Block Design

Open Block Design

Generate Block Design

v SIMULATION

v RTL ANALYS
P Run Lint

> Open Elz

Run Behavioral Si mu@

Comr

Simulation

Run simulation

ARERRRION W R

Restart
simulation

Ll

Add signals to waveform

* In the Objects window, locate the signal you want to observe
e Right-click on the signal and select "Add to Wave Window" or drag and drop it!
* Run or restart simulation to see signal transitions

Add divider to waveform
* Right-click on the waveform background (the empty area where signals are shown).
» Select "New Divider"
* Drag and drop signals into groups separated by dividers for better organization.

Manage signal display
» Right-click on the signal in the waveform
» Rename
» Signal Color
» Radix

Advanced course to FPGA programming 29

FIFO project simulation

M din[127:0]
W owr_en
w rd_en
W vang

» B dout[127:0]

il full
Same

) e empty
inputs i

> B data_count[3:0]

& din[127:0]

W wr_en

w rd_en

> B dout[127:0]
w full
wl empty
> B data_count[4:0]

The empty flag FIFO shows the first written data
has latency

i valid

> B dout[127:0]
 full
e empty

» B data_count[3:0]

MNative FWFT

W rd en

> B dout[127:0]
- full
e empty
> B data_count[4:0]

000000000000

000000000000CY
1
0
0

DDDDDDDDDDDD!

0000000000000y
1
0
18

50,000 ns

100,000 ns

o [
e data co gnal reaqds 0O €
ere are 16 word oreg s
150,000 ns 200,000 ns 250,000 ns

NINININNEN

GDDB...Kﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ..ﬁ{ﬂﬂﬂﬂ...K Qo0000ARECORC0000A0A000C00RER0AS
[elelelelelelelelelelclelelelelelelelelelelcTelelele) cleTeleele]
¥
Q 1¥2Y3¥a4y¥syey?d (=, a 2 . 6]

ooaa. .. Xﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ. . .:;(:EJEJEJEJ. o X

0002000022A00A0A0AA00ARA0RAA0AA3

EGDBEBGBGDBE...K' [elcTelelelelelelelelele el elelelelelelelele T e e eTee Tl
] I1YW2Y3YAWSEYaYT =] =] 200N W Y 15

Vivado AXI-Stream FIFO Configuration

FIFO Generator core is a fully verified first-in first-out (FIFO) memory queue

Supported Interfaces
* Native
« AXI Stream

« AXI MemoryMapped

AXI FIFOs operate only in First-Word

Fall-Through mode

» two additional read words added
to the FIFO depth.

Basic AXI4 Stream Ports Config Status Flags Summary

Interface Type

Mative AX] Memory Mapped (®) AX] Stream

Clocking Options

Clock Type AXI

® Common Clock Independent Clock

HAS ACLKEN

Clock Enable Type

Advanced course to FPGA programming

32

AXIl interface overview

AXl is part of ARM AMBA, a family of micro controller buses first introduced in 1996.
https://docs.amd.com/v/u/en-US/ug 1037-vivado-axi-reference-guide

« AXI4: For high-performance memory-mapped requirements
« AXI4-Lite: For simple, low-throughput memory-mapped communication

O Provides separate data and address connections for reads and writes, which allows simultaneous,
bidirectional data transfer.
O Requires a single address and then bursts up to 256 words of data

« AXI4-Stream: For high-speed streaming data

 Defines a single channel for transmission of streaming data.
O Can burst an unlimited amount of data.

Advanced course to FPGA programming 33

AXI-Stream overview

The AXI interface protocol uses a two-way valid and ready handshake mechanism.
» The information source uses the valid signal to show when valid data or control information is
available on the channel.

« The information destination uses the ready signal to show when it can accept the data

AXl4-Stream FIFO Generator Interface Signals

Name

|Direction|

Description

AXI4-5tream Interface: Handshake Signals for FIFO Write Interface

Name

|Dire¢tio-n|

Description

AXl4-Stream Interface: Handshake Signals for FIFO Read Interface

5_axis_tvalid Input TVALID: Indicates that the master is driving a valid transfer.
A transfer takes place when both TVALID and TREADY are
asserted.

s_axis_tready Output | TREADY: Indicates that the slave can accept a transfer in

the current cycle.

AX14-5tream Interface:

Information Signals Mapped to FIFO Data Input (din) Bus

m_axis_tvalid Output | TVALID: Indicates that the master is driving a valid transfer.
& transfer takes place when bath tvalid and tready are
asserted.

m_axis_tready Input TREADY: Indicates that the slave can accept a transfer in

the current cycle.

AXla-5tream Interface: Information

Signals Derived from FIFO Data Output (dout) Bus

s_axis_tdata[m-1:0] Input TDATA: The pnmary payload that is used to provide the
data that is passing across the interface. The width of the
data payload is an integer number of bytes.

s_axis_tuser[m:0] Input TUSER: The user-defined sideband information that can be

transmitted alongside the data stream.

m_axis_tdata[m-1:0] Output | TDATA: The prmary payload that is used to provide the
data that is passing across the interface. The width of the
data payload is an integer number of bytes.

m_axis_tuser[m:0] Output | TUSER: The user-defined sideband information that can be

transmitted alongside the data stream.

Advanced course to FPGA programming

34

Vivado AXI-Stream FIFO Configuration

s ~
: — 5_AXIS M_AXIS = %
— (m_axis_tdata[31:0] > >
—_ 4 5_axis_tready m_axis_tready 4 —
— > s_axis_tuser[3:0] m_axis_tuser[3:0] > —
—_— ’ s _axis_tvalid m_axis_tvalid ’ e
= s aclk Wr_Ist_busy |
-O s _aresetn rd_rst_busy |jmm

. oy

TSTRB: The byte qualifier that indicates whether the
content of the associated byte of TDATA is valid
TKEEP: The byte qualifier that indicates whether the
content of the associated byte of TDATA has to be
trasfer

TLAST: Indicates the boundary of a packet.

AXI4 Stream port tab

Basic | AXI4 Stream Ports Config @ Status Flags Summary

TDATA MUM BYTES | 4 w0 [0,1,2..512]

TID WIDTH 0 [0 -32]

TDEST WIDTH 0 [0 -32]

TUSER WIDTH 4 [0 - 4006]
HAS TSTRE TSTRB WIDTH 4 14 - 4]
HAS TKEEP TKEEP WIDTH 4 [4 - 4]
TLAST

Calculated width: 36

- TDATA NUM BYTES: The number of bytes
transferred per cycle

« TID: Data stream identifier

« TDEST: Provides routing information for the data
stream.

Advanced course to FPGA programming 35

Hands-on

Exercise 2

FIFO project

* Copy fifo_generator_0 in fifo_native_128bit
« Remove from the project fifo_generator_0
» Create another FIFO IP core, named fifo_AXI_stream_128bit, with the following configuration

» |nterface Type: AXI Stream]- Basic tab

= TDATA NUM BYTES: 16]- AXl4 stream Ports tab

= FIFO DEPTH:16

» FIFO Implementation type: Common Clock Distributed RAM } Config tab

Advanced course to FPGA programming 37

FIFO project

e Add to the top-level VHDL module:
= An instance of fifo_native _128bit

= An instance of fifo_AXI_stream_128bit;
= Generic

o FIFO_MODE: string - use this generic with a generate statement to select between the FIFO
configurations (NATIVE FWFT / STANDARD NATIVE / AXI_STREAM)

= Ports:
o data_out : out std_logic_vector(31 downto 0);
valid_out : out std_logic
Read_enabile: in std_logic (connected to NATIVE FIFO rd_en / AXI4 FIFO m_axis_tready)

Ready : out std_logic (connected to NATIVE FIFO not full/ AXI4 FIFO s_axis_tready)
Empty: out std_logic

Advanced course to FPGA programming 38

FIFO project

Fifo_wrapper

Fifo_axi_stream_ 128bit

7 3

—NJ m_axis_|tready

3
{

!7 s_axis_tready

din

ready <

data_out

Data_in

Valid_in

valid_out

clk

rst

Advanced course to FPGA programming

Read_enable

> empty

39

Vivado Simulation

Simulation verifies the functional correctness of the design before hardware implementation.

3" Party IP

L

RTL Design

li—

'
i

Behavioral
Simulation

Testbench

¥

. Debugging Tools,

Post-Synthesis |

Assertions, ¥ . .
- Simulation
: Coverage, ;
: MATLAB/Simulink
|
L 2
Post-
= |mplementation
Simulation

Xilinx IP,
and simulation
libraries

¥

Synthesis

(ISE, Vivadao)

¥

P&R
{ISE, Vivado)

 Vivado provides a simulator to check functionality

throughout the design process

Simulation Type

Behavioral

Post-Synthesis

Post-Implementation

Stage

Pre-synthesis

After synthesis

After place & route

Advanced course to FPGA programming

Timing Info

No

Minimal

Yes

Purpose

Functional correctness

Verify RTL vs synthesized

netlist

Functional + timing

correctness

40

Vivado Simulator

Simulation sources are organized into simulation sets in
the Sources window

Different simulation sets enable verification with multiple . Only one set can be active at a time

iIndependent testbenches Sirmulation Sources (4)
sim 2 (2)
e Simulation-Only Sources Properties...
Simulation sources can be assigned to a specific set 94 RunSimulation '
. Siy Reset Simulation »
when added to the project 3
X Delete
Add Sources X Utility Hierarchy Update ’
Add or Create Simulation Sources C' Refresh Hierarchy
gggc:i::fyéos;rgj'[aglgzmesc?fec|f|c HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk and IP Hiera rchy »
Make Active
Specify simulation set: sim_1 v Copy Constraints Set
im_1
+, - Edit Constraints Sets...

Create Simulation Set...

Edit Simulation Sets...

4+ Add Sources...
Use Add Files, Add Directories or Create File buttons below < Report IP Status

Hierarchy "IP Sources Libraries Compile Order

Vivado simulator does not support waveform tracing of some HDL objects, such local variables.

Advanced course to FPGA programming 41

VHDL TestBench

VHDL test bench (TB) is a piece of code meant to verify the functional correctness of HDL model

IB

stimulus response

Source || I DUT = Sink

The source provides input to the DUT in several ways:

« Assign constant values - Useful for small, predefined test cases.

* Read values stored in a separate file - Useful for larger test datasets or data generated externally;
allows flexibility and easy updates without modifying the code

» Algorithmically on-the-fly - Input vectors are created dynamically during simulation

The Sink collects DUT output, which should be verified against expected results:

* Expected response must be known exactly

« Comparison between DUT output and the expected response can be performed automatically
» Responses can be optionally saved to files for offline analysis or debugging.

