Fondazioneg

Finanziato ¢ % Ministero g -
dall'Unione europea (E dell’Universita i [taliadomani
NextGenerationEU “%&° edella Ricerca Df RIPRESA £ FESIIENTA i

Advanced course to FPGA programming

Piero Vicini, Ottorino Frezza, Francesca Lo Cicero, Francesco Simula,
INFN Rome1

<R

Istituto Nazionale di Fisica Nucleare

Course Overview

Introduction to FPGA FPGA interconnection

» Architecture * Quick intro

« Advantages and limitations AURORA Xilinx

« Design Flow o Test and Debug

« Simulation tool Tools & Programming languages o Fine tuning
 VHDL syntax fundamentals o Timing and Resources analysis
« Vivado tool overview o Optimization

o Design Flow
» Project creation
= |p core integration
* Simulation V%O
= Synthesis p
» |Implementation
= Tcl scripting
o Timing analysis
o Custom IP Design & Integration
o FPGA Test & Debug

Advanced course to FPGA programming 2

HDLs why?

« Computer programming languages, like C++ and Java
o Operations are performed in sequential order, one operation at a time.

o Since an operation frequently depends on the result of an earlier operation, the order of
execution cannot be altered at will.

« A typical digital system is normally built by smaller parts, with customized wiring that
connects the input and output ports of these parts.

o When a signal changes, the parts connected to the signal are activated and a set of new
operations is initiated accordingly.

o These operations are performed concurrently, and each operation will take a specific
amount of time, which represents the propagation delay of a particular part, to complete.

o After completion, each part updates the value of the corresponding output port.

o If the value is changed, the output signal will in turn activate all the connected parts and
initiate another round of operations

The sequential model used in traditional programming languages cannot capture the characteristics

of digital hardware, and there is a need for special languages (i.e., HDLs) that are designed to
model digital hardware.

Advanced course to FPGA programming 3

HDLs how?

The fundamental characteristics of a digital circuit are defined by the concepts of module,

connectivity, concurrency and timing.

« Module is the basic building block; it is self-contained, independent, and has no implicit
information about other entities.

« Connectivity models the connecting wires among the parts. It is the way that entities interact
with one another.

« Since the connections of a system are seldom formed as a single thread, many entities may be
active at the same time and many operations are performed in parallel. Concurrency

describes this type of behavior.
« Timing is related to concurrency: it specifies the initiation and completion of each operation and

implicitly provides a schedule and order of multiple operations.

The goal of an HDL is to describe and model digital systems faithfully and accurately. To achieve
this, the cornerstone of the language should be based on the model of hardware operation, and its
semantics should be able to capture the fundamental characteristics of the circuits.

Advanced course to FPGA programming 4

VHDL module

A typical VHDL module has two main portions:

ENTITY DECLARATION

 Entity declaration: defines the module’s input and

output ports and configuration parameters (generic)
 Architecture block: defines the functionality of the
device.

ARCHITECTURE

« By VHDL default, the modules will be stored in a library named work.

Advanced course to FPGA programming

Basic
— VHDL
module

VHDL module

ENTITY DECLARATION

Name: Every word except some reserved words, not case sensitive

entity entity name is
[generic (
generic_name@® : generic_type :

=

default_value; - i ' '
STalT_YatiSsl [Optional] Parametrize a design, conferring the code more

flexibility and reusability

generic_namel : generic_type :
)51

port (

port_name@® : mode port_type;
port_namel : mode port_type
);

end entity name;

default valu

Note that there is no semicolon (;) in the last port/generic
declaration

Es: integer

The mode term indicates the direction of the signal, which can be in, out or inout.
The in and out keywords indicate that the signal flows “into” and “out of’ the circuit, respectively.

The inout keyword indicates that the signal flows in both directions and that the corresponding port
Is a bidirectional port.

Advanced course to FPGA programming 6

VHDL module

ARCHITECTURE

[[Optional]
« Component declarations required to describe a

architecture arch_name of entity_name is : : .
hierarchical design

declaration] < -)) _
r[; egin] Signal declarations used for local connections
Functional code between components.
end arch_name; _ * Constant declarations

Defines module functionality

All statements within architecture are executed concurrently:

 Concurrent statements are executed at the same time;

« The order of execution is solely specified by events
occurring on signals that the statements are sensitive to; it
is independent of the order in which the statements appear.

An entity can have multiple architectures.

