

Platform support

Eugenio Benedetti Cryostat Design Meeting Rome 28-29 July 2025

Platform support

- A support that holds the platform during payload operation
- This is going to stay in the cryostat during the interferometer running
- Assembly reason
 - Helping during the payload assembly
 - Keep the platform until everything is suspended
 - Coarse reference of payload angular position
- Safety reason
 - If the wire connecting the platform brakes, it avoid that all the payload will fall down

Main design idea

- Attach this support at the separating roof (blue flange)
- 3 tubes connected each other
 - Connection between tubes to increase rigidity

Requirements

- Support the 900kg load on one leg
 - In case of falling payload it is going to hit one leg first
- Need to be thermalized...?
- Normal frequency

Platform support

- Position of the support into the cryostat
- 2 stiffners: one over OTS, the other below IITS

Payload integration

Payload will enter in the cryostat from the bottom:

 Need adjustment to match the marionette suspension wire (crystal) and the flange to bolt the actuation cage to a suspended circular flange

- Both the horizontal directions
- Vertical rotation

A possible scenario

- Paylaod can't enter all assebled
- Payload's orange part will enter first
 - Attach heat link from HLVIS to the actuation cage
 - Bring the platform to the support

Payload integration

- Platform will be hung by the support in these slides
- Blue payload subpart is on his frame
 - The Marionette and the mirror are blocked
- Get the blue payload subpart frame out
- Free the mirror
 - possible screws with a PEEK end to block the mirror movement
- Free the marionette from the actuation cage
 - «Arrows» fixing blocks
- Suspend the platform
 - Before suspend the platform connect the suspending wire

Platform support seed design

Support seed design idea

- 3 pipes connected
 - Material: stainless steel
 - Other options: titanium, ...?
- First iteration design parameter

mass:=900 kg	mass of the payload
sf = 20	safety factor
$De \coloneqq 50 mm$	outer diameter of the beam support
$\sigma_y \coloneqq 200 \; MPa$	Yeld strength stainless steel
$Di := \sqrt{De^2 - \frac{4 \cdot mass \cdot g}{\pi \cdot \frac{\sigma_y}{sf}}} = 3$	37.098 mm

Load and constraint

- 900kg on one leg: if the payload falls hits one leg
- Fixed support on the upper leg end

Results

Max displacement: 51mm

Results

Max Von Mises stress: 737 MPa

• Convergence: 6%

Modal

Selection Information Graphics Annotations Messages Graph

- Problem is that the final part is a «pendulum»
- Normal frequency do not dipend by the beam cross section

10 10,

Modal

- Ends connected with pre tensioned wire
- 3mm diameter stainless steel wire

- Bolt pretension to simulate a tension wire
- 200N of pre tension

1° mode: 14Hz

Improving the PF safety&stop structure

Work in progress

