Preliminary Cooling Model of OTS and ITS with Helium

- The cooling down for both of shield is done with a MATLAB code
- The Helium is used in vapour phase for OTS and supercritical phase for ITS
- The cooling down is made by a elicoil serpentine (half pipe)
- The phisycal properties of helium is considered constant (TIME & TEMPERATURE)

The Thermal Radiation on OTS

With the RML solution we expect to have a radiation value of 2 W/m² on the OTS shield

OTS – Geometry Data

Geometry Input Data OTS	
D _{OTS} (m)	2
H _{OTS} (m)	4.6
Th _{OTS} (m)	0.006
A _{OTS} (m ²)	108
V _{OTS} (m ³)	0.34

Geometry Input Data Helical coil (half pipe)	
D _{tube} (m)	0.025
D _{half-Pipe} (m)	0.015
H _{helical coil} (m)	4.6
Th _{tube} (m)	0.002
Coil Pitch (m)	0.76
Number of turns	6
L _{helical coil} (m)	76
A _{helical coil} (m)	3.64

OTS – Physical Helium Data

References: 'NIST – National Institute Standard Technology'

Book Title: 'Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 Mpa'

Author: 'Vincent D. Arp, Robert D. McCarty , Daniel G. Friend'

OTS – The Thermal Model – Transient Simulation (time)

1- Global Balance

$$\mathsf{m}_{\mathsf{OTS}} * c_{p,OTS}(T) * \frac{dT_{OTS}(t)}{dt} = Q_r - Q_{conv}(t) \geq 300$$

2- Helium Balance

$$\dot{m}_{He} * c_p^{He} * \left(T_{out}^{He} - T_{in}^{He}\right) = U * A_0 * \Delta T_{ML}$$

Simulation Data	
Flowrate (kg/s)	0.001
$T_{He,in}$ (K)	38
$\mathbf{Q_r}(\mathbf{W})$	216
v (m/s)	3.35
Re	11234
Pr	0.71
Nu	36.2
U(W/m2 K)	95.8
ΔP(mbar)	124

The target temperature reached for the OTS shield is 79.59 K

OTS – The Thermal Model – Energy Balance: Q_{conv} vs Q_{rad}

Let's assume that the radiation heat transfer involves the 100% of the OTS surface and that its emissivity is $\epsilon=0.1$

OTS – The Thermal Model – Transient Simulation (1D Model)

1-1D Model

$$F*c_{p,He}*T_x-Q*\pi*D_{halfpipe}*\Delta x=F*c_{p,He}*T_{x+\Delta x}$$

Where
$$Q = U * A_{OTS} * (T_{OTS} - T(x)_{He})$$

2-1D Model solution

$$T(x)_{He} = T_{OTS} + (T_{He}^{in} - T_{OTS}) * e^{-\alpha * (x - x_0)}$$

Where
$$\alpha = \frac{U*\pi*D_{halfpipe}}{F*c_{p,He}}$$

To perform the graph the equation is used how a sigmoid model

$$T(x)_{He} = T_{in,He} + \frac{T_{OTS} - T_{in,He}}{1 + e^{-k_{param}*(x - x_{inflection})}}$$

ITS – Geometry Data

Geometry Input Data OTS	
D _{ITS} (m)	1.8
H _{ITS} (m)	4.2
Thik _{ITS} (m)	0.006
A _{ITS} (m ²)	63
V _{ITS} (m ³)	0.28

Geometry Input Data Sepente (half pipe)	
D _{tube} (m)	0.025
D _{half-Pipe} (m)	0.015
H _{helical coil} (m)	4.2
H _{helical coil} (m)	0.002
Coil Pitch (m)	0.70
Number of turns	6
L _{helical coil} (m)	68
L _{helical coil} (m²)	3.25

ITS – Physical Helium Data

References: 'Cryogenic payloads for the Einstein Telescope: Baseline design with heat extraction, suspension thermal noise modeling, and sensitivity analyses'

Author: 'Xhesika Koroveshi , Lennard Busch , Ettore Majorana , Paola Puppo , Piero Rapagnani ,3,4

Fulvio Ricci , Paolo Ruggi and Steffen Grohmann'

In this incipient point:

 T_c =5.19 K P_c = 2.27bar(0.227 Mpa)

References: 'NIST – National Institute Standard Technology'
Book Title: 'Thermophysical Properties of Helium-4 from 0.8 to 1500 K with
Pressures to 2000 Mpa'

Author: 'Vincent D. Arp, Robert D. McCarty , Daniel G. Friend'

The simulation is performed in the region of the helium supercritical phase

T=5.3 K

P = 2.3bar(0.230 Mpa)

OTS – The Thermal Model – Transient Simulation (time)

Simulation Data	
Flowrate (kg/s)	0.001
$T_{He,in}$ (K)	5.3
$Q_r(W)$	12.6
v (m/s)	0.58
Re	34047
Pr	3.35
Nu	177
U(W/m2 K)	172
ΔP(mbar)	2

The target temperature reached for the OTS shield is 5.53 K

OTS – The Thermal Model – Energy Balance: Q_{conv} vs Q_{rad}

Let's assume that the radiation heat transfer involves the 100% of the OTS surface and that its emissivity is $\epsilon=0.1$

OTS – The Thermal Model – Transient Simulation (1D Model)

