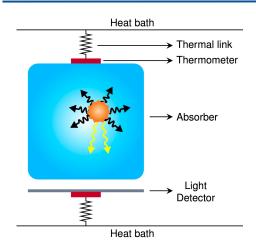
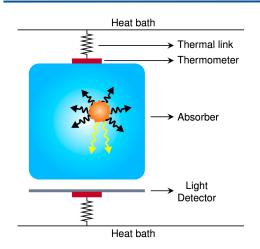

ANECDOTE:

An NTL-Enhanced Cryogenic Detector with Optically Transparent Electrodes


Andrea Nava

Goal of the project

The **ANECDOTE** project aims to develop a new, versatile, semiconductor-based cryogenic detector featuring Neganov-Trofimov-Luke amplification, achieved through an innovative electrode design.



State of the art

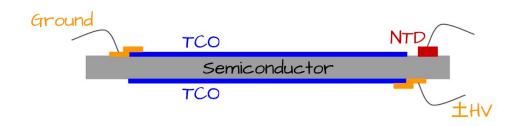
- many INFN CSN2 experiments (CUPID, CRESST, COSINUS, RES-NOVA)
 plan to use semiconductor-based cryogenic devices as ancillary
 detectors to measure scintillation/Cherenkov light
- goal: particle ID and pile-up discrimination
- high signal-to-noise ratio needed for sensitivity to very rare events \rightarrow NTL effect: A \propto E_{dep}+ ηqVN_{eh}

State of the art

- many INFN CSN2 experiments (CUPID, CRESST, COSINUS, RES-NOVA)
 plan to use semiconductor-based cryogenic devices as ancillary
 detectors to measure scintillation/Cherenkov light
- goal: particle ID and pile-up discrimination
- high signal-to-noise ratio needed for sensitivity to very rare events \rightarrow NTL effect: A \propto E_{dep}+ ηqVN_{eh}

Example of CUPID light detectors:

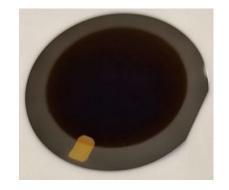
- Germanium wafer
- drift mostly // to surface
- hold V > 100 V

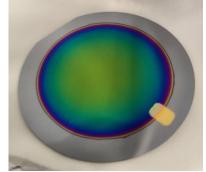


Limitations:

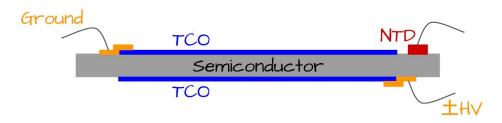
- long path to reach electrodes
 - \rightarrow trapping probability
- surface quality matters
- asymmetric amplification
- no amplification for particles
- cost (~1k€ per device)

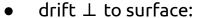
The ANECDOTE idea



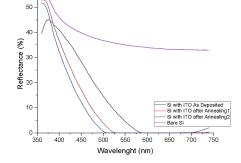

- **Semiconductor** substrate (Si, Ge, ...)
- thin film of Transparent Conductive Oxide (TCO) deposited through sputtering on both sides
- NTL bias directly connected to TCO layers (bonding wires + indium)
- signal read with an NTD

The ANECDOTE idea


- **Semiconductor** substrate (Si, Ge, ...)
- thin film of Transparent Conductive Oxide (TCO) deposited through sputtering on both sides
- NTL bias directly connected to TCO layers (bonding wires + indium)
- signal read with an NTD



Devices produced @ Legnaro


The ANECDOTE idea

TCOs are transparent to optical light in a given range (dependent on thickness) \rightarrow used for photovoltaic cells

- short path \rightarrow low trapping probability
- less dependent on surface quality
- symmetric gain

- electrode geometry allows for uniform electric field \rightarrow amplification for particles achievable
- Cheaper and easier fabrication process than currently used light detectors

A phased approach

• production of several Si-based devices with Indium-Tin-Oxide (ITO) coating

Phase 1

- different ITO thicknesses
- different ITO coverages

@ Legnaro

- o different Si thicknesses
- characterization @10mK at Bicocca cryostat
 - o optical fiber + pulsed LED
 - o radioactive sources

Deliverable: device capable of holding >100 V \rightarrow light detector for next-gen CSN2 experiments

A phased approach

production of several Si-based devices with Indium-Tin-Oxide (ITO) coating:

Phase I

- different ITO thicknesses
- different ITO coverages

@ Legnaro

- different Si thicknesses
- characterization @10mK at Bicocca cryostat
 - optical fiber + pulsed LED
 - radioactive sources

Deliverable: device capable of holding >100 V \rightarrow light detector for next-gen CSN2 experiments

- production of devices with different:
 - \circ TCOs \rightarrow AZO, FTO...

@ Legnaro

- \circ substrate \rightarrow Ge, narrow-gap semiconductors
- characterization @10mK at Bicocca cryostat
 - optical fiber + pulsed LED
 - radioactive sources

Deliverable: versatile detector for high S/N light and particle measurements

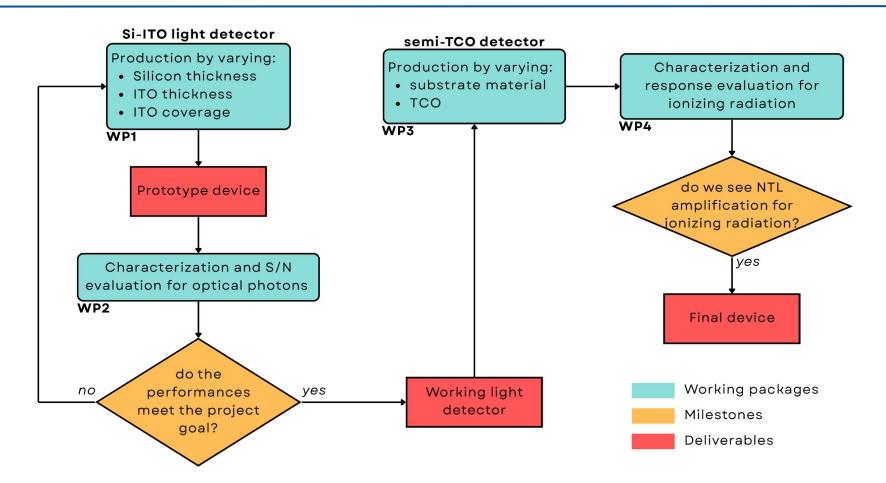
Semi-TCO versatility

Narrow-gap semiconductors (InSb...) hardly used as particle detectors due to high leakage current

→ O(10 mK) temperatures + NTL amplification can be exploited to approach Fano limit

X-ray and low energy β detector

- resolution of ~20-25 eV could be achievable with a large-area device
- applications in X-ray searches (lab and space), precise β spectroscopy


Optical photon detector

- increased signal due to small bandgap
- applications as scintillation/Cherenkov light detectors with even higher S/N

Infrared photon detector

- sensitivity down to few infrared photons achievable due to O(0.1 eV) gap
- possible applications in quantum computing

ANECDOTE'S WORKFlow

