
Advanced course to FPGA programming

Piero Vicini, Ottorino Frezza, Francesca Lo Cicero, Francesco Simula,
INFN Rome1

Course Overview

FPGA interconnection

• Quick intro

• AURORA Xilinx
o Test and Debug

o Fine tuning

o Timing and Resources analysis

o Optimization

2Advanced course to FPGA programming

Introduction to FPGA

• Architecture

• Advantages and limitations

• Design Flow

• Simulation tool Tools & Programming languages

• VHDL syntax fundamentals

• Vivado tool overview
o Design Flow

▪ Project creation

▪ Ip core integration

▪ Simulation

▪ Synthesis
▪ Implementation

▪ Tcl scripting

o Timing analysis

o Custom IP Design & Integration

o FPGA Test & Debug

3

HDLs why?

• Computer programming languages, like C++ and Java

o Operations are performed in sequential order, one operation at a time.

o Since an operation frequently depends on the result of an earlier operation, the order of

execution cannot be altered at will.

The sequential model used in traditional programming languages cannot capture the characteristics

of digital hardware, and there is a need for special languages (i.e., HDLs) that are designed to

model digital hardware.

• A typical digital system is normally built by smaller parts, with customized wiring that

connects the input and output ports of these parts.

o When a signal changes, the parts connected to the signal are activated and a set of new

operations is initiated accordingly.

o These operations are performed concurrently, and each operation will take a specific

amount of time, which represents the propagation delay of a particular part, to complete.

o After completion, each part updates the value of the corresponding output port.

o If the value is changed, the output signal will in turn activate all the connected parts and

initiate another round of operations

Advanced course to FPGA programming

4

HDLs how?

The fundamental characteristics of a digital circuit are defined by the concepts of module,

connectivity, concurrency and timing.

• Module is the basic building block; it is self-contained, independent, and has no implicit

information about other entities.

• Connectivity models the connecting wires among the parts. It is the way that entities interact

with one another.

• Since the connections of a system are seldom formed as a single thread, many entities may be

active at the same time and many operations are performed in parallel. Concurrency

describes this type of behavior.

• Timing is related to concurrency: it specifies the initiation and completion of each operation and

implicitly provides a schedule and order of multiple operations.

The goal of an HDL is to describe and model digital systems faithfully and accurately. To achieve

this, the cornerstone of the language should be based on the model of hardware operation, and its

semantics should be able to capture the fundamental characteristics of the circuits.

Advanced course to FPGA programming

5

VHDL module

ARCHITECTURE

ENTITY DECLARATION
Basic
VHDL

module

A typical VHDL module has two main portions:

• Entity declaration: defines the module’s input and

output ports and configuration parameters (generic)

• Architecture block: defines the functionality of the

device.

• By VHDL default, the modules will be stored in a library named work.

Advanced course to FPGA programming

6

VHDL module

Note that there is no semicolon (;) in the last port/generic

declaration

The mode term indicates the direction of the signal, which can be in, out or inout.

The in and out keywords indicate that the signal flows “into” and “out of’ the circuit, respectively.

The inout keyword indicates that the signal flows in both directions and that the corresponding port

is a bidirectional port.

[Optional] Parametrize a design, conferring the code more

flexibility and reusability

Name: Every word except some reserved words, not case sensitive

entity entity_name is
[generic (
generic_name0 : generic_type := default_value;
…..
generic_name1 : generic_type := default_value
);]
port (
port_name0 : mode port_type;
port_name1 : mode port_type
);
end entity_name;

Es: integer

ENTITY DECLARATION

Advanced course to FPGA programming

7

VHDL module

[Optional]

• Component declarations required to describe a

hierarchical design

• Signal declarations used for local connections

between components.
• Constant declarations

Defines module functionality

All statements within architecture are executed concurrently:

• Concurrent statements are executed at the same time;

• The order of execution is solely specified by events

occurring on signals that the statements are sensitive to; it
is independent of the order in which the statements appear.

An entity can have multiple architectures.

architecture arch_name of entity_name is
[declaration]
begin

Functional code
end arch_name;

ARCHITECTURE

Advanced course to FPGA programming

8

Configuration

Advanced course to FPGA programming

configuration <config_name> of <entity_name> is
 for <architecture_name>

for INSTANCE_NAME : COMPONENT_NAME
 use entity LIBRARY_NAME.ENTITY_NAME(ARCHITECTURE_NAME);
end for;

 end for;
end configuration <config_name>;

Configuration refers to the mechanism to bind an entity with its architecture.