Advanced course to FPGA programming

Configuration

Configuration refers to the mechanism to bind an entity with its architecture.

« Allow selection of a specific architecture for an entity
« Cannot be written inside an entity or architecture

configuration <config name> of <entity name> is
for <architecture_name>
for INSTANCE_NAME : COMPONENT_NAME
use entity LIBRARY_NAME.ENTITY_NAME(ARCHITECTURE NAME);
end for;
end for;
end configuration <config name>;

—— m— — — — — -

ENTITY DECLARATION

. = «
./ARCHITECTURE_O \ ABGI'HTECTUR-E_J\ " ARCHITECTURE_2
~ . w N® - ~—

Advanced course to FPGA programming

Where configuration are placed
* In separate .vhd files
(recommended)
= Modular, easy to manage
* In the same file as the design unit
» Keep code together but less
modular

Configuration

entity Example is

| port (
a, b : in std_logic;
y : out std logic

. -- Configurations

_ Econfiguration CFG_AND of Example is
|)5 E ; for and_arch

Eend entity Example; - f end for;

i , , . end configuration CFG_AND;
i architecture and _arch of Example is E

Ebegin

: y <= a and b;

Eend architecture and_arch;

iconfiguration CFG_OR of Example is
for or_arch
end for;

!)) . end configuration CFG_OR;
. architecture or_arch of Example is !

. begin i ettt
| y <= a or b; |
. end architecture or_arch;

S g |

Advanced course to FPGA programming 9

Structural description

Complex project can be split in two or more simple design (components) to easy handle the complexity.

in0

in1 | cmp.1 > out : : :

nl . Cmp_2 » * Structural style describes the interconnection
In2 of components within an architecture.

Struct_entity

To instance a component inside a design, you shall: . :
. : architecture arch_name of struct_entity name
» Declare the components in the declarative part of the is
;grgo?ent Cmp_1 1s begin
port name® : mode port type; Functional code
port_namel : mode port_type |end arch_name;

eﬁd component ;
* Instance the components in the architecture statement section (mapping ports)

component _inst name : Cmp_1
Port map(
port _name@ =>signal/port, _
port namel =>signal/port); “— Nominal port map

Advanced course to FPGA programming 10

Constants

Constant objects are named value that cannot change during simulation or synthesis.

« Constants allow the designer to create a better-documented model that is easy to
maintain and update.

« A constant in an architecture can be used by any statement inside the architecture

architecture arch _name of struct _entity name is
constant constant_name: constant_type:= value;
begin

Functional code
end arch_name;

Constant declaration:

constant constant name: constant _type:= value;

Advanced course to FPGA programming 12

Signals

Signals are used to represent connections and data storage in VHDL
Optional; it used in simulation and may
be used in synthesis, depending on the

Signal declaration: platform not safe).

signal signal name: signal type [range] [:= default value];

architecture arch_name of simplified entity name is
Signal signal name: signal_ type;

« Signals can be seen as real, physical signals begin
Functional code

end arch_name;

« To define more than one signal of the same type, separates the signal names with a comma.

« Signals declared in architecture declaration section can be referenced in architecture.

Advanced course to FPGA programming 13

Signal assignment

Signal assignment is used to assign values to signal

 |dentified by the symbol <=.
« Sensitive to changes on any signals that are to the right of the <= symbol.

Signal assignment: /

signal name <= value;

Constant or another signal

« The designer has the possibility to perform a signal assignment after certain amount of time,
implementing the delay in the assignment (only in simulation).

signal_name <= value after time_value; Inertial delay

signal _name <= transport value after time_value; Transport delay

« In Architecture's functional code, signal assignment are concurrent statements.
o Concurrent statements are executed at the same time;
o The order of execution is solely specified by events occurring on signals that the statements are
sensitive to; it is independent of the order in which the statements appear.

Advanced course to FPGA programming 14

Signal delay model

* Inertial delay models physical devices with inertia

 Ignores glitches (short pulses) : :
- Only stable changes (longer than the delay) are propagated | Signal_name <= value after time_value;
b <= a after 20 ns;

> b takes the value of a after 20 ns second of inertial delay. a changes from 0 to 1,
» A pulse shorter than 20 ns on a will be ignored. and b change its value after 20 ns;

a changes value going to 0 and then
to 1in 15 ns (glitch).

This delay is less than inertial delay of
20 ns, so b remains unchanged.

