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Mathematics suffers from some of the same inherent difficulties as theoretical
physics: great successes during the 20th century, increasing difficulties to do
better, as the easier problems get solved

Should we try to better understand links between SM and mathematics?

v/ Conventional vision : some very different physics occurs at Planck scale,
SM is just an effective field theory. What about the next SM? A new
weakly coupled renormalizable model? A tower of EFTs?

v A different vision : is the SM close to a fundamental theory?
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“The visionary lies to himself, the liar only to others”, F. Nietzsche

I don’t have visions, I have nightmares

The lesson of experiments 1973 - today:

extremely difficult to find a flaw in the SM
Maybe the SM includes elements of a truly fundamental theory.
But then how can one hope to make progress?

o With experimental guidance?

o Paying close attention to what we don't understand precisely
about the SM?

o Trying to better understand links between SM and
mathematics?
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A list of questions/statements

4
\\

We have divorced the practical aspects of QM from the
interpretation and broader implications of the theory.

O - Individual events resulting from identical preparations
are not reproducible. The statistical approach is applicable in
any case. QM mirrors this feature of the statistical
experiment. It has no means by which to calculate the
outcome of an individual event.

O - How long does it take to crete a state of definite
energy?
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O - A pure state does not exist; we should not use a pure
state in explaining Stern-Gerlch

the state should be multiplied by a function which has a finite
beam width. If the width is small then it will be true that a

positive values of ¢, will correspond to an upward deflection.
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QUAMTLIM FIELD
TH

O [QFT
(P(X,t) = U_l(t) (pin(x»t)U(t)

Although the existence of U is a theorem in QM, the proof
breaks down in QFT,

O - LSZ theorem; define
—1/d3xf* £)38 o(x, 1)

where f € L2, solution of the KG equation ; the LSZ theorem
follows: pity it is immediately used for plane-waves.
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D QFT 3

The mother of all questions: do you believe in PT?
The engine of my car does not work in PT. Nevertheless the
SM explains a lot. Let us forget about the adiabatic
approximation (a beam of electrons is not made of free

particles; localized quantum fields?), where exactly do we
need PT?
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Hegerfeldt theorem

any particle confined in a bounded region can be found in spacelike
separated regions at later times if the Hamiltonian is a nonconstant
semibounded function of the momentum and translation invariant.

Thedrem

Haag theorem

Basically the theorem states that the interaction picture in QFT
cannot exist. QFT, the foundational framework of particle physics,
has long existed in a state of tension between empirical success
and mathematical rigor. Conventional QFT (CQFT), which
underpins the SM, offers unparalleled predictive accuracy but relies
on inconsistent and ad hoc methods.
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“The intellectual isolation of QFT research programmes. The
lack of experimental breakthroughs and the absence of empirical
confirmations for all existing theories raises the question of whether
this stagnation is not only due to technical or experimental

limitations but also to an inappropriately pragmatic approach to
the mathematical foundations of BSM physics.

So, what do we do? Nothing (Nature's music is never over; her
silences are pauses, not conclusions ) but going back to our
beloved Feynman integrals, making assumptions and look for their
goodness when compared to experimental data.
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Paraphrasing Freeman Dyson:

we can say that in HEP there are birds and frogs. Birds fly high in
the air and survey broad vistas out to the far horizon. Frogs live in
the mud below and see only the flowers that grow nearby. They
solve problems one at a time. HEP physics needs both birds and
frogs. Physics is rich and beautiful because birds give it broad
visions and frogs give it intricate details.
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b

Fls are GHFs in the sense that their fundamental group of analytic
continuations are generalizations of the fundamental (monodromy)
group of the ordinary HGs.

Write multi-loop Feynman integrals in terms of Fox functions ,
respecting the original cut structure; compute the Fox functions
numerically.
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’In 1967 Regge suggested to consider Fls as a kind of GHFs‘
</

’ In 1973 Kershaw suggested that,by studying Fls as power series‘

we could derive the connection

one-loop box: sum of 192 dilogarithms collapses into one HF

</

hypergeometric A-systems of Gelfand, Kapranov, and Zelevinsky

3

’ Fls m Fox functions‘
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Each Feynman diagram is a multivalued analytic function of the
relevant variables whose branching locus is in general an extremely
complicated reducible algebraic variety; however, the set of
singularities is very well defined by the Landau rules,

i.e. they are characterized by a branch cut structure determined by
the Landau equations .

To give an example, in the most general one-loop triangle the
physical Landau curve has six branches; when we consider the most
general one-loop box we get 14 branches.