Advanced course to FPGA programming 42

Entity

(no port)

Architecture

VHDL TestBench

ENTITY test tb IS
END test tb;
ARCHITECTURE structural OF test tb
IS
component entity to test is]
Components/signals
end component; [declaration
-- Signal/constant declaration_

BEGIN

-- stimulus genepatop:}-SﬂmUMSgenmaﬂon

DUT: enity to_ test
port map(Component instantiation

)
-- Response cheker } Sink

_ END behavior;

Advanced course to FPGA programming

Making realistic TB is sometimes hard

Verification cannot prove correctness:
it can show the existence of bugs, but
not their non-existence!

Test bench may have mistakes

« False interpretation

» Test bench codes may have bugs
Good to have different persons writing
the actual code and test bench

43

VHDL Simple TestBench

Simple TB:
o Instantiates the design under test (DUT)
o Generates stimulus
= Not automatically— handwritten code
trying to spot corner cases
= Poor reusability
* Provides limited verification coverage

B

stimulus D.[-:..l_. }

constants

o Verifying DUT output by manually
inspecting simulation waveforms is error-
prone and unreliable, especially for large
datasets or subtle corner cases. Automatic

checking ensures correctness,
repeatability, and efficient detection of
mismatches

Suitable only for very simple designs!

Advanced course to FPGA programming 44

File- based TestBench

« Stimulus for DUT is read from an input file and modified in the source component

» The response is modified in the sink and written to the output file

Input

file

Source

L

DUT

Sink

Output

file

For each stimulus file, the designer can prepare the expected output trace.
It can be automatically compared to the response of DUT, either in VHDL or using command line

tool diff for file.

Not synthesizable!

Advanced course to FPGA programming

45

File- based TestBench

1. Required package
To use file operations, you must include:
use std.textio.all;

use ieee.std logic textio.all; 2. Declaring a file inside architecture

file input file : text open read mode 1is “in_file.txt";
file output file: text open write mode is “out file.txt";
* read_mode — open file for reading.

. Worki ith li
3. Working with lines * write_mode — open file for writing.

Add an intermediate type line to
process file content.
variable L : line;
4. A) Reading from a file
variable val : <type>;

while not endfile(input file) loop -- keep reading until file ends
readline(input_file, L); -- get one line from file
hr‘ead/r‘ead(L, val); -- extract <type> from line
end loop;

4. B) Writing to a file
variable val : <type>;
write(L, val); -- write val into line
writeline(output_file, L); -- flush line to file 46

File- based TestBench

read

Part of the textio library.
Reads standard data types such as integer, real, bit, etc.

hread

Part of the std_logic_textio library.
Used to read std_logic or std_logic_vector values from a text file.
Can read values in hexadecimal ("OF") or binary ("1010") notation.

Advanced course to FPGA programming

47

VHDL Smart Test Bench

Circuit’s response affects further stimulus - TB is reactive
E.g., source writes FIFO (=DUT) until it is full, then it does something else...

IB

Source |—- DUT

1B

Source || | DUT » Sink

jﬁ

Advanced course to FPGA programming

Hands-on

Exercise 3

FIFO Project simulation

» Use the simple testbench TB_fifo_wrapper_constant.vhd available in /sim to simulate the
FIFO_wrapper entity configured in AXI_STREAM mode (add the TB in a new simulation_set

named “sim_constant”)
e Remember to activate new simulation set!

8 C) 32, Data_in
2 7
C /
2 e | DUT Constant Wr_enable Rd_enable
(- <
9 Wr_ready
_) AXI_STREAM FIFO

FIFO_wrapper

Advanced course to FPGA programming

FIFO Project simulation

TB_fifo_wrapper_constant.vhd

type packet_array 1s array (natural range ==) of std_logic vector(DATA WIDTH-1 downto @);
constant test packet : packet array := {

(DATA WIDTH-1 downto 32 == '0') & x""ad020001",
(DATA WIDTH-1 downto 32 == '1') & x""50020001",
(DATA WIDTH-1 downto 32 == 'Q'}) & x"050f0001",
(DATA WIDTH-1 downto 32 == 'Q'}) & x"'30020e0l",
(DATA WIDTH-1 downto 32 == 'G'}) & x""300b00E1",
(DATA WIDTH-1 downto 32 == 'Q'}) & x"ad024001",
(DATA _WIDTH-1 downto 32 == 'Q') & x"'07080001"
1
stimulus _process © process
variable 1 : integer := 0;
begin _ uut_axi_stream : entity work.fifo_wrapper
walt until rst = 'Q'; ;
; L generic map
walt until rising_edge{clk); data width == DATA WIDTH,
. integer'image IS a built-in while i = test_packet'length loop FIFD_MODE == "AXI_STREAH
3 if ready = '1' then !
VHDL function that converts data_in <= test_packet(i}; port map {
. . wr_enable == '1'; clk == clk,
an Il]tEEEJEBr \/EﬁlleB Il]t() a report "TX sent word " & integer'image({i}; ret == rst,
" . 1i:=1+1; data in =~ data_1in,
string representation that else valid_in == wr_enable,
r wr_enable <= '0'; read == ready,
can be printed or reported. end if; read enable — re enable,
walt until rising_edge{clk); data_out == data_out,
end loop; valid_out =» valid
¥

wr_enable == '0';
walt;
end process;

Advanced course to FPGA programming 51

FIFO Project simulation

TB_fifo_wrapper_constant.vhd

uut axi stream : entity work.fifo wrapper
generic map ¢ .
data_width == DATA WIDTH, ri_read_process ; process

— o “ variable read count : integer := 0;
) FIFO_MODE == "AXI_STREAM constant expected words . integer := test packet'length;
bei
port map { ng::git until rst = 'Q';
clk == clk, walt for CLK_PERICD * 100;
rst == rst,
data_in == data_in, while read count < expected words Toop
valid in == wr_enable, walt until rising_edgefclk);
ready == ready, _ .
read enable == re_enable, 1f valid = '1" then
data_out == data_out, re_enable <= '1';
"."a-l.ilj aut == "."EI-I.ilj walt fl:lr ':LK_F'ERI':'D;
. — re_enable == '0';
¥ report “RX received word [& integer'imageiread count] & "1: " & to_hstring({to bitvector{data out]),
read_count := read_count + 1;
else
. . ble == '0Q';
« to_hstring is a standard VHDL- o F el
2008 function (it doesn’t exist in end 1o
\/}_I[)l__sazs or :2()();2). ;iEEEEjTSimulatiun complete: All expected data received” severity note;
i i 1t;
!t converts a b|.t or Iog_lc vector entl pracess;
into a hexadecimal string, very
useful for readable messages in « The stop procedure from the std.env package
simulation. terminates the simulation cleanly

Advanced course to FPGA programming 52

FIFO Project simulation

To use Vivado-2008 to_hstring function, make sure that the file TB_fifo_wrapper_constant.vhd is
set to VHDL-2008 language type.

Source File Properties
: begq:
TE fifo_wrapper_constant.vhd o |
i & "':ll
+| Enabled E=] st Type (£3)
Location: l'.apﬂttﬂ_f.hﬂlmE:lf'hC'mEdir Sat the t_'\.:‘.'pe of the selected sources,
e
Type: WHDL
Library: wil_defaultlib
File type: | WwHDL w
Size: 4.6 kKB
e VHDL ~
Maodified: Today at 09:08:30 AM WHDL 2008
Fimm el el him WHDL 2019 —
¢ . EDIF ¢
General Froperties ¢
*DC

Advanced course to FPGA programming 53

Mame

. clk

iw rst

> ¥ data_in[255:0]

w valid in

w ready

w read_enable

> B data_out[255:0]

W valid_out

Tcl Console

Q =

Mote:
Time:
Mote:
Time:
Mote:
Time:
Mote:
Time:
Mote:
Time:
Mote:
Time:
Mote:
Time:
Mote:

i

I B B

F¥ received word [8]:
1035 ns Iteration: O
R¥ received word [1]:
1045 ns Iteration: O
R¥ received word [2]:
1855 ns Iteration: O
F¥ received word [3]:
10685 ns Iteration: O
RF¥ received word [4]:
1075 ns Iteration: O
F¥ received word [S]:
1085 ns Iteration: O
F¥ received word [6]:
1095 ns Iteration: O

Simulation complete: ALl expected data received

FIFO Project simulation

elelelerelelelelele elelelelelelelele elelelele elele ele el elele e e eleleTe e e e elele e Te e elelele el elel=Te e e elelen }
Process: /th_fifo_wrapper/rx_read_process File: fapottoshomels
FFSRE2EGEGE1
Pracess: /tb_fifo_wrapper/rx_read_process File: sapottoshomels
elelelerelelelelole elelelelele e el elele e le elele el eielele ule eleleTe el e eTele e e e eleTe e e leleisTe welel e |
Process: /th_fifo_wrapper/rx_read_process File: fapottoshomels
QoE00G0E0000000000000000000000000000000000000C000000000080020E01
Process: /tb_fifo wrapper/rx_read process File: fapotto/homel/
elelelerelelelelele elelelelelelelele elelelele elele ele el elele e e eleleTe e e e elele e Te el elelele el eleele) = el a |
Process: /th_fifo_wrapper/rx_read process File: fapottoshomels
elelelerelelelelele eleleleleleleele elelelele elele ele elelele e e eleleTelee e e elele el el elelele el el=Te e et el a k
Pracess: /tb_fifo_wrapper/rx_read_process File: fapottos/homels
elelelerelelelelole elelelelele e el elele e e elele el eielele ule eleleTe el e eTele e e e elele e el e = elel e)
Pracess: /tb_fifo_wrapper/rx_read_process File: sapottoshomels

Drawbacks

» Verifying correctness is difficult, typically done
via waveform inspection or Tcl console

* Providing many input vectors is time-
consuming

Advanced course to FPGA programming 54

FIFO Project simulation

Go To Source Code

Show in Object Window

Input Handling Solution:

* Use the Force Constant option
(available from wave window right-
click menu)- allows fixing a signal to

Report Drivers
Force Constant...
Force Clock...

Remove Force
(Vo UV Voo [V Voo VY Yar L1 Voo (VY

] L 00 4

A A

Cut Force Constant: /tb -~ DUT/ et/ - — a constant value, overriding the
orce Constant: _communication_por X_inst/... . il

Copy assignments made within the HDL

Paste Enter parameters below to force the signal to a constant value. code

constant or clock force will be overridden.