« Multiple inertial delayed assignments define a sequence of value changes for a signal.

signal name <= value® after time value®, valuel after timevaluel, ...;

 Time values are relative to the current simulation time

» Useful for generating stimuli in testbenches.

b <= 3 after 5 ns, 4 after 30 ns, 7 after 40 ns;

Name Value
46,000, ; 0.000 g

0,000 n 0,006 n 0,000 0,000
I [T S N S T S

Signal delay model

« Transport delay idealizes propagation delay of a signal in hardware.

signal name <= transport value after time_value;

c <= transport a after 20 ns;

No matter how fast a changes his value,
c will follow the behavior of a after the

amount of time specified in the delay
statement.

Advanced course to FPGA programming 16

Conditional and selected signal assignment

Conditional signal assignment statement assigns a value to the target signal based on conditions.

« The statement WHEN conditions are executed one at a time in sequential order until the conditions are met.
« The first statement that matches the conditions required assigns the value to the target signal.

Target _signal <=
Value © when condition 0 else
Value_1 when condition_1 else

Value_n when condition_n else
Default value;

Selected signal assignment selects among a number of options to assign the correct value to the

target signal.
» All of the possible values of the expression must have a matching choice in the selected signal assignment (or
an OTHERS clause must exist).

with selector select
target_signal <=
value 0 when selector_value©,

value n when selector_valuen,
default value when others;

Advanced course to FPGA programming

Data type

Type specification specifies the characteristics of the object (port/signal/constant)
> Pre-defined type

entity simplified entity name is
port (

port name : mode port_type;

port name : mode port_type

» User-defined type

end simplified entity name;

architecture arch _name of etity name is

Signal signal name: signal_ type;
constant constant _name: constant_type := value;
begin

Functional code
end arch_name;

* In VHDL, selecting the appropriate data type is fundamental for accurately modeling hardware behavior
and ensuring efficient synthesis and simulation.

* Operation between different data types are not allowed!

Advanced course to FPGA programming 18

VHDL predefined package

The standard and IEEE libraries were created to provide a set of predefined, commonly used data
types, making it easier to write, read, and maintain VHDL designs
« packages group related types, constants, and functions together

* Library std
» Standard (visible by default) : type definition (INTEGER, BIT, BOOLEAN, CHARACTER) and
logic, arithmetic, comparison, shift and concatenation operators
» Textio: text and files
« Library IEEE
» std_logic_1164 defines a standard for describing digital logic values in VHDL (IEEE STD
1164). It contains definitions for std_logic (single bit) and for std_logic_vector (array).
» numeric_std: defines signed and unsigned types, and operators

To use a predefined package, you must include the library containing it and use statements before the
entity declaration (std and work libraries are visible by default).

library library name ;
use library name.package name.all ;

Advanced course to FPGA programming 19

VHDL Predefined Data type

(Types)

(Access)

Simulation only

CCom posite)

e ey
(Array) C Record)

String,
C Scalar) Std_logic_vector, ...

Clnteger)(Real) CEnum-erated) (Physical)
Time

Bit,

Boolean,
Character,
Std_logic, ...

Advanced course to FPGA programming

20

VHDL Real and Physical data type

Pre-defined type in Standard Library (visible by default)

* Type Real
o range defined by standard: -1.0E38
to 1.0E38 (Floating Point numbers) (Types)

ARCHITECTURE test OF test IS
SIGNAL a : REAL;

BEGIN (Access) (Composite)
a <= 1.0; --0K
a <= 1; --Error
a <= -1.0E10; --OK C Array) CRecord)
a <= 1.5E-20; --0K
END test; (Scalar)

* Type time (physical)

UNITS -

fs; --femtosecond (IntegerD[(Real)] (Enumerated)
ps = 1000 fs;

ns = 1000 ps;

us = 1000 ns;

ms = 1000 us;

sec = 1000 ms;

min = 60 sec;

hr = 60 min

END UNITS; Advanced course to FPGA programming 21

VHDL Integer data type

Pre-defined type in Standard Library (visible by default) (Types)

* Type Integer
o Range defined by standard: - (o—) (Composite)
2147483647 to 2147483647 (32-bit
representation)
o Always define the range (otherwise (| % alll) CRecord)
Scalar

the compiler will employ 32 bits to
represent them) [ﬁﬁ\
Signal signal_integer : integer range @ to 255; (Integer)(Real) (Enumerated) (Physmal)

A subtype of a given type restricts the type range.
Integer has two predefined subtypes:

« subtype natural is integer range 0 to integer'nigh;
» subtype positive is integer range 1 to integer'high;

2147483647

Advanced course to FPGA programming 22

VHDL Enumerated data type

Enumerated data type consists of a set of named values called elements.