ENTITY DECLARATION

ARCHITECTURE_0 ARCHITECTURE_1 ARCHITECTURE_2

• Allow selection of a specific architecture for an entity

• Cannot be written inside an entity or architecture

Where configuration are placed

• In separate .vhd files

(recommended)

▪ Modular, easy to manage

• In the same file as the design unit

▪ Keep code together but less

modular

9

Configuration

Advanced course to FPGA programming

entity Example is
 port (
 a, b : in std_logic;
 y : out std_logic
);
end entity Example;

architecture and_arch of Example is
begin
 y <= a and b;
end architecture and_arch;

architecture or_arch of Example is
begin
 y <= a or b;
end architecture or_arch;

-- Configurations
configuration CFG_AND of Example is
 for and_arch
 end for;
end configuration CFG_AND;

configuration CFG_OR of Example is
 for or_arch
 end for;
end configuration CFG_OR;

10

Structural description

• Structural style describes the interconnection

of components within an architecture.

Complex project can be split in two or more simple design (components) to easy handle the complexity.

To instance a component inside a design, you shall:
• Declare the components in the declarative part of the

architecture

architecture arch_name of struct_entity_name
is
[declaration]
begin

Functional code
end arch_name;

component Cmp_1 is
port (
 port_name0 : mode port_type;​
 port_name1 : mode port_type
);
end component ;

• Instance the components in the architecture statement section (mapping ports)

component_inst_name : Cmp_1
Port map(
 port_name0 =>signal/port,
 port_name1 =>signal/port);

Cmp_1
in0
in1

Struct_entity

out
in2

Cmp_2

Advanced course to FPGA programming

Nominal port map

12

Constants

Constant declaration:

Constant objects are named value that cannot change during simulation or synthesis.

• A constant in an architecture can be used by any statement inside the architecture

• Constants allow the designer to create a better-documented model that is easy to
maintain and update.

constant constant_name: constant_type:= value;

Advanced course to FPGA programming

architecture arch_name of struct_entity_name is
constant constant_name: constant_type:= value;

begin
Functional code

end arch_name;

13

Signals
Signals are used to represent connections and data storage in VHDL

signal signal_name: signal_type [range] [:= default value];

Optional; it used in simulation and may

be used in synthesis, depending on the
platform (not safe).

• To define more than one signal of the same type, separates the signal names with a comma.

• Signals declared in architecture declaration section can be referenced in architecture.

architecture arch_name of simplified_entity_name is
 Signal signal_name: signal_type;

begin
Functional code

end arch_name;

Advanced course to FPGA programming

Signal declaration:

• Signals can be seen as real, physical signals

Signal assignment

• Identified by the symbol <=.

• Sensitive to changes on any signals that are to the right of the <= symbol.

• In Architecture's functional code, signal assignment are concurrent statements.

o Concurrent statements are executed at the same time;

o The order of execution is solely specified by events occurring on signals that the statements are

sensitive to; it is independent of the order in which the statements appear.

• The designer has the possibility to perform a signal assignment after certain amount of time,
implementing the delay in the assignment (only in simulation).

signal_name <= value;

signal_name <= value after time_value;

Constant or another signal

14

signal_name <= transport value after time_value;

Inertial delay

Transport delay

Advanced course to FPGA programming

Signal assignment is used to assign values to signal

Signal assignment:

Signal delay model

signal_name <= value after time_value;
• Ignores glitches (short pulses)

• Only stable changes (longer than the delay) are propagated

b <= a after 20 ns;

a changes from 0 to 1,

and b change its value after 20 ns;

➢ b takes the value of a after 20 ns second of inertial delay.

➢ A pulse shorter than 20 ns on a will be ignored.

a changes value going to 0 and then

to 1 in 15 ns (glitch).

This delay is less than inertial delay of

20 ns, so b remains unchanged.

• Inertial delay models physical devices with inertia

• Multiple inertial delayed assignments define a sequence of value changes for a signal.