Delete Assignments made from within HDL code or any previously applied g . . =
| —— Q simple but time-consuming and

not easily reproducible

— '

Signal name: /tb_communication_port/DUT/tx_inst/wr_en
Value radix: Hexadecimal v
Force value: 1

Starting after time offset: Ons

Cancel after time offset: 10ns

Advanced course to FPGA programming 55

FIFO Project simulation

Input Handling Solution:

* Use the Force Constant option
(available from wave window right-
click menu)- allows fixing a signal to
a constant value, overriding the
assignments made within the HDL

Go To Source Code
Show in Object Window
Report Drivers

Force Constant... COde

Force Clock... O simple but time-consuming and
Remove Force H 3

— TR AR AR AR YAl — not easily reproducible

c B Force Constant: /tb_communication_port/DUT/tx_inst/...

Copy - . .

Paste Enter parameters below to force the signal to a constant value. — | InPUt Handllng Solution 2:

constant or clock force will be overridden.

Delete Assignments made from within HDL code or any previously applied % . Automatica”y create input vectors

—

Signal name: /tb_communication_port/DUT/tx_inst/wr_en
Value radix: Hexadecimal v
Force value: 1

Starting after time offset: Ons

Cancel after time offset: 10ns

Advanced course to FPGA programming 56

LFSR

Linear Feedback Shift Register (LFSR) is a shift-register whose input bit is a linear
function of its previous state.

—10]|0|0jOf1|1f1|0p—

! L
—

» The initial value of the LFSR is called seed
» The operation of the register is deterministic, so the stream of values produced by the register is
completely determined by its current (or previous) state.

= An LFSR with a well-chosen feedback function can produce a sequence of bits that appears
random and has a very long cycle.

= Applications of LFSRs include generating pseudo-random numbers

Advanced course to FPGA programming

57

Hands-on

Exercise 4

FIFO Project simulation

Create a new testbench (in a new simulation set called sim_Ifsr) for the top-level module including the

Data_generator component with its package (provided in /src directory).
* generates NUM_DATA pseudo random data using a LFSR.

» Stops writing when wr_ready is deasserted
Activate the new simulation set.
Run the simulation

entity data_generator is FIFO_wrapper
generic (
NUM_DATA . integer := 2 A
DATA WIDTH : integer := 32); Data — 1
port (generator Rd_enable
clk : in std logic; A
rst : in std logic; AXI_STREAM FIFO

wr_ready : in std_logic;
data_out : out std logic vector(DATA WIDTH -1 downto 9);
wr_en : out std logic);

end entity;

B

DUT

Source

59

FIFO Project simulation

Data_generator.vhd

I'wr ready

Count<NUM_DATA &
wr_ready

WAIT READY wr_ready

Coun<NUM_DATA
count
=NUM_DATA

process (clk, rst)
beqgin
i1f rgt = '1' then
t data == init data(DATA WIDTH, MODE);

count <= O * The new value is calculated, according to the MODE
elsif rising edge(clk] then g
of l[new_xngueg= 1 and statecSEND] then con.stant, by the generate_next_data function
count == count + 1; defined in data_generator_pkg
t data == generate_next_data(t_data, MODE);
end if;
end 1f;

end process;
60

Hands-on

Exercise 5

FIFO Project simulation

In the new testbench add a data_checker component to verify FIFO output against the expected sequence

(generated by a second Data Generator instantation)
Run behavioral simulation

entity data_checker is
generic (
DATA WIDTH: integer := 5;

FIFO_wrapper

NUM_DATA : integer := 2); N

port (Data e Data
clk : in std_logic; generator Checker
rst : in std logic; y,
valid : in std_logic; AX| STREAM FIFO v
data_in : in std logic vector(DATA WIDTH-1 downto 9); ~ h
re_enable : out std logic; Data
test ok : out std logic; generator
data _received : out std logic;)
expected data : in std logic vector(DATA _WIDTH-1 downto 9);
expected valid: in std _logic;
ready : out std _logic);

end entity; 1B

Advantages: Source ™ DUT ™% Sink

» Automatic verification of outputs against expected values

* Immediate detection of mismatches with error reports

Hands-on

Exercise 6

FIFO Project simulation

Create new simulation set adding:
« Data_Reader (provided in /sim):

« Reads a data (std_logic_vector/integer) from a file (file_data)
« Sends the data as std_logic_vector output (with length DATA_WIDTH)
« Waits for the handshake signal (receiver_ready) before reading the next data

entity data_Reader is

generic (
FILE TYPE : string := "integer";
FILE DATA : string := "file data.txt";
DATA WIDTH : integer := 32
)
port (
clk : in std logic;
rst : in std logic;
receiver_ready : in std logic;
data : out std logic vector(DATA WIDTH - 1 downto 0);
valid : out std logic ;
data_read : out integer; -- Number of data words read
eof : out std logic
)

end entity;

AUVAIILEU LOUUIDST WU I OA prugidlliliniig

64

FIFO Project simulation

* Add output_writer (provided in /sim):

» Receives std_logic_vector (of length DATA_WIDTH) data
» Converts and writes number_of data data as integers to an output file (file_out_name)

entity output writer 1is
generic (
DATA WIDTH : integer := 5;

FILE OUT_NAME : string "file results.txt");

port (

clk : in std _logic;

rst : in std _logic;

send_complete : in std_logic; -- Data transmission process has finished sending all data
data_in : in std _logic vector(DATA WIDTH - 1 downto 0);

valid in : in std _logic;

number_of data : in integer; -- Number of data words to write

data_written : out std logic -- Indicates data has been written

)
end entity;

Advanced course to FPGA programming 65

Add a comparator (provided in /sim):

» file_comparator:

« Compare file_actual and file_expected
* Check for mismatches

 Write a TB to connect all these entities
* Run simulation

FIFO Project simulation

entity File comparator is

trigger: in std logic;

generic (
FILE EXPECTED : string :
FILE ACTUAL : string :
port (

"file in_@.txt";
"file in 1.txt");

Start comparison when
asserted ('1")

compare ok : out std logic);

end entity;

FIFO_wrapper

Data [—
Reader

—_—
——

y

I AXI_STREAM FIFO

File

comparator

Advanced course to FPGA programming

66

Vivado RTL Linter

Vivado includes an RTL linter that checks for code pattern that, while legal, might cause potential
iIssues in the design.

Detects coding issues, unconnected signals, multiple drivers, inferred latches, and other
potential RTL problems.

* Improves design quality
* Reduces debugging time during simulation and synthesis

v RTL ANALYSIS

~ Open Elaborated Design el Conaole Sibisncas | Log | Litssarte | Dation oo | Linter
Report Methodology als| & E]‘fu:ul.‘.tu-ﬂ-ns. (1) A watved (0) [Hide 2ll T
Report DRC Fule 1D RTLName RTL Hierarchy Message Body File Name
Report Noise + ASSIGHN
*4 Schematic v ASSIGN-10

ASSHGN-10&1 in3 fast

Fournd bitls) mot read for 10 port n3, first unread bit 'Y ¢

BELV D 2

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/List-of-Linter-Rules

Advanced course to FPGA programming 67

Vivado Synthesis

Synthesis is the process of transforming a Register Transfer Level (RTL) specified design into a
gate-level representation.

v SYNTHESIS Only a subset of VHDL is synthesizable — the part that can be mapped to

P Run Synthesis

. hardware.
~ Open Synthesized Design i
Constrainte Wirard Synthesizable constructs:
Edit Timing Constraints « Clocked processes, combinational logic (if, case)
A Set Up Debug » Registers, signals, arrays, fixed-range integers

O ReportTiming summary o Non-synthesizable constructs (simulation only):
neport Clock Nietwors * File I/O (textio), delays (wait for), assertions

Report Methodoloay * Loops with dynamic or upknow_n bound |
Report DRC « Some construct, such as floating-point number or complicated operators,
Report Noise are too complex to be synthesized automatically.

Report Utilization

Report Clock Interaction

& Report Power

"4 Schematic

» |EEE defines a subset of VHDL that is suitable for RT-level synthesis in IEEE standard 1076.6. E

Advanced course to FPGA programming 68

Design Constraints
Design constraints specify the requirements that ensure correct functionality on the board.

« Over-constraining or under-constraining design makes timing closure difficult.

 If your project contains an IP that uses its own constraints, the corresponding
constraint file does not appear in the constraints set.

* In Vivado constraints are usually specified in a XDC file (Xilinx Design Constraints).

« By default, all XDC files added to a constraint set are used for both synthesis and
Implementation.

« XDC constraints are applied sequentially and are prioritized based on clear precedence
rules.

Advanced course to FPGA programming 69

Synthesis Constraints

Categories of Synthesis Constraints:

 RTL Attributes
O directives embedded in the HDL code; they usually choose the mapping style of certain part of the logic,
preserving certain registers and nets, or controlling the design hierarchy in the final netlist.
o DONT_TOUCH
o BLACK_BOX
o MARK_DEBUG
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Synthesis-Attributes

« Timing Constraints
O define clocks, delays, and timing requirements
o create_clock
create_generated_clock
set_input_delay
set_output_delay
set_clock_groups
set_false_path
set_max_delay
set_multicycle_path

O O O O O O O

Advanced course to FPGA programming 70

Synthesis Constraints

Create clock
A primary clock is a clock that defines a timing reference for the design

create _clock -period <arg> [-name <arg>] [-waveform <args>] [<objects>]

Falling edge <objects>: List of clock source ports, pins or nets

I Waveform: Clock edge specification (necessary to define a clock with a
duty cycle other than 50%).

Clock period Rising edge

set false path

A false path is a logically existing but functionally non-existent connection in a circuit that is excluded from
timing analysis to improve timing closure

MUXO MUXL set false path [-setup] [-hold] [-rise] [-fall] [-from <args>] [-to <args>]

<args>: list of path startpoints/endpoint or clocks

inl Path not possible

architecturally
sgl sel

Advanced course to FPGA programming 71

Vivado Synthesis Results

The Design View tools allow you to navigate between the logical and physical views of your design,
making analysis, debugging, and implementation planning much easier

Design views
« The Device window provides a graphical view of the device, placed logic objects, and connectivity.
« Package window displays the physical characteristics of the target Xilinx part.
= This window is used primarily during the 1/O planning process or during port placement.
« The Schematic window allows selective expansion and exploration of the logical design.
* You can generate a Schematic window for any level of the logical or physical hierarchy
= select a logic element in an open window, such as a primitive or net in the Netlist window
= use the Schematic command in the popup menu to create a Schematic window for the

selected object.