Furthermore we are interested in Fl in the physical region ,identified with the

phase space for the corresponding process, i.e. the physical region of a given

process is the set of all real initial and final energy-momenta variables subject

to the mass-shell conditions and to energy-momentum conservation. Solutions

that correspond to points outside the physical region are on the wrong sheet.

Any process n — m is described by 3(m+n)— 10 Mandelstam invariants and
the physical region is dictated by the corresponding phase space.
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Ingredients
-\ B’

Fq ™ Lauricella FU" w Meijer G m Fox H. The two facets, EM

Consider now the following _ integral:

1

I:/ dxxP 1 (1-x)*P 1 (1—2zx)"2
0

If Rec>Reb>0 and |arg(l—z)|<m

write I as a

I=B(b,c—b)2Fi(a,b;c;z),
Note that with z —z—16(8 — 04) the original integral can be interpreted as a
Hadamard fi

nite-part integral even if z € R and z > 1. Next we would like to
, i.e.

I— M(c—b) [ ds (=s) MNa+s)T(b+s)
T T(a) Ju2irm

which requires |arg(—z) |< @ .

M(c+s) (=2)%,
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The Lauricella functions are defined by,

O Ewl

N
FgN)(a;bl,...,bN;c;zl,..., =I(c,a / dxx® (1—-x)72 H —ZnX
with Rec>Rea>0 and |arg(l—z)|<m.

O sl

N ) -
F](DN)(a;b17...,bN;C;Z17-..7ZN) = 7[—(0 [H/ ﬁ}r(a—’_ZJSJ)

M) Inr jo1 1y 200 T (c+ Xy 8)

< TGy T (o) ()

.
Il
—

where L; is a deformed imaginary axis curved so that only the poles of I (fsj)
lie to the right of L;.
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Hx 0

Definitions, z =R exp{i¢} and s = o +it
P,q (Z):

QHJ lr(aj-‘rAjS)HJ ll'(b
L2i7THJP

I

i~ Bis)
(¢j+Cjs) TTiL, T (dj —Dys)
exponenﬁal‘é://powerhke

|1~ ep{-3an|t| ot} [JUBEHR <o |t]- e,
Hn(2) — s I~ 1r(bj+Bjs)r1jn:1r(1—aj—Ajs)
p.q 21nnq mi1 T (1=bj=Bjs) T, 1 T (aj+Ajs)
|1~ Ke ep{eo} (i)

() o
B

—S
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There are three different paths of integration

Lijww L runs from —ioo to +ico separating the poles of the integrand.

Liw L is a loop starting and ending at + o and encircling all poles of

[ (bj —s) once in the negative direction.

L_« L is a loop starting and ending at — and encircling all poles of
[ (1—a;+s) once in the positive direction.

It is assumed that at least one of the three definitions makes sense. In cases
where more than one make sense, they lead to the same result.

¥ with L+ compute (multidimensional) residues; with L. ( our choice )
we compute (s; = oj +1it;)

oo dt; 1
H= [ [ ] P8 B 7
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Convergence, analytic structure‘

Convergence of H is controlled by five parametes, u,,p,8 and «o
(definitions in backup slides). The H function is an analytic
function of z and exists in the following cases (s = ¢ +1it):

@ Ifu>0oru=0and|z|<p ™ L=L_;
@ Ifu<Oorp=0and|z|>p ™ L=L,.;

@ If ¢ >0and arg(z) <1/2amora=0and B +Red < —1
" L:Lim_

@ A frequent case is ot = 2,B =0 but z € R~ which requires
Re 6 < —1.
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First consequence, the MB splitting:

F=(Q+a—ig)™P,
where Q is a function of Feynman parameters and a is a positive parameter,
with € — 04. We perform a MB splitting, i.e.

" ds a s
F = P / —B 3, —S < > 5
o L 2ia PG P9 (g
where 0 < Re s < p. The choice of L depends on z=a/Q. Indeed F is
proportional to a Meijer GH function with parameters a; =1 and by =p.

If |z|<1weselect L=L e ;if |z|>1 weselect L=L_. and compute the
residues of the poles.

@ The parameters of the Meijer G function are such that the MB integral
over Lj. does not converge if Q € R™, despite the —ig prescription. The main
question will be how to use L = L.
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Second consequence

M(c—b) ds r MNa+s)M(b+s)

D= 2Rl =5 | o Te) gy

& | ag(l-z)|<n

I As long as Re(a+b—c) <0 the MB integral converges for L = Lj.
evenif zeéRandz>0.