• Useful for generating stimuli in testbenches.

signal_name <= value0 after time_value0, value1 after timevalue1, ...;

• Time values are relative to the current simulation time

b <= 3 after 5 ns, 4 after 30 ns, 7 after 40 ns;

Signal delay model

16

signal_name <= transport value after time_value;

• Transport delay idealizes propagation delay of a signal in hardware.

No matter how fast a changes his value,

c will follow the behavior of a after the

amount of time specified in the delay

statement.

c <= transport a after 20 ns;

Advanced course to FPGA programming

Conditional and selected signal assignment

Conditional signal assignment statement assigns a value to the target signal based on conditions.

Selected signal assignment selects among a number of options to assign the correct value to the

target signal.
• All of the possible values of the expression must have a matching choice in the selected signal assignment (or

an OTHERS clause must exist).

Target_signal <=
 Value_0 when condition_0 else
 Value_1 when condition_1 else
 ...
 Value_n when condition_n else
 Default_value;

with selector select
target_signal <=
 value_0 when selector_value0,
 ...
 value_n when selector_valuen,
 default_value when others;

Advanced course to FPGA programming

• The statement WHEN conditions are executed one at a time in sequential order until the conditions are met.

• The first statement that matches the conditions required assigns the value to the target signal.

18

Data type

entity simplified_entity_name is
port (
port_name : mode port_type;​
port_name : mode port_type
);
end simplified_entity_name;

architecture arch_name of etity_name is
 Signal signal_name: signal_type;

 constant constant_name: constant_type := value;
begin

Functional code
end arch_name;

Type specification specifies the characteristics of the object (port/signal/constant)

Advanced course to FPGA programming

• In VHDL, selecting the appropriate data type is fundamental for accurately modeling hardware behavior
and ensuring efficient synthesis and simulation.

➢ Pre-defined type

➢ User-defined type

• Operation between different data types are not allowed!

19

VHDL predefined package

The standard and IEEE libraries were created to provide a set of predefined, commonly used data

types, making it easier to write, read, and maintain VHDL designs

• packages group related types, constants, and functions together

To use a predefined package, you must include the library containing it and use statements before the

entity declaration (std and work libraries are visible by default).

library library_name ;
use library_name.package_name.all ;

• Library std

▪ Standard (visible by default) : type definition (INTEGER, BIT, BOOLEAN, CHARACTER) and

logic, arithmetic, comparison, shift and concatenation operators
▪ Textio: text and files

• Library IEEE
▪ std_logic_1164 defines a standard for describing digital logic values in VHDL (IEEE STD

1164). It contains definitions for std_logic (single bit) and for std_logic_vector (array).

▪ numeric_std: defines signed and unsigned types, and operators

Advanced course to FPGA programming

20

VHDL Predefined Data type

Time
Bit,

Boolean,

Character,
Std_logic, ...

String,

Std_logic_vector, ...

Simulation only

Advanced course to FPGA programming

21

VHDL Real and Physical data type

• Type Real

o range defined by standard: -1.0E38

to 1.0E38 (Floating Point numbers)

ARCHITECTURE test OF test IS
SIGNAL a : REAL;
BEGIN
a <= 1.0; --OK
a <= 1; --Error
a <= -1.0E10; --OK
a <= 1.5E-20; --OK

END test;

Pre-defined type in Standard Library (visible by default)

• Type time (physical)

UNITS
fs; --femtosecond
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min
END UNITS; Advanced course to FPGA programming

22

VHDL Integer data type

• Type Integer

o Range defined by standard: -

2147483647 to 2147483647 (32-bit

representation)

o Always define the range (otherwise

the compiler will employ 32 bits to

represent them)

Pre-defined type in Standard Library (visible by default)

A subtype of a given type restricts the type range.

Integer has two predefined subtypes:

• subtype natural is integer range 0 to integer'high;

• subtype positive is integer range 1 to integer'high;

Signal signal_integer : integer range 0 to 255;

2147483647

Advanced course to FPGA programming

23

VHDL Enumerated data type

• Type BIT is (‘0’, ‘1’)

• Type BOOLEAN is (false, true)

• Type CHAR is (NUL, SOH,, DEL...)

o Symbols are from the ISO 8859-

1 character set
o The first 128 symbols comprising

regular ASCII CODE

Pre-defined type in Standard Library (visible by default)

Enumerated data type consists of a set of named values called elements.