Advanced course to FPGA programming 72

Vivado Synthesis Results

v SYNTHESIS]]
b Run Synthesis Tasks on synthesized design:

v Open Synthesized Design

Constraints Wizard

Update/add constraints

Edit Timing Constraints

A Set Up Debug Configure and implement debug cores for test and debug.

© Report Timing Summary

Report Clock Networks Reports provide early feedback on area, timing, and power consumption.
Report Clock Interaction = Timing analysis is useful to ensure that paths have the necessary
constraints for effective implementation. The synthesized design uses an

Report Methodology } .) T)
estimate of routing delay to perform analysis (only timing analysis after

Report DR.C implementation -place and route- includes the actual delays for routing).
Report Noise = Design Rule Checks (DRCs) check the design and report on common
Report Utilization issues

& Report Power

*41 Schematic

Advanced course to FPGA programming 73

Hands-on

Exercise 7

FIFO Project IP

entity fifo_wrapper_128bit is
generic (
FIFO_MODE : string := “AXI_STREAM";
FIFO_TEST_INPUT : boolean := true;
FIFO_TEST_OUTPUT : boolean := true;

FIFO_TEST_MODE : string := "lfsr" ;
. , --1fsr test
Create a new project (FIFO_project_IP) TESTED_DATA : integer := 10;
. . TpT -- file
Add flfo__wrapper_128b|t (m_ /SrC)] file data integer : string := "input.txt";
* Add design sources (used in FIFO_project): file_data_out_integer : string := "output.txt"
Fifo_wrapper Y
Data generator port (
Data checker clk : in std logic;
rst : in std_logic;
FIFO IPs data_in : in std_logic_vector(127 downto 0);
Data Reader valid_in : in std_logic;
: . . ready : out std _logic;
O_UtpUt writer Simulation sources read_enable : in std_logic;
F|Ie_comparator data_out : out std logic vector(127 downto 9);
valid out : out std _logic;
test ok : out std _logic
)

end fifo _wrapper 128bit;

Advanced course to FPGA programming 75

FIFO test = false

Data_in
Valid in
ready

256

FIFO Project IP

clk rst

V4

Read_enable

P

» Data_out

«

> Valid out

FIFO_wrapper

0 ——— Test ok

FIFO_wrapper_128bit

Advanced course to FPGA programming

76

FIFO Project IP

R T T R T T

,/ l’ \} \\‘
" Data : :
T ————————— N 1 : 1 I
[\ ' | | Checker | | |
1 : '
i | o pyr
. | DataReader |! [, . B i S
| 1 1 ’ \ |
) i 1 256 Data_in i Vo
N S — LR File 1|
> I 1 1

N, comparator o e

’ el - i P E i Test ok

) Wr_ready I e
FIFO_wrapper E ! .
| |
| 1 1 1
1 1 1
| 1 1 1
1 L] |
| 1 1 1
1 1l
I v /1 1

FIFO_wrapper_128bit

e — = i FIFO_test_output=true

FIFO_test_input=true

Advanced course to FPGA programming 77

FIFO Project IP

Exercise:

Add FIFO_wrapper_top_synt (in /src) and use this entity only for synthesis
Run simulation (using sim/TB_fifo_wrapper_128bit.vhd)

Perform RTL linter and eventually solve reported issues
Run synthesis

Open the synthesized design

Advanced course to FPGA programming

78

FIFO Project IP
RTL Linter

Linter

Q = = |*a v| violations (12) v| Waived (D) Al hd

Rule ID RTL Name RTL Hierarchy Message Body File Name

w ASSIGN

w ASSIGMN-5

ASSIGM-5# 1 compare_ok fifo_wrapper_128bit Found bit(s) not assigned for signal 'compare_ok', first unassigned bit '0" fifo_wrapper_128bit.vhd : 53
ASSIGN-53# 2 data_received fifo_wrapper_128bit Found bit(s) not assigned for signal 'data_received', first unassigned bit '0" fifo_wrapper_128hit.vhd : 52
ASSIGN-5# 3 eof fifo_wrapper_128bit Found hit(s) not assigned for signal 'eof', first unassigned bit 'O fifo_wrapper_128bitwhd: 51

WARNING ASSIGN-5: Found bit(s) not assigned for signal ‘signal’
« Some bits of a signal are never assigned a value.

« Check if the signal is really needed (if it’s not connected to anything, remove the assignment
or the signal)

« If signal is used only in some conditional generate blocks, but not in all configurations, define
it in generate block

gen_input file : 1f FIFD TEST IMNPUT = true and FIFO TEST MODE="file" generate
signal eof : std_logic;
begin

Advanced course to FPGA programming 7S

FIFO Project IP
RTL Linter

Q = < =0
Rule ID
ASSIGN
ASSIGN-10
ASSIGN-10# 1
ASSIGN-10# 2
ASSIGN-10# 3

Linter
v| Violations (3) v| Waived (0) Al (3) v
RTL Name RTL Hierarchy Message Body File Name
data_in fifo_wrapper_256bit Found bit(s) not read for |O port 'data_in’, first unread bit '0' fifo_wrapper_256bit.vhd : 24

read_enable fifo_wrapper_256bit Found bit(s) not read for 10 port 'read_enable’, first unread bit '0' fifo wrapper 256bit.vhd : 27
valid_in fifo_wrapper_256bit Found bit(s) not read for |10 port 'valid_in', first unread bit '0' fifo_wrapper_256bit.vhd : 25

WARNING ASSIGN-10: Found bit(s) not read for 1O port ‘port’

* One or more bits of an input/output port are never used

« Check whether the port is really needed

« |If port is used only in some conditional generate blocks (and not in all configurations), the
warning can be safely ignore.

Advanced course to FPGA programming 80

FIFO Project IP
RTL Linter

Linter

Q T £ |- v Violations (9) v Waived (0) Al ¥

Rule ID RTL Name RTL Hierarchy Message Body File Name
o ASSIGHN

> ASSIGN-10
~ INFER
~ INFER-1

INFER-1# 1 next state req data checker Inferred latch for signal 'next_state req' data_checkerwhd : 54

WARNING INFER-1: inferred latch for signal ‘signal’
« combinational logic doesn’t assign a value to a signal in every possible condition, so it
infers a latch to “remember” the previous value.

* Try to solve this issue...

Advanced course to FPGA programming 81

FIFO Project IP
Synthesized design

« Create a Source constraint
« Add the required timing constraints (using Edit Timing constraints or

Constrants Wizard under the Synthesized Design section)
* Rerun the synthesis

Add Sources

Create a Source Constraint. AMD Add Sources

This guides you through the process of adding and creating sources for your project
Vivado .
®) Add or create constraints
ML Edition -
Add or create design sources

Add or create simulation sources

In the Sources window right-click xdc file and select Set as Target Constraint File.

Advanced course to FPGA programming

82

FIFO Project IP

Edit Timing Constraints

Select Create Clock

Double click to create a
clock constraint

Timing Constraints

= = » -|-‘ r 4+ Create Clock
Clocks (0) /v Position Clock Name Period (ns) Rise At (ns) Fall At (ns)
Create Clock (0) [Double click to create a Create Clock constraint]

Create Generated Clock (0)
Rename Auto-Derived Clock (0)
Set Clock Latency (0)

Set Clock Uncertainty (0)

Set Clock Groups (0)

Set Clock Sense (0)

Set Input Jitter (0)

Set System Jitter (0)

Set External Delay (0)

Create Clock b4

Creates a clock object. The created clock is applied to the specified source objects. If

+ Set Clock name (clk)

you do not specify source objects, but give a clock name, a virtual clock is created.

» Set Source object

Clock hame:
Source objects: D
Waveform

Period: 10 2 ns

Rise at: 05 ns

Eall at: 5 2 ns

Add this clock to the existing clock (no overwriting) 83

FIFO Project IP

Edit Timing Constraints

From the Find names of type drop-down list, select
I/O Port

Click the Find button

Select clk in the found results text box

Specify Clock Source Objects

Specify the ports, pins, or nets which are the source of the specified clock.

Find names of type: /O Port v
Options

NAME v | contains v *

AND v | DIRECTION v s v IN

<

Reqgular expression

Of Objects:

Eind

Results

Cound. 260 Selected: O

clk

press the right arrow to move clk to the selected
names text box.

press Set

CTata_TmLuT
data_in[1]
data_in[2]
data_in[3]
data_in[4]
data_in[5]
data_in[6]
data_in[7]
data_in[8] v

¥
TRy

Command:

TN
(?)
NN

Use the buttons on the left to move items to 4

Cancel

FIFO Project IP

Edit Timing Constraints

] Create Clock)
Creates a clock object, The created clock is applied to the specified source
objects. If you do not specify source objects, but give a clock name, a virtual

clock is created,

Clock name: clk

Source objects: [get_ports clk]

Waveform
Period:
Rizse at:

Eall at:

Add this clock to the existing clock (no overwriting)

Clock Period

Specify Rise/Fall edge (define the duty cycle)

FIFO Project IP

Edit Timing Constraints

Timing Constraints
: r o+
» Select Set False Path in Exception category Clocks (1
Create Clock (1)
Create Generated Clock (0)
Rename Auto-Derived Clock (0)
. . Set Clock Latency (0
* Double click to create a false-path constraint e o e
Set Clock Groups (0)
Set Clock Sense (0)
Set Input Jitter (0)
Set System Jitter (0)
Set External Delay (0)
Inputs (0)
Set Input Delay (0)
Outputs (0)
Set Output Delay (0)
Assertions (0)

4L

Set False Path X Set Data Check (0)
Set Bus Skew (0)
Define false paths in the design that are not considered during timing analysis. Exceptions (0)
Set False Path (0)

Targets Options

Start Points

From: « Set Start Point

. Choose start points
Through Points

Through: E =+

Advanced course to FPGA programming

v 4 Set False Path

/ Position Setup/Hold Rise/Fall Reset Path
[Double click to create a Set False Path constraint]

86

FIFO Project IP

Edit Timing Constraints

Specify Start Points

 From the Find names of type drop-down list, select Specify a lst of path endpoints o clocks.
I/O Port

Find names of type: | 1/O Port v

Options

 C(Click the Find button

NAME v || contains v

 Select st in the found results text box

« press the right arrow to move clk to the selected

Regular expression

names text box. Of Objects:
L
* press Set | Results
Found: 519 Selected: 0
data_out[251] A
data_out[252]

« Save constraints

data_out[253]
data_out[254]

o t[_l]

FEile Edit Flow Tools Reports Window Layout View Help Q- Quick Access data_out[255] Use the buttons on the left to move items to
) read_enable this list.
= W B & b B oA O ¢ T ¥ iy
m Save Constraints (Ctrl+5) ! SYNTHESIZED DESIGN * - synth 1 | xcu55c-fsvh2892-2L-e [rst]
— T -~ Test_ok
valid_in v

Command:

|« =] - -»

FIFO Project IP
Synthesized design

V [Synth 8-7129] Port data_in[127] in module fifo_wrapper_128bit is either unconnected or has no load

[Synth 8-7080] Parallel synthesis criteria is not met: appears when the tool decides that using multiple threads
would not improve (or might even slow down) the compile time
» For Small or Simple Design the overhead of parallelizing tasks outweighs the benefit

V [Synth 8-3332] Sequential element (gen_checker_lsfr.data_checker_inst/FSM_onehot_state_reg[4]) is unused
and will be removed from module fifo_wrapper_128bit.
Vivado usually encodes FSMs as one-hot, meaning that each state is represented by a separate flip-flop (one bit
per state).
If one of these bits is never asserted during synthesis analysis, then Vivado determines that:
The state is never reached, or
The state is reached but has no observable impact on outputs.
As a result, it removes that flip-flop and the logic connected to it.