@ However, it is easily seen that the analytic continuation does not reproduce
the cut structure of the original integral, namely we have a cut at [0, o]
instead of a cut at [1,¢] .

Seen in terms of a Feynman integral this corresponds to the fact, with this

procedure, we can describe the integral above its normal threshold but not
below it.
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PROCEDURE

S~

The correct

In order to understand the correct procedure we consider the following example:

1 1 3
_ ~1/2 (1 _ -1 _ .2,
I /0 dxx (1—2x) 221-'11(172,2,2)7

with z € R. There are three cases:

z<0 Here we immediately obtain

_ ds M(1+s)r(1/24s) s
I_/mer(—s) e A

0<z<1l We use the following transformation of » F;

2Fi1(a,b;c;z)=(1—2)"%F; (a,cfb;c; %) ,
7—

where now the argument of » F1 is negative; we obtain

I:\/E(lfz)’l/ 21,[ M=) r(23(/12J—rrss)) <1iz)s ’
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z>1 Here we use a contiguity relation to increase ¢ (convergence requires
Re(a+b—c) <0),

»Fi(a,bic;z) = 7[c(c+1)(z71)} {(C+1)[c7(207a7b+1)z]
2Fi1(a,b;c+1;2)
+ (c—a+1)(c—b+1)zzF1(a7b;c+2;Z)},

X

and obtain the following MB representation:

_ 5z-3 [ ds F(1+s)r(1/2+s) s
L= 35 /Liwﬂr(_s) rGots) 7
Z ds F(1+s)r(1/2+s) s

- 3T i VT Tty O

where now the two MB integrals are convergent even for z > 1.
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do we need MB reps?

H = dXdyXaﬁl (1_X)Cfa—1 (X2—2/'LX—y2)7b
0

1
= dxdyx*H (1) ) P (xxg) P
0

xe = A£V2Z4yZ=2a+7, A=2A-i5, 50, =rFd.
With A > 1 we obtain x4+ > 1 and x_ < 0 We use the transformation

F(aibiciz) = (1-21) 2P (1-22) 2 F(c —a;c—b1 —ba, bai &1, &),

—n = _ .
GL=z1=1/x_, zp=1/x4, gzix_(er—l)'
Since Cj < 0 we can use the MB representation obtaining
M) ! . o
H = _ M) C() _n_ 1)@
r(C—2)/0 dy(A-n)*"°(A-n-1)
2 dsj T(c—a+s;+s)
dsj Tle—atsi+sa) o ~ -
* [ng 2ir T (cts+s2) [(=s1) M (c—2+s1) T (—s2) [ (1+52)
X (217)52 (n_l)751752 (2,—}—7’—1)*14*527 """y:2lt/(t2—1)‘
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"% Therefore the strategy is

Use the Feynman parametrization and perform the first
integral obtaining a (generalized) hypergeometric function

(usually an F](DN) Lauricella function),

if needed transform it (Kummer transformation z — ~%3),

Use the MB representation of the result and compute the
second integral,

repeat the procedure until the final result is obtained.

*
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Numerical computation; we will limit the presentation to the
univariate case

O The main point: the absolute value of the integrand in a Fox function is
comparable with

1
exp{~5am [t] -6t} |t |Bo+d R0 po
where z=Rexp{i0} and s= o +1it; o, and A are parameters of H.
O Given a function f(x) with x € R we intoduce the Cardinal function

sin(x)

C(f,h)( Z f(k,h)sinc <E_k> sinc(x) = p—

keZ

O The Sinc approximation over the interval [a, b] is defined by
9(x)
RAS NN
£~ X fx )smc( ) ).
where ¢ is a one-to-one mapping of [a, b] onto R and x; = ¢~ 1(kh).
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Sinc lattice: define the strip

i

:{zE(C:|Imz|<d}‘.

0 The interval is R. If z€ Dgq and

Rez <
Rez >
o(z) =

0, [f(z)|scexp{—a_|z]},
0,  |f(z)|<cyexp{—as |2]},
z, zx = kh

9 The interval is R. If z € Dq with

IV IA

Dg={zeC :|arg{sinh[z+(1+zz)1/2]} |< d} ,

0, [f(z|<c-|z|™*,
07 ‘f(Z)|§C+ exp{ia"r ‘Z‘}a
|n{sinh[z+(1+z2)1/2]},

% (uk - u;l) , ug =In {exp{kh} +(1 +exp{2kh})1/2} .
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8 The interval is R. If Dy is defined by

Dy = {ze(C:\arg[z+(1+z2)l/2] |<d},
oz) = In[z+ (14227

If z€ Dq and
Rez < 0, [f(z)|<c (14 ]2])*
Rez > 0,  [f(z)[<cy(1+]2])"%,

then the Sinc points are defined by

z = sinh(kh), = cosh(kh).