Advanced course to FPGA programming

24

Std_ulogic and Std_logic
• Pre-defined type

Pre-defined type in ieee.std_logic_1164

• Type Std_ulogic

• Type std_logic is resolved std_ulogic

Problem: If two sources try to drive the same std_ulogic signal,

it causes a compilation error.

25Advanced course to FPGA programming

Std_logic High impedence

High impedance (Hi-Z) represents a disconnected or floating state on a signal or pin.

• A tri-state buffer is a digital circuit with three possible output states:

➢ Logic High ('1') → the buffer drives the output high.

➢ Logic Low ('0') → the buffer drives the output low.

➢ High Impedance ('Z') → the buffer “disconnects” from the bus,

allowing other devices to drive it.

➢ Prevents bus conflicts.

➢ Allows multiple devices to share the same line safely.

➢ Essential in shared digital systems, like microprocessors, memory interfaces, and buses.

• When c0 = '1’, Device 1 drives bus line.

• When c0 = '0', the buffer goes into high

impedance ('Z'), letting Device 2 use the

bus.

26Advanced course to FPGA programming

Std_ulogic and Std_logic

Basic logic gates

Hands-on

MUX
 ghdl_examples/Mux

Advanced course to FPGA programming 27

Advanced course to FPGA programming 28

GHDL and GTKWave at work
Few basic examples of use

• Basic VHDL

• Scripting

• Execution and waveform analysis

Hands-on

• Launch JupyterLab: https://xilinx01-2.mib.infn.it
• Launch Desktop

• Open terminal window and download material
o Git clone https://gitlab.com/piero.vicini/ghdl_examples

• 3 directories: Register, Counter, Coffee-maker.

• Directories contain:

o nomefile.vhd (src file)

o nomefile_TB.vhd (testbench file)

o Makefile (script for compilation and run)

https://gitlab.com/piero.vicini/ghdl_examples

Advanced course to FPGA programming 29

2-to-1 multiplexer (MUX)

Input:
• Two bit (IN0, IN1)

• one bit selector (SEL)

Output: single bit (Z)

Function: The control inputs (SEL) select which one of

the data inputs is connected to the output.

• If (SEL) = 0 → Z = IN0

• If (SEL) = 1 → Z = IN1

Exercise:

• go to directory MUX, have a look to the code, execute

simulation and visualize the output

• or Do it yourself...

Specifications:

Module selects one of two inputs

and forwards it to the output

based on a 1-bit selection input.

30

VHDL Array data type

Pre-defined typePre-defined array

• Type bit_vector is array (integer range <>) of bit

• Type Boolean_vector is array (integer range <>) of

boolean

• Type string is array (positive range <>) of char
• Type std_logic_vector is array (natural range <>) of

std_logic

• Type signed/unsigned is array (integer range <>) of

std_logic

Array types is used to collect one or more elements of a similar type in a single construct.

Unconstrained array (<>):

Actual range is established

later, when type is used in the

code

Advanced course to FPGA programming

31

VHDL Array data type: std_logic_vector

• Type std_logic_vector is array (natural range <>)
of std_logic

• Pre-defined type in library ieee.std_logic_1164
• To access the value of an element from this

vector, you can use the index

library ieee;
use ieee.std_logic_1164.all;
…
constant bin_data : std_logic_vector(7 downto 0) := "00000101"; -- Descending range
signal bin_data_1 : std_logic_vector(7 downto 0);
signal bin_data_2 : std_logic_vector(0 to 7); -- Ascending range
signal a,b,c : std_logic;
…
bin_data_2 <= "00000101"; -- Note double quote
bin_data_1 <= (others=>'0'); -- This syntax assigns '0' to all bits of the vector bin_data_1.
a <= bin_data (0); -- a = '1'
b <= bin_data_2 (0); -- b = '0'

• Natural range can be ascending or
descending

• The choice between ascending and

descending order is often a question

of the designer’s preferences. The

most important thing is to choose one

style and then follow it consistently;
mixing the two different styles in one
project can easily lead to trouble.