FIFO Project IP

Constraints wizard

Primary Clocks

Primary clocks usually enter the design though input ports. Specify the period and optionally a name and waveform (rising and falling edge times)
to describe the duty cycle if not 50%. More info

Recommended Constraints

a W 7z o
| Object Name Frequency (MHz) Period (ns) Rise At (ns) Fall At (ns) Jitter (ns)
v [l clk clk undefined undefined
Tcl Command Preview (1)
Fill in only the frequency (100 MHz) Q
for the mISSIng primary clock create clock -period 10.000 -name clk -waveform {0.000 5.000} [get ports {clk}]
in the design

Advanced course to FPGA programming 89

Timing analysis

The data fed to a flip-flop must be stable before the clock edge and after the clock edge.

d [a G)l(H X tn*)l(. T.he setup time is the amount of time required for the input to a
olk " flip-flop to be stable before a clock edge.
clk " fea _’)'(x * The hold time is the minimum amount of time needed for the
input to a flip-flop to be stable after a clock edge.
—P Q Combinational The data:
o Logle T « is launched inside the device by a sequential cell, which is clocked by the
“Gook T = source clock.
_ _ . « propagates through some internal logic before reaching a sequential cell
register-to-register timing path clocked by the destination clock
| [
Cycle 1 Cycle 2 ——e Hold tilmio—
Clock | | Clock | I I I
ISowp | | |
v : : current cycle | 1 al ﬁ:::nqcle X I l :‘::ear:y::m
; : : | 1
. K o L
é Setup Violation (Data arrives late.) -

Hold Viclation (New data arrives early.)

To reliably save the data into the flip-flop, the arrival time of the data required to meet the setup and hold time
requirements

Advanced course to FPGA programming 90

Timing analysis

Setup and hold slack is defined as the difference between the required time (based on setup and
hold time) and the arrival time of the data at the endpoint.

te th

L L L
X XX X

Positive setup slack Positive hold slack
s L th
s
B I 5y) B — i
X A A X
Negative setup slack X : X
Negative hold slack
Setup Slack Optimization Strategies Hold Slack Optimization Strategies
Simplify or pipeline long combinational paths « Balance Data Paths
» Break critical paths into shorter stages « Add intentional delay (LUTs or buffers) to
« Constrain Clock Properly short combinational paths

* Analyze Multi-cycle & False Paths

Advanced course to FPGA programming 91

Hands-on

Exercise 8

FIFO Project IP

Design Timing Summary

Setup Hold Pulse Width
Worst Negative Slack (WNS) 8.528 ns Worst Hold Slack (WHS: -0.066 ns Worst Pulse Width Slack (WPWS): 4,458 ns
Total Negative Slack (TMS): 0,000 ns Total Hold Slack (THS): -22.778 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 456 Mumber of Failing Endpoints: 0
Total Mumber of Endpoints: 783 Total Mumber of Endpoints: 7983 Total Mumber of Endpoints: 318

* Create a new TB (DUT: FIFO_wrapper_top_synt)

* Run post-synthesis simulations

ERROR: [VRFC 10-719] formal pnr‘t;‘generlc <tested_ data> is not declared in <\FIFO wrapper_top_synth=
ERROR: [VRFC 10-9458] unit 'behavioral' is ignored due to previous errors [/home/flocicero/advanced.

Advanced course to FPGA programming 93

FIFO Project IP

Vivado Post Synthesis Simulation verifies the functionality of the synthesized netlist.

« Check that synthesized RTL (with or without estimated delays) behaves as expected.
» Detect logical errors introduced by synthesis optimizations.

« Compare results with RTL simulation to ensure correctness.

* Not include FPGA routing or placement delays (timing is idealized).

SIMULATION i1 :
Y In post-synthesis simulation:

* The design being simulated is no longer VHDL

source code, but a netlist generated by synthesis
v RTL ANALYSIS Run Post-Synthesis Functional Simulation (e.g., .dcp).

» Run Linter Run Post-Synthesis Timing Simulation » All generic values are already resolved and hard-
coded during synthesis (generic map cannot be
used in the testbench)

Run Simulatise
Run Behavioral Simulation

v Open Elabor

Report Meeeee

* Delete the generics from the entity and re-run simulation

Advanced course to FPGA programming 94

Vivado Implementation

Implementation is the process of mapping, placing, and routing the synthesized design onto

the FPGA.
« Converts the synthesized netlist into a design that can physically run on the target device.
« Optimizes the logical design trying to ensure the design meets timing, area, and resource

constraints.

« Physical constraints define a relationship between logical design objects
and device resources such as:

1 Package pin placement.
O Absolute or relative placement of cells, including Block RAM, DSP, LUT,

and flip-flops.
O Floorplanning constraints that assign cells to general regions of a device.

 Device configuration settings.

Compile time is impacted by :
* Netlist complexity and utilization
« Timing constraints and optimization

Advanced course to FPGA programming 95

Physical constraints

PACKAGE_PIN defines a specific assignment, or placement, of a top-level port to a physical
package pin on the device.

« XDC command » Port_name must exactly match the top-

set_property PACKAGE_PIN <pin> [get_ports <port_name>] level HDL port names.
* Pin_name must correspond to valid pins

for specific FPGA package.

» |OSTANDARD: Specifies the electrical

set _property IOSTANDARD <standard> [get ports <port>] standard used by the 1/O pin.
» <standard> is the name of the I/O

standard (e.g., LVCMOS33, LVTTL,
SSTL15, etc.).

« Automatic Pins Assignment (when Synthesized Design is opened)
» Tools — |/O Planning — Autoplace I/O Ports

* GUI Pins Assignment
* 1/O Port tab (in Implemented Design)

Advanced course to FPGA programming 96

Vivado Post Implementation simulation

Post-Implementation Simulation (Post-SYNT)

 Verify the actual behavior of the implemented design.

« Detect timing violations (setup, hold, propagation delays).

« Compare results with post-synthesis simulation to ensure correctness.

> Utility Sources (1)
v SIMULATION

Run Simulation

Run Behavioral Simulation

v RTL ANALYSH Run Post-Synthesis Functional Simulation ¢ Includes all rOUting and placement delays.
» Run Lintel Run Post-Synthesis Timing Simulation * Crucial for timing-critical designs.
> Open Elat Run Post-Implementation Functional Simulation I-!elps C_atCh errors not visible in RTL
simulation.

Run Post-Implementation Timing Simulation

IR I~ T

Advanced course to FPGA programming 97

Vivado: Bitstream Generation and Flash Programming

Bitstream Generation converts the implemented design into a binary file (bitstream).

Bitstream contains all configuration data to program the FPGA.
Bitstream can be directly loaded to FPGA via JTAG or stored in non-volatile Flash memory.
Flash memory allows FPGA to boot with the design automatically at power-up.

» Bitstream is device-specific.

Advanced course to FPGA programming

98

Vivado Hardware manager

Vivado Hardware Manager allows you to connect to physical FPGA devices, program the
bitstream, and perform real-time debugging.

Flow Navigator NN IMPLEMEN])
. PROSECT HANAGER » Click Open Target — Open New Target.
. « Wait for the connection to the hardware to complete
> IPINTEGRATOR = H
sinege
> SIMULATION > 5 Ne
Lot HARDWARE MANAGER - unconnected
» RTL ANALYSIS > i db
> @ u_ © No hardware targetis open. Open target
> SYNTHESIS » [@ U_
> @ u_ &' Auto Connect
> IMPLEMENTATION > U Hardware
Recent Targets »
v PROGRAM AND DEBUG Propertie =
I Generate Bitstream Debug
> Open Hardware Manager) Open New Target.. h
Version: -
Descript

« In the Hardware Server Settings page, type the name of the server (or select Local server if the target is on the
local machine) in the Connect to field.

* Program the device using the previously created .bit bitstream by right clicking the device and selecting

Program Device.
Advanced course to FPGA programming 99

Hands-on

Exercise 9

FIFO Project IP

Add the required physical constraints (in const_pin.xdc)

Run implementation

Open the implemented design
Generate Bitstream

Synthesis Report Timing Summary

Setup

Worst Negative Slack (WNS): 8.563 ns

Total Negative Slack (TNS): 0.000 ns

Number of Failing Endpoints: 0

Total Number of Endpoints: 2493
Timing constraints are not met.

Hold Pulse Width
Worst Hold Slack (WHS): -0.066 ns Worst Pulse Width Slack (WPWS): 4.458 ns
Total Hold Slack (THS): -71.354 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 1364 Number of Failing Endpoints: 0
Total Number of Endpoints: 2493 Total Number of Endpoints: 1086

Vivado automatically fixes hold time violations during
implementation, inserting delay buffers on short paths

Implementation Report Timing Summary

Setup Hold
Worst Negative Slack (WNS): 6.598 ns Worst Hold Slack (WHS):
Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS):
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 2480 Total Number of Endpoints:

All user specified timing constraints are met.