Pre-defined type in Standard Library (visible by default)

- Type BIT is (‘0, ‘1")

 Type BOOLEAN is (false, true)
« Type CHAR s (NUL, SOH,, DEL...)
o Symbols are from the ISO 8859-

1 character set

o The first 128 symbols comprising

00 01 02 03 04 05 06 07 08 09
NUL SOH STX ETX EOT ENQ ACK BEL BS HT

10 11 12 13 14 15 16 17 18 19
DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM

20
SP

30
0

40
e

50
P

60

70
P

21
!

31
1

41
A
51
Q
61
a
71
q

22

32
2

42
B

52
R

62
b

72
r

23
#

33
3

43
C

53
S

63
c

73
s

24
$
34
4

44
D

54
T

64
d

74
t

25
%

35
5

45
E

55
U

65
e

75
u

26
&

36
6

46
4

56
\Y

66
f

76
v

27

37
7

47
G

57
W
67
g

77
w

28 29
()
38 39
8 9

48 49
H i

58 59
X Y

68 69
h i

78 79
£ ¥

regular ASCIl CODE

OA OB
NL VT

1A 1B
SUB ESC

2A 2B
* 4

3A 3B
4A 4B

J K

5A 5B
z
6A 6B
i k
7A 7B
z

0c
NP

1C
FS

2C

3C
<

4c
L

5C
\

6C
1

7C

OE
SO

1E
RS
2E
3E
4E
5E
6E

7E

OF
SI

1F

us

2F

3F

4F

5F

6F

1’
DEL

(Types)

(Com posite)

/\.
(Array) CRecord)
(Scalar)

(Integer)(Real) [Ginum!eratedD] (Physical)

Advanced course to FPGA programming

23

Std_ulogic and Std_logic

Pre-defi ini . logic_1164
re-defined type in ieee.std_logic_116 - Pre-defined type

(]

1 logic one

« Type Std_ulogic

0 0 logic zero

0 Z high-impedance

° U uninitialized (sim. only) Composite
° X unknown (driven)
° - don't care Record
° H weak high Scal
calar
° L weak low
° W weak signal

Physical

(Real) Ginumerated)

Problem: If two sources try to drive the same std_ulogic signal,
it causes a compilation error.

» Type std_logic is resolved std_ulogic

24

Std_logic High impedence

High impedance (Hi-Z) represents a disconnected or floating state on a signal or pin.

» A tri-state buffer is a digital circuit with three possible output states:
» Logic High ('1") — the buffer drives the output high. c
» Logic Low ('0") — the buffer drives the output low. |
» High Impedance ('Z') — the buffer “disconnects” from the bus, a —-‘ —> f
allowing other devices to drive it.

= =0 0O 60
===
= O IMNIMN| =»

» Prevents bus conflicts.
» Allows multiple devices to share the same line safely.
» Essential in shared digital systems, like microprocessors, memory interfaces, and buses.

Bus

32 32 y 32 _ . _
Device 1 | — / - « When c0 ="1", Device 1 drives bus line.
« When c0 = "'0', the buffer goes into high

impedance ('Z'), letting Device 2 use the
32 32
Device 2 ‘/—»H\ / - bus.

Advanced course to FPGA programming 25

LOGIC
FUNCTION |

SYNBOL

Std_ulogic and Std_logic

Basic logic gates

i 1

MaMD A_} ¥ ﬁ-‘r - 1 1

INFUTS & — 0 a 1
B | A Y " :
0 0 1 1] 1

1 0 A i 9 0

0 0 = 1 a :DD_* AB=Y T o | o 0

1 1 BE 0

0 0 1 | o 0

1 1 A] 9]