_1
¢/ (zx)
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P \,’f\_f'ﬁ"ll II| I|I I."A'UJ\/ .
VoW

In all cases we introduce a positive integer N and define

u=[gia] =)

where [x] is the integer part of x. Having defined all the auxiliary quantities we
obtain

£(2) ~ Iy f(ai)sine (82 —k) P E(2) ~ IRy () [0/(a)]

In the computation of H we integrate over the real variable t but the analytic
continuation, t € C, is needed in order to determine the parameter d which
defines the step size h. The accuracy of the Sinc approximation on R is based
on the fact that f is analytic and uniformly bounded on the strip Dg.
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numerica
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z1

[

Sl

jam|N

iy

i

] T () SR B )
22 = % 10.01i.
Re Im
Korobov 8.16687758(4) —0.0524562(2)
S10 9.21579469 —0.152544264
S30 8.26254429 —0.0540061617
Ss0 8.19088582 —0.0525001759
S100 8.16884067 —0.0524777335
S300 8.16687374 —0.0524526209

2 )
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ds: +S1+SQ)
J 7r —51) T (24s1) M (—s2) (1 48) 251 232 .
JHI/ SEIIT R IGRLICE ISR

Setting z; = 0.15+0.011, zp =0.55—0.01i and 01 = 0» = —0.1 we can
compare the exact result with the Korobov lattice and the Sinc lattice.

Exact 62.6024046 — 0.1830347161i
Sinc 355152 calls  62.6024046 — 0.183034712i

Korobov 3071856 calls  62.6024045(2) —0.18303475(5)1
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ds]

4

a +s; z?j,
JI_I]./ 217-[ 11 +S Jl;.[ ] J) i
with a; =1, 0; =—-0.1 and
z1 =—211, 2z, =0.22+0.1i, 2z3=0.33+0.1i, z4=0.44+0.11,
obtaining
Lattice Calls Re Im
Korobov 281437986 62.98(9) —8.91(5)
Sinc 11298540 62.9799396 —8.91142516
86972936 62.9370547 —8.91706193
331085208 62.9329160 —8.91725259
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We have studied the problem of writing the Mellin-Barnes
representation (akas Fox functions) of Feynman integrals describing
physical processes and taking into account their behavior below
and above the thresholds characterizing the integrals.
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Da >
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Definition of H parameters

_ ) _ , _ ~dsnﬁluq+Ap)m;“(meﬁ)s
H[z:(a,A);: (b,B);(c,C); (d,D)] _/LEHJPZI ey + Cy3) Ty T (45— Dys)

)

g
A=Y A o D=) Dj,
i=1 =1
m _ q
EzReZaJ dzReZdj,
i=1 i=1
a = A+B-C-D, B=A-B-C+D,
1 _ _
A = §(p+q—nrﬂﬂ+5+b—6—¢
m n p q
po= [IAMTIB ™ Ic“IID.
=1 7 j=1 =1 j=1
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Definition of H parameters

H [2; (a1,A1) -+ (aps Ap); (b1, B1) ... (bq, Bg)| =
ds TR T B I F—a—Ays)
L2 T, T (b= Bys) [T, 41 T (2 +Ays)

P
“LA

q 1% 1
Z, Zaj+§(p*Q)7

J

=
B: n 19 m
j J]v « ::.2: Aj’_ }: }XJA+'}E;>I3] 2: Bj.

j=m+1

-
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Multivariate H

givens=1[s1...s;], a=[oq...0x], B=[B1... Bl
arg(z) = [arg(z1) ... arg(z;)], we define

A=(2k) e B= (D)

324 T (0 + X aj kcsk)

‘ dSJ sJ _
H[z,(a,A H/ 2171: j (ZJ) ' jzlr(ﬁJ"_Zk bjxsi)

where a and b are arbitrary real numbers. It is important to realize that the
multiple integral may be overall divergent although the iterate integrals
converge
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For an accurate Sinc approximation of a function f on a contour ',
we require two conditions:

(a) analyticity of f in a domain D with ' € D, and

(b) a set of Lipschitz conditions of f on .