Advanced course to FPGA programming

Pulse Width
Worst Pulse Width Slack (WPWS):

Total Pulse Width Negative Slack (TPWS):

Number of Failing Endpoints:
Total Number of Endpoints:

101

4.458 ns
0.000 ns
0

1079

Vivado: tcl

TCL (Tool Command Language) is a scripting language used to automate tasks in Vivado.
« Supports design creation, synthesis, implementation, simulation, and bitstream generation.

« Automate repetitive tasks and workflows.
* Ensure design reproducibility.

« Vivado provides a Tcl interface that can be accessed through:
* Integrated Tcl console in the GUI
« Interactive Tcl mode (vivado —mode tcl)
« batch mode for running scripts automatically (vivado —-mode batch)

 The source command is used to execute a tcl script in Vivado
By default, source command prints in the Tcl console all Tcl statements that are executed as comments
(a comment always starts with the # character).
Command echoing can be suppressed by adding the -notrace option as follows:
source -notrace run.tcl

Advanced course to FPGA programming 102

Vivado: tcl

Common tcl uses in Vivado
« Creating and managing projects:

create_project

« Adding design and constraint files:
add_files

« Generating IP:
create_ip

* Running synthesis and implementation:

launch_runs synth_1 wait_on_run synth_1 launch_runs impl_1
* Running simulation:

launch_simulation

Note: Every GUI operation is mirrored in Tcl console and Vivado keeps track of all these commands in
the so journal file (.jou). —
Tip: You can easily reproduce the entire flow at any time by
executing the journal file with the -source option when
invoking vivado at the command line (save the original journal file
as vivado.tcl before, otherwise the file will be overwritten)

Advanced course to FPGA programming 103

Vivado: Makefile

Makefiles can be used to automate Vivado builds by calling Tcl scripts.

E-B-H-B

Makefile Tel script Vivado design Bitstream
steps

Note: According to Makefile syntax, instructions inside each target MUST BE IDENTED USING
A TAB CHARACTER!!

Benefits:
« Automates repetitive tasks
* Reproducible builds

Advanced course to FPGA programming 104

Hands-on

Exercise 10

FIFO Project IP

Exercise:
In the /tcl dir
Open create_project.tcl and gen_wrapper.tcl

Configure the directory paths (e.g., for sources, constraints, outputs) according to your

environment.
Type make to see the list of available targets
Generate and simulate AXI_STREAM mode with FIFO_TEST=true

Improvements:
« Generate and silmulate all configurations.

Improvements:

« Write a Tcl script to automate the generation of bitstream.
* Add the Tcl command to the Makefile

Advanced course to FPGA programming 106

Course Overview

Introduction to FPGA FPGA interconnection

* Architecture * Quick intro

« Advantages and limitations * AURORA Xilinx

» Design Flow o Test and Debug

« Simulation tool Tools & Programming languages o Fine tuning
 Advanced VHDL o Timing and Resources analysis
« Vivado tool overview o Optimization

o Design Flow
= Project creation
= |p core integration [//1%;0
= Simulation O
= Synthesis
= |Implementation
= Tcl scripting
Timing analysis
Custom IP Design & Integration
o FPGA Test & Debug

Advanced course to FPGA programming 107

O

O

Vivado: User-defined IP

A User-Defined IP is a custom hardware module (written in VHDL, Verilog, or HLS) that is packaged
into an IP format

Before packaging RTL as an IP, it is recommended to:

« Verify simulation results

« Validate sources through synthesis and implementation

Vivado IP packager allows
» Create and package files and associated data in an IP-XACT standard format.
« Add IP to the Vivado IP catalog.

« Deliver packaged IP to an end-user in a repository directory or in an archive (.zip) file.

Benefits

e Reusability across multiple projects
* Integration into block designs e
« Parameterization and GUI support

Advanced course to FPGA programming 108

Hands-on

Exercise 11

FIFO Project IP

» Open project FIFO_project_axi_stream_test
« Disable FIFO_wrapper_top_synt
« Generate project IP

Improvements:

« Write a Tcl script to automate the creation and configuration of the IP.

« Add the Tcl command to the Makefile to easily launch IP generation
from the command line.

Advanced course to FPGA programming 110

FIFO Project IP

To Create a Custom IP

* Prepare RTL project

» Tools — Create and Package New IP

* Fill out metadata (Name, version, vendor, library ..)
» Define interfaces and ports (AXI, clock, reset, etc.)
» Customize IP behavior (parameters, GUI options)
« Package IP

Packaging Steps Identification
« Identification Vendor: pedom
« Compatibility Library: r
+ File Groups Name: communication_port
Customization Parameters Version: 1.0
Ports and Interfaces Display name: communication_port_v1l_0
Addressing and Memory Description: communication_port_vl_0
« Customization GUI Vendor display name:
Review and Package Company url:
Root directory: /apotto/homel/homedirs/locicero/advanced_VHDL/communication_port/solution
Xml file name: /apotto/homel/homedirs/locicero/advanced_VHDL/communication_port/solution/component.xml

Categories

+
/UserlP

Advanced course to FPGA programming 111

Package IP - communication_port X

Packaging Steps

< |dentifcaticon
' Compatibility
o File Groups

« Customnization Parameters

Ports and Interfaces

Addressing and Memory
« Customization GLUI

Review and Fackage

Tcl Console

Q =

FIFO Project IP

Ports and Interfaces

Q = & + + C

Name Mode . Dependency DItion VLI ' Rioht Dependency Dependency TYPeNeme
Cleck and Reset Signals
rst slave
cli slave
» data_in in 127 0 std_logic_vector
> valid_in in std_logic
{1 ready aut std_lagic
» read_enable in std_lagic
] data_out out 127 0 std_logic_vector
4 valld_out ot std_lagic
o test ok out std_logic

Messages X Log |Reports |Design Runs

S Y, B 1 Warning (2) (] @ Info(2) Show ...

v s IP Packager (2 warnings)

v .5 Ports and Interfaces Wizard (2 warnings)

[IP_Flow 19-5661] Bus Interface 'clk' does not have any bus interfaces associated with it.
[IP_Flow 19-11770] Clock interface 'clk' has no FREQ_HZ parameter.

AUVdIILEU CLUUISE WU rrOA plrugidlliiniinig

112

Packaging Steps

+/ ldentification

+ Compatibility

+/ File Groups

+/ Customization Parameters
Ports and Interfaces
Addressing and Memory

~/ Customization GUI

Review and Package

FIFO Project IP

WARNING: The clock interface clk does not specify a frequency value (FREQ_HZ).
The frequency parameter is used by the tools for simulation and timing analysis.

Ports and Interfaces 2

g = £ + @& C

Interface Enablement

EE Mode Dependency
Clock and Reset Signals
rst slave
clk clava
D 1
D> data Edit Interface...
[valid_
{ready 4 Add Bus Interface...
Parameters
Choose Parameters to Override
Auto-calculated

Requires User Setting
Optional

Edit Interface

Use the tabs and fields below to modify the Bus Interface on your IP.

a == =2 + C o
Name Description
Overridden
ASSOCIATED _RESET
User Set
Optional

Move selected parameters to right

Direction Parameters
Choose Parameters to Override
Auto-calculated
Requires User Setting
in FREQ_HZ
. Optional
N
in
out
-»
Q = £ + C ©O
Name Description Value
Overridden
ASSOCIATED_RESET rst
User Set
FREQ_HZ 100

Optional

Set 100000000

Value

rst

1h &

FIFO Project IP

WARNING: Bus Interface 'clk' does not have any bus interfaces associated with it.
The tool expects some bus interfaces to be connected to clk but finds none.
If the IP do not use any bus interface (e.g., AXI, APB), the warning is harmless

Name Interface Enablement Direction Driver Size Size Size Left Size Right Tvoe Name
Mode Dependency Value Left Right Dependency Dependency yP
Clock and Reset Signals

rst slave

clk slave
[data_in in 127 0 std_logic_vector
[valid_in in std_logic
{] ready out std_logic
[read _enable in std_logic
{] data_out out 127 0 std logic_vector

General ping |Parameters i ,

- - {] valid :) out std logic
Interface Definition: |{z Interface Definition Chooser x E J test | Edit Port... out std_logic
Name: T -

Mode: o Select an interface definition. o
Display name:
o 4 Add Bus Interface...

Description: Interface Definition Interface
Interface presence: (®) b4 a Coolcalionts

N Q|=|e | ARADDR

Name Description {JARBURST
AXI ~ {JARCACHE

aximm_rtl AMBA AXI In {JARID m g n .
g Set Interface definition axis rtl
axis_rtl AMBA AX|4-< {JARLOCK it

n g AMBA AXI4-< {JARPROT
Signal {JARQOS

® Example: $my_nul

10 Interfaces [-ARREADY

Advanced {JARREGION

llcar V) {1ARSIZE V|
> < >

? CanCEI

Advanced course to FPGA programming 114

FIFO Project IP

AXIl stream master IF

General
Interface Definition: {laxis_rtl E‘
Name: axi_stream_master | Port Mapping
Mode: master v
. Interface's Logical Ports IP's Physical Ports
Display name:
_— Search: Search:
Description:
Interface presence: (®) Mandatory Optional QTDEST 0 Brelk
{ITDATA [Drrst
{TSTRB [rdata_in
{TKEEP [Drvalid_in
) {TLAST
® Example: $my_num_var > 0 more info
{JTUSER [»read_enable
{ITVALID
[>TREADY v
List Options

D Eilter Incompatible Physical Ports Hide Mapped Ports

Mapped Ports Summary

Logical Port Physical Port
TDATA data_out
TVALID valid_out
TREADY read_enable

Advanced course to FPGA programming 1

FIFO Project IP

AXIl stream slave IF

General Port Mapping
Interface Definition: 4 axis_rtl IZ' Interface's Logical Ports IP's Physical Ports
Mame: axi_stream_slave | Search: Search:
Mode: slave hd [TDATZ
AR Ead
Display name: C-TsTRE
Description: E TKEEP
» TLAST

Interface presence: @ Mandatory Optional [TUSER A ready

[TWALID

A TREADY w] data out

Map Ports
List Options

[JEilter iIncompatible Physical Ports [| Hide Mapped Ports

Mapped Ports Summary

Logical Port Physical Port
TDATA data_in
TWALID valid_in
TREADY ready

Advanced course to FPGA programming 116

axi_stream master master
Clock and
[data_in Edit Interface...
D valid_in Associate Clocks...
{ ready Add Bus Interface...
{] test_ok

Remove Interface

Import IP Ports...

Auto Infer Interface...

Refresh Table

Export to Spreadsheet...