0 1 XOR . :D_" asa=Y o I o P

1 1 1] 1 1

. - 1| o 0

1 0 A 0 0 1

ANOR) :Db_-, 2 - -

1] i

1 1 1

Advanced course to FPGA programming

26

Hands-on

MUX
ghdl_examples/Mux

GHDL and GTKWave at work

Few basic examples of use

Basic VHDL
Scripting
Execution and waveform analysis

Hands-on

Launch JupyterLab: https://xilinx@1-2.mib.infn.it
Launch Desktop
Open terminal window and download material
o Git clone https://gitlab.com/piero.vicini/ghdl examples
3 directories: Register, Counter, Coffee-maker.
Directories contain:
o nomefilevhd (src file)
o nomefile_TB.vhd (testbench file)
o Makefile (script for compilation and run)

Advanced course to FPGA programming

28

https://gitlab.com/piero.vicini/ghdl_examples

2-to-1 multiplexer (MUX)

Exercise:
« go to directory MUX, have a look to the code, execute

simulation and visualize the output
« or Do it yourself...

SEl

Specifications: Input: |

Module selects one of two inputs * Two bit (INO, IN1)

and forwards it to the output * one bit selector (SEL)
based on a 1-bit selection input. Output: single bit (2)

Function: The control inputs (SEL) select which one of
the data inputs is connected to the output.
 If(SEL)=0—Z=1INO

« If(SEL)=1—Z=IN1

Advanced course to FPGA programming 2

VHDL Array data type

Array types is used to collect one or more elements of a similar type in a single construct.

Pre-defined array Pre-defined type
- Type bit_vector is array (integer range <>) of bit ()
« Type Boolean_vector is array (integer range <>) of Types

boolean

« Type string is array (positive range <>) of char

« Type std_logic_vector is array (natural range <>) of
std_logic

« Type signed/unsigned is array (integer range <>) of
std_logic

Unconstrained array (<>):
Actual range is established

later, when type is used in the (Integer)(Real) (Enumerated) G’hysical)

code

Advanced course to FPGA programming 30

VHDL Array data type: std_logic_vector

« Type std_logic_vector is array (natural range <>) ¢ Natural range can be ascending or
of std_logic descending

» Pre-defined type in library ieee.std_logic_1164

» To access the value of an element from this
vector, you can use the index

« The choice between ascending and
descending order is often a question
of the designer’s preferences. The
most important thing is to choose one
style and then follow it consistently;
mixing the two different styles in one

library ieee; project can easily lead to trouble.

use ieee.std logic 1164.all;

constant bin data : std logic vector(7 downto @) := "00000101"; -- Descending range
signal bin_data_1 : std _logic vector(7 downto 0);
signal bin data 2 : std logic vector(@ to 7); -- Ascending range

signal a,b,c : std logic;

bin _data 2 <= "00000101"; -- Note double quote

bin data 1 <= (others=>'0'); -- This syntax assigns '0@"' to all bits of the vector bin data 1.
a <= bin_data (0); --a="1"
b <= bin_data 2 (9); --b="0"

Advanced course to FPGA programming 31

VHDL Array data type: std_logic_vector

« Type std_logic_vector is array (natural range <>) ¢ Natural range can be ascending or
of std_logic descending

» Pre-defined type in library ieee.std_logic_1164

» To access the value of an element from this
vector, you can use the index

« The choice between ascending and
descending order is often a question
of the designer’s preferences. The
most important thing is to choose one
style and then follow it consistently;
mixing the two different styles in one

library ieee; project can easily lead to trouble.

use ieee.std logic 1164.all;

constant bin data : std logic vector(7 downto @) := "00000101"; -- Descending range
signal bin_data_1 : std _logic vector(7 downto 0);
signal bin data 2 : std logic vector(@ to 7); -- Ascending range

signal a,b,c : std logic;

bin _data 2 <= "00000101"; -- Note double quote

bin_data:1 <= (others=>'0'); -- This syntax assigns '@' to all bits of the vector bin _data 1.
a <= bin_data (0); --a="1"
b <= bin_data 2 (9); --b="0"

std_logic_vector is just a vector of bits with no numeric meaning!

Advanced course to FPGA programming 32

VHDL std_logic_vector as integer

Std_logic_unsigned, signed and arith library were created by Synopsys in the very early. They were
distributed free of charge and compiled into the IEEE library (even though they're not an IEEE standard).

Library ieee.std_logic_unsigned

provides operations for treating std_logic_vector Tvpes
signals as unsigned integer (A)
allows to perform arithmetic operations like

addition, subtraction, multiplication, and (Access) (Com posite)
comparisons . ’/\
[(Array)] CRecord)
Library ieee.std_logic_signed (Scalar)

provides operations for treating std_logic_vector
signals as signed integer

allows to perform arithmetic operations like Integer - Physical
addition, subtraction, multiplication, and (>< Real) (Enumerated) ()
comparisons .