Advanced course to FPGA programming

32

VHDL Array data type: std_logic_vector

• Type std_logic_vector is array (natural range <>)
of std_logic

• Pre-defined type in library ieee.std_logic_1164
• To access the value of an element from this

vector, you can use the index

library ieee;
use ieee.std_logic_1164.all;
…
constant bin_data : std_logic_vector(7 downto 0) := "00000101"; -- Descending range
signal bin_data_1 : std_logic_vector(7 downto 0);
signal bin_data_2 : std_logic_vector(0 to 7); -- Ascending range
signal a,b,c : std_logic;
…
bin_data_2 <= "00000101"; -- Note double quote
bin_data_1 <= (others=>'0'); -- This syntax assigns '0' to all bits of the vector bin_data_1.
a <= bin_data (0); -- a = '1'
b <= bin_data_2 (0); -- b = '0'

• Natural range can be ascending or
descending

• The choice between ascending and

descending order is often a question

of the designer’s preferences. The

most important thing is to choose one

style and then follow it consistently;
mixing the two different styles in one
project can easily lead to trouble.

Advanced course to FPGA programming

std_logic_vector is just a vector of bits with no numeric meaning!

33

VHDL std_logic_vector as integer

Library ieee.std_logic_unsigned

• provides operations for treating std_logic_vector

signals as unsigned integer

• allows to perform arithmetic operations like

addition, subtraction, multiplication, and
comparisons .

Library ieee.std_logic_signed

• provides operations for treating std_logic_vector

signals as signed integer

• allows to perform arithmetic operations like

addition, subtraction, multiplication, and
comparisons .

Std_logic_unsigned, signed and arith library were created by Synopsys in the very early. They were

distributed free of charge and compiled into the IEEE library (even though they're not an IEEE standard).

Advanced course to FPGA programming

34

VHDL Array data type: signed/unsigned
• Types signed/unsigned are array (natural range <>) of std_logic with a numeric interpretation

• Pre-defined type in library ieee.numeric_std

• For signed signals, internally the FPGA will use Two’s Complement representation

Available operators

library IEEE;
use IEEE.NUMERIC_STD.ALL;
…
signal signal_unsigned: unsigned(3 downto 0);
…
signal_unsigned <= "0001"; -- Note double quote

Type Compatibility and Result Rules for
signed and unsigned in VHDL

35

VHDL Numeric Types: Comparison of

integer, unsigned, and signed

Feature integer unsigned signed

Type Scalar (not a vector) Vector (std_logic_vector) Vector (std_logic_vector)

Defined in VHDL standard ieee.numeric_std ieee.numeric_std

Bit-level? No Yes Yes

Supports sign? Yes No (positive only) Yes (positive and
negative)

Representation Decimal numbers Binary (no sign) Binary (two’s
complement)

Range -2,147,483,647 to
+2,147,483,647 (typical) 0 to 2ⁿ - 1 -2ⁿ⁻¹ to 2ⁿ⁻¹ - 1

Arithmetic Native arithmetic Supported via
numeric_std

Supported via
numeric_std

Advanced course to FPGA programming

36

VHDL Integer type conversion

Advanced course to FPGA programming

Hands-on

Adder
ghdl_examples/Adder

Advanced course to FPGA programming 37

38

VHDL sequential behaviour: process
Process statement contains only sequential statements.

• The process statement is a concurrent statement.

• A process contains:

o sensitivity list

o declarative part

o sequential statement section

[process_label] : process(sensitivity_list)
[declarative part]
begin
-- sequential statement
end process [process_label];

The process label is optional, you can avoid using the label.

Labeling all process you use, the code will be clear, and it will

be simple to arrange the simulation environment.

In the process sensitivity list are declared all the

signal which the process is sensitive to : the

process is evaluated any time a transaction is

scheduled on the signals in the sensitivity list.

Advanced course to FPGA programming

Optinal declarative part is used to declare local
variables, types and constant.

39

VHDL variable

Advanced course to FPGA programming

A variable in VHDL is a local storage element that exists only inside a process, function, or procedure.

It is used to store local values.

Update timing

variable var_name : type [:= initial_value];

• Variables cannot be assigned to output ports; use signals for that

• Changes take effect immediately, unlike signals which update at the end of the process or delta cycle.

Feature Variable Signal

Assignment operator := <=

Update timing Immediate Scheduled (end of process)

Scope Local to process/function Can be global to architecture

Synthesis Synthesizable if inside a process Always synthesizable

40

VHDL if statement

IF statements are used in VHDL to test for various conditions.