FIFO Project IP
AXI stream IFs

« Connect clock clk to both AXI stream interfaces

k=] Associate Clocks)

Choose the single-ended clock
interfaces to associate with selected
A¥] or reset interfaces,

clk

Advanced course to FPGA programming

117

FIFO Project IP

Project Summary x| fifo_wrapper.vhd % Package IP - fifo_wrapper_128bit X fifo_wrapper_128bit.vhd X

Packaging Steps Review and Package
+ ldentification
Summary
+/ Compatibility Display name: fifo_wrapper_128bit_v1_0
+/ File Groups Description: fifo_wrapper_128bit_v1_0
+ Customization Parameters Root directory: fapotto/homel/homedirs/locicero/advanced _VHDL/Vivado_2023 2/FIFO_project_IP_sources/ip_repo
+/ Ports and Interfaces

Addressing and Memory

+/ Customization GUI After Packaging

Review and Package Create archive of IP - fapotto/homel/homedirs/locicerofadvanced VHDL/Vivado 2023 2/FIFO _project IP_sources/ip_repo/apedomain_user fifo wrapper 128bit 1.0.zip

edit

IP will be made available in the catalog using the repository -
{apotto/homel/homedirs/locicero/advanced_VHDL/Vivado_2023 _2/FIFO_project_IP_sources/ip_repo
Edit packaging settings

Package IP

Advanced course to FPGA programming 118

FIFO Project IP

IP appears in the IP Catalog, ready for reuse

Project Summary x| fifo_wrapper.vhd X | Package IP - fifo wrapper 128bit x| fifo_wrapper 128bit.vhd % IP Catalog X

Cores | Interfaces

Q = & # - |

4

Search: Q-

Name A1 Axi4 Status License VLNV
v User Repository (/apotto/homel/homedirs/locicero/advanced VHDL/Vivado 2023 2/FIFO_project_IP_sources/ip_repo)

v UserlP

IF fifo_wrapper_128bit vl 0 AXl4-Stream Production Included apedomain:user:fifo_ wrapper 128bit:1.0

v Vivado Repository
Alliance Partners
Alveo Card Management
Audio Connectivity & Processing
Automotive & Industrial

AXI| Infrastructure

WOON NV NV NN

AXIS Infrastructure

Advanced course to FPGA programming 11

Introduction to FPGA
Architecture

Advantages and limitations
Design Flow

Simulation tool

Course Overview

FPGA interconnection
Quick intro
AURORA Xilinx

Tools & Programming languages

Advanced VHDL

Vivado tool overview

o Design Flow
= Project creation
= |p core integration [//1%;

. . OOt

= Simulation '
= Synthesis
= |Implementation
= Tcl scripting

o Timing analysis

o Custom IP Design & Integration

o FPGA Test & Debug

Advanced course to FPGA programming

©)

O
O
O

Test and Debug

Fine tuning

Timing and Resources analysis
Optimization

120

Vivado: Test and Debug

After generating the bitstream, it is possible to test and debug the design directly on the
FPGA using Vivado's built-in tools:

* Integrated Logic Analyzer (ILA) core : perform in-system debugging of post-implemented
« To monitor signals in the design

« To trigger on hardware events and capture data at system speeds.

* Virtual /O cores (VIO) can both monitor and drive internal FPGA.
e T his debug core needs to be instantiated in the RTL code

Integrated Bit Error Ratio Tester (IBERT) enables in-system serial 1/O validation and debug.
« To measure and optimize high-speed serial I/O links in FPGA-based system. AMD recommends using
the IBERT Serial Analyzer design when you are interested in addressing a range of in-system debug

and validation problems from simple clocking and connectivity issues to complex margin analysis and
channel optimization issues.

Advanced course to FPGA programming 121

Vivado: ILA

The ILA core can be inserted post synthesis in the Vivado design flow or instantiated in RTL code.

Post-synthesys design flow

 Add debug nets
O Mark signals for debug in the source HDL as well as the post synthesis netlist.

attribute mark debug : string;
attribute mark _debug of sine : signal is "true";

This method gives the highest probability of preserving HDL signal names after synthesis.
This can prevent optimization that might otherwise occur to that signal.

O Right-click and select Mark Debug or Unmark Debug on a synthesized netilist.
« This method is flexible
« Does not require HDL source modification
« Synthesis might not preserve the signals due to netlist optimization involving absorption or

merging of design structures.

* Run the Set Up Debug wizard.

Advanced course to FPGA programming 122

Generatean ILAIP

Vivado: ILA

RTL instantiation

General Options | Probe_Ports(0..0)

Monitor Type

[®) Native Ax]

|k

== probe0[0:0]

N,

“ Type of interface ILA should be debugging

Mumber of Probes 1 [1...1024]

Number of probes port (in Native type)

Sample Data Depth 1024 “

+| Same Number of Comparators for All Probe Ports

[rumber of comparators 1| v Each probe input is connected to trigger
Y, Trigger Out Port comparators

Add IP to the design

Trigger In Port

Input Pipe Stages

o

Number of registers addeed to the probes

Trigger And Storage Settings
Capture Control Advance trigger option enables trigger state machine
Advanced Trigger to write trigger sequence in Vivado Logic Analyzer

GUI configuration mode is limited to 64 probe ports.

Probe Port Panels to configure width of each Probe

Advanced course to FPGA programming 123

Hands-on

Exercise 12

FIFO Project IP

Exercise:
« Add debug net on data_recv (with mark_debug attribute in data_checker)

and on test_ok (using GUI)
* Run SetUP Debug wizard to add the corresponding ILA

Advanced course to FPGA programming 125

FIFO Project IP

Mark signals for debug in the source HDL

entity data_checker is

SYNTHESIS
end entj_ty; b Run Synthesis
~ Open Synthesized Design
architecture FSM of data_checker is < [1] gen_input_lsfr.data_chacker inst
e v Mets
signal count : integer range © to NUM_DATA := 0; > 1 count_reg
5 data_in
. . b expected data
-- Mark this signal for debug s poin
attribute mark_debug : string; <const0=
attribute mark_debug of data recv : signal is "TRUE"; <constl=
clk
b . count
€g1N data=recu

Nets corresponding to signals marked for debug in HDL are automatically listed in the Debug window
under the Unassigned Debug Nets folder.

Advanced course to FPGA programming 126

Metlist

= 4

FIFO_wrapper_top

E Mets

5 Leaf Cells

o LT
v Mets
» | AS
;] data_out

expected _data

-t data in

checker ready

clk

expected wr_enable

ready

t read enakle

t_walid_in
test ok

Met Properties

tact Al

Met Properties...

Feport Net Route Status

Mark Debug

FIFO Project IP

Right-click on test_ok net and select Mark Debug

Run Set Up Debug Wizard

SYNTHESIS

P Run Synthesis

~ Open Synthesized Design
Constraints Wizard

Edit Timing Constraints

B

Set Up Debug

Nets to Debug

The nets below will be debugged with ILA cores, To add nets click "Find Mets to Add", You can also select nets in the
Metlist or other windows, then drag them to the list or click "aAdd Selected Mets".

a I s m o+ =
MNarne Clock Domain Driver Cell Probe Type
[% UUTfgen_input_lsfr.data_checker_inst/data_recv clk_IBUF_BUFG FDCE Data and Trigger «
& UUT/test_ok clk_IBUF_BUFG LUTS Data and Trigger

The relevant XDC commands Netlist
z

that insert the ILA core(s) is
generated. e
Remember to save project! E uila0

Advanced course to FPGA programming 127

FIFO Project IP
SetUp Debug Wizard

eyl

' & ipartd o365 0]

E dik IBUF_BFUFGE_inst
= - -
I,.—"_-

BUFECE

5l oot [15.0]

u_da D
5L IPORT I[36.0| | g Pl TV
il L ORDET Q159]
aroined) Ti :*_'_;'_EIB UF_inst
T nAoDE]
R R 1=
d dafa ouREs 5] - - - OEUF
data im(F55.0 2l test ok DBEUF ms
% 2l G 30E LE5E Ok [~ ™
- 14 i ila 0 data recs L
OBUF
walid im walid ot
vakd ouwt DEUF_ne
fifo_ver apper_J SED [~ =
- Lol
OBUF
data awt DEURD) msat
l—
fiRIIF

Design Schematic

Advanced course to FPGA programming

Vivado: VIO

The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal

FPGA signals in real time.
CLK
PROBE_IN0[0:0] i b PROBE_OUTO[255:0)
PROBE_IN1[255:0] Input Registers PROBE_OUT1(0:0]
= and Activity Output Registers -
PROBE_IN255[31:0] Detectors PROBE_OUT255(127:0]

A

Y A

Interface to JTAG through Debug Hub

e Generatea VIO IP

Component Name vio_0

[To configure more than 64 probe ports use Vivado Tcl Console N umber Of |nput prObe ports
General Options [PROBE_IN Ports(0..0) PROBE_OUT Ports(0..0)]

(Ineut Probe Count]1 -2 Number of output probe ports
OQutput Probe Count |1 10 - 256]
() Enable Input Probe Activity Detectors Probe_lnlout Ports Pa nels

Use the Probe Width field to set the width of each probe port

 Add IP to the design

Advanced course to FPGA programming 129

Vivado IP Integrator

The Vivado IP Integrator enables the development of complex system designs by instantiating and
interconnecting IP from the Vivado IP catalog.

The Block Design is a graphical representation of a hardware system, created and managed through
the Vivado IP Integrator.
* |t enables users to create modular, reusable, and scalable hardware systems efficiently within
the Vivado environment.

microblaze_0_axi_periph

2 500 _ANT

axi_gpio_0

ETH[O:0] W

p———f500_ACLE D%D 100 A [e 5, AT
1500 ARESETN[0:0] e G
0_ACLK
0_ARESETM]:0]

GPIO g ([fm % ferd]_8iDits

microblaze _0_local_memary

ok (|| |||=ouwe

Mk (]} l|knme
M_AXI_DP o | e MB Ok
ISY5._ Rs[0:0]

dk_wiz_1

HRCLK_INL D ells_outl
eet ocked
Clocking Wiz.

sys,_diff_clock [t
reset [

Advanced course to FPGA programming 130

Hands-on

Exercise 13

Design Project

Create a new project for Alveo U55 board
Create a Block Design and instantiate:

o FIFO_wrapper

o ILA (for test_ok signal)

o VIO (connected to reset signal)

o Utility_buffer (from differential to single-ended clock)
Generate BD wrapper
Create the constraint File modifying the port names as needed to match your design .
Generate the bitstream

Advanced course to FPGA programming &2

(.}

Design project
To use the custom IP FIFO_wrapper you need to add a user IP repository.