Advanced course to FPGA programming 33

VHDL Array data type: sighed/unsigned

« Types signed/unsigned are array (natural range <>) of std_logic with a numeric interpretation

* Pre-defined type in library ieee.numeric_std

« For signed signals, internally the FPGA will use Two’s Complement representation

library IEEE;
use TEEE.NUMERIC STD.ALL;

signal signal unsigned: unsigned(3 downto 9);

signal unsigned <= "0001"; -- Note double quote

Available operators

+ - * f rem mod 511 srl rol ror
il i Wil T = ~ i

; v ~ | UNSIGNED Ml INTEGER
UNSIGNED W UNSIGNED SIGNED [INTEGER
UNSIGNED M WATURAL
NATURAL W UNSIGNED not and or nand nor
SIGNED M SIGNED Siin smm
SIGNED [INTEGER S
INTEGER M SIGNED UNSIGHNED Qi UNSIGNED

SIGNED W SIGHED

Type Compatibility and Result Rules for

signed and unsigned in VHDL

Operation Left Operand Right Operand Result
unsigned unsigned unsigned
unsigned natural unsigned

natural unsigned unsigned
. signed signed signed
Addition (+) ° = 2
anq signed integer signed
Subtraction (-)
integer signed signed
unsigned std_logic unsigned
std_logic unsigned unsigned
signed std_logic signed
std_logic signed signed

VHDL Numeric Types: Comparison of

integer, unsigned, and signed

Feature integer unsigned sighed

Type Scalar (not a vector) Vector (std_logic_vector) | Vector (std_logic_vector)
Defined in VHDL standard ieee.numeric_std ieee.numeric_std
Bit-level? X No Yes Yes

Supports sign?

Yes

X No (positive only)

Yes (positive and
negative)

Representation

Decimal numbers

Binary (no sign)

Binary (two’s

complement)
-2,147,483,647 to n n=1 =1
Range +2.147,483,647 (typical) Oto2n"-1 2N to 2 1
Arithmetic Native arithmetic Supported via Supported via

numeric_std

numeric_std

Advanced course to FPGA programming

35

VHDL Integer type conversion

Numeric_std,

Signed() __— Signed)

N\

To_integer()

Std_logic_vector() To_signed(,length)
Std_logic_1164. Standard.
Std_logic_vector) Signed() ~ Unsigned() Integer |
Unsigned() To_integer()

To_unsigned(,length)

Std_logic vector()
\ Numeric_std. /

Unsigned
Arrays)

Copyright & Daulos

Advanced course to FPGA programming 36

Hands-on

Adder
ghdl_examples/Adder

VHDL sequential behaviour: process

Process statement contains only sequential statements.

CA procesg .cgntaiuns: The process label is optional, you can avoid using the label.
o sensitivity list . . .
declarati ¢ Labeling all process you use, the code will be clear, and it will
o deciarative par be simple to arrange the simulation environment.

o sequential statement section

— - g In the process sensitivity list are declared all the
[process_label] : process(sensitivity list) signal which the process is sensitive to : the
[declarative part] process is evaluated any time a transaction is

begin . . e e s
-- sequential statement scheduled on the signals in the sensitivity list.

end process [process label];
Optinal declarative partis used to declare local

variables, types and constant.

* The process statement is a concurrent statement.

Advanced course to FPGA programming 38

VHDL variable

A variable in VHDL is a local storage element that exists only inside a process, function, or procedure.
It is used to store local values.

variable var _name : type [:= initial value];

« Changes take effect immediately, unlike signals which update at the end of the process or delta cycle.

« Variables cannot be assigned to output ports; use signals for that
Update timing

Feature Variable Signal
Assignment operator 1= <=
Update timing Immediate Scheduled (end of process)

Scope

Local to process/function

Can be global to architecture

Synthesis

Synthesizable if inside a process

Always synthesizable

Advanced course to FPGA programming

39

VHDL if statement

IF statements are used in VHDL to test for various conditions.

If <condition> then The <condition> can be a Boolean true or false, or it can be an
Sequence of statement expression which evaluates to true or false.