If <condition> then
 Sequence of statement

[elsif condition_1 then
 Sequence of statement

]
[else
 Sequence of statement
]
end if;

• The <condition> can be a Boolean true or false, or it can be an
expression which evaluates to true or false.

Relational operators:Logical operators:

Advanced course to FPGA programming

41

VHDL if statement

IF statements are used in VHDL to test for various conditions.

• elsif is optional and may be used multiple times.

• else is optional but pay attention: if the code doesn’t explicitly

specify the value of the output for one case, the previous

value of the output will be held. This is equivalent to the

memory effect that a D latch exhibits!

If <condition> then
 Sequence of statement

[elsif condition_1 then
 Sequence of statement

]
[else
 Sequence of statement
]
end if;

• If statements are synthesized by generating a multiplexer for each signal assigned within the

if statement. The select input on each mux is driven by logic determined by the if condition,

and the data inputs are determined by the expressions on the right-hand sides of the
assignments.

Advanced course to FPGA programming

Latch are not suitable for synthesis

42

VHDL if statement example
library ieee ;
use ieee.std_logic_1164.all;

entity mux_2 is
port(
 a : in std_logic_vector(2 downto 0);
 b : in std_logic_vector(2 downto 0);
 s : in std_logic;
 m : out std_logic_vector(2 downto 0));
end mux_2;

architecture rtl of mux_2 is
begin
 p_mux : process(a,b,s)
 begin
 if(s='0') then
 m <= a ;
 else
 m <= b ;
 end if;
 end process p_mux;
end rtl;

library ieee ;
use ieee.std_logic_1164.all;

entity mux_2 is
port(
 a : in std_logic_vector(2 downto 0);
 b : in std_logic_vector(2 downto 0);
 s : in std_logic;
 m : out std_logic_vector(2 downto 0));
end mux_2;

architecture rtl of mux_2 is
begin
 m <= a when (s='0') else b;
end rtl;

Advanced course to FPGA programming

43

VHDL synchronous process example

entity reg8 is
Port (
 clk : in STD_LOGIC;
 reset : in STD_LOGIC;
 d : in STD_LOGIC_VECTOR(7 downto 0);
 q : out STD_LOGIC_VECTOR(7 downto 0));
end reg8;

architecture Behavioral of reg8 is
signal reg : STD_LOGIC_VECTOR(7 downto 0);

begin
 process(clk, reset) -- asynchronous reset in sensitivity list
 begin
 if reset = '1' then -- Reset active high
 reg <= (others => '0’); -- async reset clears register immediately
 elsif rising_edge(clk) then -- rising_edge(clk) means clk'event and clk='1'
 reg <= d; -- on clock rising edge, capture input d
 end if;

 end process;
q <= reg;
end Behavioral;

FLIP FLOP D

Advanced course to FPGA programming

44

VHDL case-when statement

The Case-When statement will cause the program to take one out of multiple different paths,

depending on the value of a signal, variable, or expression.

• It’s a more elegant alternative to an If-Then-Elsif-Else statement with multiple Elsif’s.

case <expression> is
when <choice> => code for this branch
when <choice> => code for this branch
...
end case;

• The <expression> is usually a variable or a signal.

• The Case statement may contain multiple when choices,
but only one choice will be selected.

The <choice> may be

• a unique value (like "11")

• a range (like 5 to 10)

• several values (like 1|3|5)

• others (selected whenever no other choice
was matched)

Advanced course to FPGA programming

45

VHDL case-when statement example
library ieee ;
use ieee.std_logic_1164.all;

entity mux4_case is
port(
 a : in std_logic_vector(3 downto 0);
 b : in std_logic_vector(3 downto 0);
 c : in std_logic_vector(3 downto 0);
 d : in std_logic_vector(3 downto 0);
 s : in std_logic_vector(1 downto 0);
 m : out std_logic_vector(3 downto 0));
end mux4_case;

architecture rtl of mux4_case is
begin
 p_mux : process(a,b,c,d,s)
 begin
 case s is
 when "00" => m <= a;
 when "01" => m <= b;
 when "10" => m <= c;
 when others => m <= d;
 end case;
 end process p_mux;
end rtl;

library ieee ;
use ieee.std_logic_1164.all;