Tools Reports Window Layout View Help

Create and Package New IP...

Create Interface Definition...

Enable Dynamic Function eXchange...
Run Tcl Script... Settings
Property Editor

Associate ELE Files...

Generate Memory Configuration File... IP > Repository

Project Settings Add directories to the list of repositories. You may then add additional IP to
Compile Simulation Libraries... General a selected repository. If an IP is disabled then a tool-tip will alert you to the
reason.
Vivado Store... Simulation
Custom Commands » Elaboration
: IP Repositories
Launch Vitis IDE Synthesis
Implementation -+
Q Language Templates Bitstream
£+ Settings... P
Reposiory No content
Packager

Tool Settings

Project Refresh Al

IP Defaults

Vivado Store

» Specify the location of the IP definition

Advanced course to FPGA programming 133

Design project

v [P INTEGRATOR

Create Block Design
Open Block Design « Create a new block design

Generate Block Design

Diagram
2 E 0 - @ # C Default View v « Add IP Blocks using
the IP Catalog

Add IP (Ctri+1)

Search:

« Configure parameters for each IP block (e.g., data width, clock settings, interface types).

Advanced course to FPGA programming 134

Design project

« Connect Blocks manually - click and drag from one port to another - or using "Run Connection
Automation” to automatically generate necessary connections

fifo wrapper 128bit 0

ila_0

i = axi_stream_slave
vio_0 +II-: - - axi_stream_master 4 = clk
o
test ok probed[0:0]
clk probe_outD[0:0] rst -
— - — LA "I-w:écr'a:od Logic .":'u'.:“IEl VZET)
VIO (Virtual Input/Output) fifo wrapper 128bit v1 0 ' - - y

Block Pin Properties...

« Expose VIO clk as a top-level port - right-click a | Hablgnt
port and choose “Make External”

Copy

Search... #
3 . T r select Al
« Connect clk to fifo_wrapper and to ila T+ addr.

Add Module...
Make External Ctri+T

+ 7 n,O_ m

L

Advanced course to FPGA programming i8S

Design project

fifo_wrapper 128bit 0 ila 0

util ds buf 0 vio 0 4+ axi_stream_slave . -
. . clk axi_stream_master -+ = clk
test_ok be0[0:0
CLK IN D 0 [pw=|||+ CLK_IN.D IBUF_OUT[0:0] clk probe_out0[0:0] }- %rgt esto probe[0:0]
s . A (Integrated Logic Analyzer
Utility Buffer VIO (Virtual Input/Output) fifo wrapper 128bit v1 0 VLt J nalyzer)
L
Tools Reports Window Layout View Help
[¥ Validate Design Fo |
Create and Package New IP... + Validate the Design to check for errors or missing

Create Interface Definition... . . .

- - Foneri connections in the block design.
nable Dynamic Function eXchange...

Run Tcl Script...

Property Editor

Associate ELF Files...

Generate Memory Configuration File. .. Sources x Design Signals ? 0O
Compile Simulation Libraries... - -
Q = £ + &
o Design{ Source Node Properties.. * Create HDL Wrapper
5 de = Open File
> Constra Open With 3

v o Simulati Create HDL Wrapper...

Advanced course to FPGA programming 136

Backup

Advanced course to FPGA programming 137

Vivado Usage Modes

Vivado supports two main usage modes:

 Project Mode
» Vivado manages source files, constraints,
runs, and results inside a project directory.
= Supports Incremental compilation

Flow Element Project Mode

management automatic
flow navigation guided
flow customizations limited (through Tcl commands)
reporting automatic

analysis stages

automatic design checkpoints generation

Non-Project Mode

Designer has full control over the flow,
deciding when to run synthesis,
implementation, writing bitstream, etc.
No project database is created — only
the specified files and results are
generated.

Non Project Mode

manual

manual

unlimited (through Tcl commands)

manual

manual design checkpoints generation

Advanced course to FPGA programming 138

Incremental Synthesis

Vivado Synthesis can be run incrementally : the tool puts incremental synthesis info in the generated
DCP (Design CkeckPoint) file that can be referenced in later runs.
It detects when the design has changed and only re-runs synthesis on sections of the design that

have changed

Bl . | Incremental Synthesis box to

use a known checkpoint

P———— Spcyvarioussetings associled o Sythesis - use the last checkpoint created (default)
e _— « disable incremental synthesis
e Constraints | = consirs_1 (acl .
L?fﬂ:zmﬂnfﬂf'““ Report Settings Strategy: describes how aggressive synthesis is
— Stategy: |1 Vwado Syminesis Default Reporls (VWado Synthesis 2024) v with optimizations across partitions.
Tool Setings Settngs * Quick turns off most optimizations
oo roemertsmines) niomacly seces s =] ¢ |+ Aggressive turns on more and repeat
e S syateqy % Vivado Syninesis Defautis (Wwado Smin.. ~| el synthesis on certain sections

Ulsplay Description: Vivado Synthesis Defaulls °

Off tells synthesis not to use the incremental
synthesis information in the DCP file.
Default

Advanced course to FPGA programming 139

Incremental Synthesis

When the reference run is performed, the tool partitions out the design as it is performing synthesis.
When the incremental run is started, it compares the elaborated design with the reference run and
identifies the changed modules.

The information on how much of the design and what parts of the design were re-synthesized
can be found in the “Incremental Synthesis Report Summary.”

Disadvantages:

Advantages: Limited benefit for large changes

- Faster for small changes — only modified * Potential QoR degradation preserving
partitions are re-synthesized. unchanged partitions may prevent global

* Preserves previous optimizations — keeps optimizations, affecting timing or area efficiency.
placement, timing, and routing of « Complex flow management — requires careful
unchanged partitions. partitioning and checkpoint handling to avoid

inconsistent results.

» Less effective for small designs — designs with
few partitions may synthesize faster with a full
synthesis.

Advanced course to FPGA programming 140

Advantages of VHDL
*Enforces stricter rules, in particular strongly typed, less permissive and error-prone
eInitialization of RAM components in the HDL source code is easier (Verilog initial blocks are less
convenient)

*Package support

*Custom types

*Enumerated types

*No reg versus wire confusion

VHDL allows buffer port mode when a signalis used both
internally, and as an output port when there is only one
internal driver. Buffer ports are a potential source of errors
during synthesis, and complicate validation of post-

Advantages of Verilog synthesis results through simulation.

*C-like syntax

*More compact code

*Block commenting

*No heavy component instantiation as in VHDL

141

	Diapositiva numero 1
	Course Overview
	Diapositiva numero 3
	Diapositiva numero 4
	Diapositiva numero 5
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	Diapositiva numero 9
	Diapositiva numero 10
	Diapositiva numero 11
	Diapositiva numero 12
	Hands-on�Exercise 0�
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Diapositiva numero 19
	Diapositiva numero 20
	Diapositiva numero 21
	Diapositiva numero 22
	Diapositiva numero 23
	Diapositiva numero 24
	Diapositiva numero 25
	Hands-on�Exercise 1
	Diapositiva numero 27
	Diapositiva numero 28
	Diapositiva numero 29
	Diapositiva numero 30
	Diapositiva numero 31
	Diapositiva numero 32
	Diapositiva numero 33
	Diapositiva numero 34
	Diapositiva numero 35
	Hands-on�Exercise 2
	Diapositiva numero 37
	Diapositiva numero 38
	Diapositiva numero 39
	Diapositiva numero 40
	Diapositiva numero 41
	Diapositiva numero 42
	Diapositiva numero 43
	Diapositiva numero 44
	Diapositiva numero 45
	Diapositiva numero 46
	Diapositiva numero 47
	Diapositiva numero 48
	Diapositiva numero 49
	Diapositiva numero 50
	Diapositiva numero 51
	Diapositiva numero 52
	Diapositiva numero 53
	Diapositiva numero 54
	Diapositiva numero 55
	Diapositiva numero 56
	Diapositiva numero 57
	Diapositiva numero 58
	Diapositiva numero 59
	Diapositiva numero 60
	Diapositiva numero 61
	Diapositiva numero 62
	Diapositiva numero 63
	Diapositiva numero 64
	Diapositiva numero 65
	Diapositiva numero 66
	Diapositiva numero 67
	Diapositiva numero 68
	Diapositiva numero 69
	Diapositiva numero 70
	Diapositiva numero 71
	Diapositiva numero 72
	Diapositiva numero 73
	Diapositiva numero 74
	Diapositiva numero 75
	Diapositiva numero 76
	Diapositiva numero 77
	Diapositiva numero 78
	Diapositiva numero 79
	Diapositiva numero 80
	Diapositiva numero 81
	Diapositiva numero 82
	Diapositiva numero 83
	Diapositiva numero 84
	Diapositiva numero 85
	Diapositiva numero 86
	Diapositiva numero 87
	Diapositiva numero 88
	Diapositiva numero 89
	Diapositiva numero 90
	Diapositiva numero 91
	Diapositiva numero 92
	Diapositiva numero 93
	Diapositiva numero 94
	Diapositiva numero 95
	Diapositiva numero 96
	Diapositiva numero 97
	Diapositiva numero 98
	Diapositiva numero 99
	Diapositiva numero 100
	Diapositiva numero 101
	Diapositiva numero 102
	Diapositiva numero 103
	Diapositiva numero 104
	Diapositiva numero 105
	Diapositiva numero 106
	Course Overview
	Diapositiva numero 108
	Diapositiva numero 109
	Diapositiva numero 110
	Diapositiva numero 111
	Diapositiva numero 112
	Diapositiva numero 113
	Diapositiva numero 114
	Diapositiva numero 115
	Diapositiva numero 116
	Diapositiva numero 117
	Diapositiva numero 118
	Diapositiva numero 119
	Course Overview
	Diapositiva numero 121
	Diapositiva numero 122
	Diapositiva numero 123
	Diapositiva numero 124
	Diapositiva numero 125
	Diapositiva numero 126
	Diapositiva numero 127
	Diapositiva numero 128
	Diapositiva numero 129
	Diapositiva numero 130
	Diapositiva numero 131
	Diapositiva numero 132
	Diapositiva numero 133
	Diapositiva numero 134
	Diapositiva numero 135
	Diapositiva numero 136
	Diapositiva numero 137
	Diapositiva numero 138
	Diapositiva numero 139
	Diapositiva numero 140
	Diapositiva numero 141