[elsif condition_1 then
Sequence of statement

] Logical operators: Relational operators:
[else ,
not a true If 315 false = 20ua
Sequence of statement
] aand b true if 3and Dare true f= not equal
end if; aorb
< less than
anand b
<= less than or equal
Jnor o true il gang D are faise
- Ereaigr inan
aX0r D
Bl Ereater inan ar agual
axnor b trueif gaand ba

Advanced course to FPGA programming 40

VHDL if statement

IF statements are used in VHDL to test for various conditions.

If <condition> then « elsif is optional and may be used multiple times.
Sequence of statement

[elsif condition_1 then « else is optional but pay attention: if the code doesn’t explicitly
Sequence of statement

specify the value of the output for one case, the previous
%else value of the output will be held. This is equivalent to the

ibits!
Sequence of statement memory effect that a D latch exhibits!

] Latch are not suitable for synthesis
end if;

+ |If statements are synthesized by generating a multiplexer for each signal assigned within the
if statement. The select input on each mux is driven by logic determined by the if condition,

and the data inputs are determined by the expressions on the right-hand sides of the
assignments.

Advanced course to FPGA programming 41

VHDL if statement example

library ieee ;
use ieee.std logic 1164.all;

entity mux_2 is
port(

a : in std logic vector(2 downto 9);

b : in std _logic vector(2 downto 0);

s : in std logic;

m : out std logic vector(2 downto 0));
end mux_2;

architecture rtl of mux 2 is
begin
p_mux : process(a,b,s)
begin
if(s="0"') then
m<=a ;
else
m<=b ;
end if;
end process p _mux;
end rtl;

library ieee ;
use ieee.std logic 1164.all;

entity mux 2 is
port (

a : in std logic vector(2 downto 9);

b : in std logic vector(2 downto 9);

s : in std logic;

m : out std logic vector(2 downto 0));
end mux_2;

architecture rtl of mux 2 is

begin
m <= a when (s='0") else b;
end rtl;

Advanced course to FPGA programming 42

VHDL synchronous process example

entity reg8 is

Port (

clk : in STD LOGIC;
reset : in STD LOGIC;

d : in STD_LOGIC_VECTOR(7 downto ©);
q : out STD_LOGIC_VECTOR(7 downto 9));

end reg8;

architecture Behavioral of reg8 is

—_— reset 6 p—

AN

clock

FLIP FLOP D

signal reg : STD_LOGIC VECTOR(7 downto 9);

begin
process(clk, reset)
begin

if reset = '1' then

reg <= (others => '0’);
elsif rising edge(clk) then

reg <= d;
end if;
end process;
g <= reg;

end Behavioral;

asynchronous reset in sensitivity list

Reset active high

async reset clears register immediately
rising edge(clk) means clk'event and clk='1"
on clock rising edge, capture input d

Advanced course to FPGA programming

43

VHDL case-when statement

The Case-When statement will cause the program to take one out of multiple different paths,
depending on the value of a signal, variable, or expression.

« It’s a more elegant alternative to an If-Then-Elsif-Else statement with multiple Elsif’s.

* The <expression> is usually a variable or a signal.

« The Case statement may contain multiple when choices,

case <expression> 1S but only one choice will be selected.

when <choice> => code for this branch

when <choice> => code for this branch The <choice> may be

- * aunique value (like "11")
end case; » arange (like 5to 10)
« several values (like 1|3|5)

- others (selected whenever no other choice
was matched)

Advanced course to FPGA programming 44

VHDL case-when statement example

library ieee ;
use ieee.std logic 1164.all;

entity mux4 case is
port(

a : in std logic vector(3 downto 0);
: in std logic vector(3 downto 0);
: in std_logic_vector(3 downto 9);
: in std_logic_vector(3 downto 9);
: in std logic vector(1 downto 9);

m : out std logic vector(3 downto 0));
end mux4_case;

nw a n o

architecture rtl of mux4_case is

begin
p_mux : process(a,b,c,d,s)
begin
case s is

when "00" => m <= a;
when "01" => m <= b;
when "10" => m <= c;
when others => m <= d;
end case;
end process p_mux;
end rtl;

library ieee ;
use ieee.std logic 1164.all;

entity mux4_case is

port (

a : in std logic vector(3 downto 9);
: in std logic vector(3 downto 0);
: in std logic vector(3 downto 9);
: in std logic _vector(3 downto 9);
: in std logic vector(1l downto 9);

m : out std logic vector(3 downto 0));
end mux4_case;

n an o

architecture rtl of mux4_case is
begin
p_mux : process(a,b,c,d,s)
begin
If s="00" then m <= a;
elsif s="01" then m <= b;
elsif s="10" then m <= c;
else m <= d;
end if;
end process p_mux;
end rtl;