entity mux4_case is
port(
 a : in std_logic_vector(3 downto 0);
 b : in std_logic_vector(3 downto 0);
 c : in std_logic_vector(3 downto 0);
 d : in std_logic_vector(3 downto 0);
 s : in std_logic_vector(1 downto 0);
 m : out std_logic_vector(3 downto 0));
end mux4_case;

architecture rtl of mux4_case is
begin
 p_mux : process(a,b,c,d,s)
 begin
 If s="00" then m <= a;
 elsif s="01" then m <= b;
 elsif s="10" then m <= c;
 else m <= d;
 end if;
 end process p_mux;
end rtl;

Advanced course to FPGA programming

46

VHDL case-when statement

example

Truth table

architecture truth_table of MUX is
 signal temp_sel : std_logic_vector(2 downto 0) ;

begin
 temp_sel <= SEL & IN0 & IN1 ; -- concatenation
 process(SEL,IN0,IN1)
 begin
 case(temp_sel) is
 when "000" => OUT_Z <= '0’ ;
 when "001" => OUT_Z <= '0' ;
 when "010" => OUT_Z <= '1' ;
 when "011" => OUT_Z <= '1' ;
 when "100" => OUT_Z <= '0' ;
 when "101“ => OUT_Z <= '1' ;
 when "110“ => OUT_Z <= '0' ;
 when "111“ => OUT_Z <= '1' ;
 when others => OUT_Z <= 'X’ ; -- catch-all
 end case ;
 end process ;

end architecture truth_table;

SEL IN0 IN1 OUT_Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Hands-on

Register
 ghdl_examples/Register
Counter

ghdl_examples/Counter
Advanced course to FPGA programming 47

Advanced course to FPGA programming 48

Sequential circuit

Sequential circuits: Output depends on inputs + history of past inputs (memory).

• Example: counters, registers, sequence detectors.

Combinational circuits: Output depends only on current inputs

A sequential circuit can be

• Asynchronous: the changes in all the state variables are not

synchronized and can occur at any time. The transitions

between states are driven by the inputs themselves, which can

lead to more complex behavior.
• Synchronous: changes on all the state variables are

synchronized with a clock signal.

A Finite State Machine (FSM) is the mathematical abstraction of a sequential circuit:.

It consists of a finite number of states, transitions, inputs, and outputs.

• States: Represent the current condition of the system.

• Transitions: Rules for moving from one state to another, based on inputs.

• Inputs: Signals that trigger state changes.
• Outputs: Signals produced

49

Moore FSM

Moore Machine: Output depends only on the current state.

Advanced course to FPGA programming

--Three Processes
architecture RTL of MOORE is
signal current_state, next_state: <state_type>;
begin
 REG:process(clk, rst)

 begin
 if rst = '1' then

 current_state <= S0;
 elsif rising_edge(clk) then

 current_state <= next_state;
 end if;

 end process;
CMB_STATE: process(current_state, inputs) -- Combinational Process with Next State Logic

 Begin
 ...
 end process;
CMB_OUTPUT: process (current_state) -- Combinational Process with Output Logic

 begin
 ...
 end process;
end RTL ;

Advanced course to FPGA programming 50

Mealy FSM

Mealy Machine: Output depends on current state and input.

--Three Processes
architecture RTL of MEALY is
signal current_state, next_state: <state_type>;
begin
 REG:process(clk, rst)

 begin
 if rst = '1' then

 current_state <= S0;
 elsif rising_edge(clk) then

 current_state <= next_state;
 end if;

 end process;
CMB_STATE: process(current_state, inputs) -- Combinational Process with Next State Logic

 Begin
 ...
 end process;
CMB_OUTPUT: process (current_state, inputs) -- Combinational Process with Output Logic

 begin
 ...
 end process;
end RTL ;

Advanced course to FPGA programming 51

FSMs

Hands-on

Coffee Maker
ghdl_examples/coffee_maker

Advanced course to FPGA programming 52

	Slide 1
	Slide 2: Course Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Hands-on MUX ghdl_examples/Mux
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Hands-on Adder ghdl_examples/Adder
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Hands-on Register ghdl_examples/Register Counter ghdl_examples/Counter
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Hands-on Coffee Maker ghdl_examples/coffee_maker