Advanced course to FPGA programming

45

VHDL case-when statement

= |IN1
£
=] IMNU
SEI
Truth table

SEL | INO | IN1 | OUT_Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

example

architecture truth_table of MUX 1is

signal temp sel :

begin

std_logic_vector(2 downto @) ;

temp_sel <= S & INO & IN1 ; -- concatenation
pr'ocess

begin

case(temp_sel) is

when
when
when
when
when
when
when
when
when

"900" =>
"901" =>
"910" =>
"911" =>
"100" =>
"101¢ =>
"110¢ =>
"111¢ =>
others =>

end case ;
end process ;

OUT_Z
OUT_Z
OUT_Z
OUT_Z
OUT_Z
OUT_Z
OUT_Z
OUT_Z
OUT_Z

end architecture truth_table;

PO RFROCFREFRLROO
- - e e m o=

S

-- catch-all

46

Hands-on

Register
ghdl_examples/Register
Counter
ghdl _examples/Counter

Sequential circuit

Sequential circuits: Output depends on inputs + history of past inputs (memory).
« Example: counters, registers, sequence detectors.

External

External Qutputs

Inputs

Next
State

Internal

Qutput Inputs

Combinational circuits: Output depends only on current inputs

A sequential circuit can be

« Asynchronous: the changes in all the state variables are not
synchronized and can occur at any time. The transitions
between states are driven by the inputs themselves, which can
lead to more complex behavior.

« Synchronous: changes on all the state variables are
synchronized with a clock signal.

A Finite State Machine (FSM) is the mathematical abstraction of a sequential circuit:.
It consists of a finite number of states, transitions, inputs, and outputs.

States: Represent the current condition of the system.

Transitions: Rules for moving from one state to another, based on inputs.

Inputs: Signals that trigger state changes.

Outputs: Signals produced

Advanced course to FPGA programming 48

Moore FSM

Moore Machine: Output depends only on the current state.

--Three Processes
architecture RTL of MOORE is
signal current_state, next_state: <state_type>;
begin
REG:process(clk, rst)
begin
if rst '1'" then
current_state <= SO;
elsif rising edge(clk) then
current_state <= next_state;
end if;
end process;

X ;Z)t(; NEXT state STATE output Yy
logic STATE registers logic
J"h' . H':{
/| L /|
v~ |y
{/ N T T / Y
|"- b ‘R‘ﬂ.’ \I
—\Yo/b) PRE
T T — /./'/'/- ~
0

CMB_STATE: process(current _state, inputs) -- Combinational Process with Next State Logic

Begin
end process;
CMB_OUTPUT: process (current_state)

begin

end process;
end RTL ;

Advanced course to FPGA programming

-- Combinational Process with Output Logic

49

Mealy FSM

s

Mealy Machine: Output depends on current state and input. X =

next
state

NEXT

state

*f output
STATE P %
logic
registers

--Three Processes
architecture RTL of MEALY is

signal current_state, next_state: <state_type>; a_pg?
begin /|
REG:process(clk, rst) ﬁ;ia\ P
begin __,{ qU,L/)
if rst = '1' then N

current_state <= SO;
elsif rising edge(clk) then
current_state <= next_state;
end if;
end process;
CMB_STATE: process(current _state, inputs) -- Combinational Process with Next State Logic
Begin

end process;
CMB_OUTPUT: process (current_state, inputs) -- Combinational Process with Output Logic

begin

end process;
end RTL ;

Advanced course to FPGA programming

50

Feature

Output depends on

Number of states

QOutput timing

Complexity

Reaction speed

FSMs

Moore FSM

State only

More

On state change
Simpler

Slower

Advanced course to FPGA programming

Mealy FSM

State + Input

Fewer

Immediate (on input)

Slightly more complex

Faster

51

Hands-on

Coffee Maker

ghdl_examples/coffee_maker

	Slide 1
	Slide 2: Course Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Hands-on MUX ghdl_examples/Mux
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Hands-on Adder ghdl_examples/Adder
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Hands-on Register ghdl_examples/Register Counter ghdl_examples/Counter
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Hands-on Coffee Maker ghdl_examples/coffee_maker