The infinite-point Sinc formula may be very accurate when the first
condition is satisfied, even though the second condition is not. In
this case, the use of Sinc approximation requires a large number of
evaluation points in order to sum the series accurately.
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If D is a n-dimensional hypercube and
N . . . . .
_ 1 I __ I 11 In
VN,H—Zan Vn= Z & i X1 X
i=0 0<ii="-+in<i

where the VL are homogeneous polynomials and VN m, is a generic
polynomial in the ring of polynomials of degree N, it is convenient to determine
the (N—1)" n-tuples X] ... X}, such that

N
VN.n (Xl—Xll ...xn—X;) —A+Y Vi (Xl—Xll ...xn—X;) . i=1..(N-1)",
i=2

so that the solutions of A(w ... wy) =0, are the potential (leading) pinch
singularities if X} eR, 0< X; <1V ForVZ=.. = Vﬁ =0 the singular
point will have multiplicity k+ 1.
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P\

Consider the following integral corresponding to a three-point

Feynman function in arbitrary space-time dimensions (d =4+ ¢€),

with a normal threshold at s = 4m? (A= m; =1/4)

2-1
C = 7t?r(1—g/2) / dx/ dy —x)+ (m? —s)y—&-sxyr/
L, 2(1-¢/2)T (1+¢/2) 3
_ £/2 €2 _ L2 .
= 7%°m F2+e/2) 3Fo(1,1—¢€/2,1+¢/2; 2,2+8/2,

with A = mz/s. MB representation of 3 F» and Kummer transformations will
not be discussed here; instead we study the case € =0

1
ﬁ)?

41/34



@ 0<s<m? where A >1 .

A—x)(1-x%)
Ax ’

Since X > 0 we can use a MB representation and perform the x
integration obtaining a new hypergeometric function of argument
1/A > 0; therefore we use

2F1<a,b;c;lfl>:<l—%) 2 F1 (a,c—b;c;ﬁ) .

Using again the corresponding MB representation we get

1 /1 X
=- —oF1(1,1;2; -X X =
C s%;dxl—x21(’ 12, -X),

c=[ B yrary) (1o P (s 2o
= ), 2in 1 1 7)) 2Fi(—sn 1217 )

and we can use the standard MB representation for , F1 and no imaginary
part will arise v/
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@ m?<s<4m? where 1/4 <A <1 . In this case it is more convenient to

split the x integration introducing C. where 0 <x < A and Cs where
A<x<l1.

1 dsy r2 (—s1) r3(1 +s1) l-s; 1+s
= — _— 1— S1
< s Ju, 2im F(2+s1) A (1-2)

A
X 2F1<*1*MJ1+SMI:* )-

1-2
1 dsy r2(14s1)
= = et oGP N Sl 2
> s, 20 O gy
J = ( A )251 M(1+s1)M(2+s1)
1-2 r(3+2sp)
X F(2)(1+sl;1+sl,1+s1;3+2sl;i,i).
D X X4

Since x4 = 3 (1-A)7? [1 —2A+iVAAL— 1] are complex we can use the
standard MB representation for the Lauricella function v/
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Partial quadratization of Symanzik polynomials

A two loop diagram with K internal lines is described by the two Symanzik
polynomials in K variables g ,..., ak. The diagram will have

o kj lines with momentum qj,
o ko with momentum q» and

o kijp with momentum q; — qp.

Partial quadratization is a change of variables defined as follows:

@ to the ky lines we assign parameters oq, ... , Oy, ;
@ to the kip lines parameters @, 11, ..., 0k, 1k,,; to the ko lines parameters
Oy +kyp+15 -+ > Oy ko ko -
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Next we perform the following change of variables:

k-1
01 =P1X1, - s Oy 1 =P1XYy 15 W, =P1 | 1= Z Xj| -
j=1

For k1o =1 we introduce

Qi +1 =P3, Oy 42 = P2 XKy 5 ++- 5 Oky4ky = P2XKky+ky—2 5
Ky +ko—2
Ogtiori=p2 (1= )Y xi].
=k
For k1o =2 we introduce
O +1 = P3Xigtko—15 042 =P3 (1—Xi4i,-1)
Ky +kp—2
Ok, 13 = P2Xky s -5 Ok tkotl = P2Xkg+ko—2 » Ok thko+2 =P2 [ 1— Z Xj |
j=k1

etc. As a result of the transformation we will have }; pj = 1;

w S, is a funtion of the p variables but not of the x variables; m S5 is a
quadratic form in the x variables with coefficients that are p dependent.

45/34



A useful relation EM = MB
F

Jaibicix,y1...yno1) = (1—x)®
X FEN)(a;c—ij,bz ...bn;C;
j

X y1—X YN71*X)
x—1"1-x "~ 1-x /’
O<Zj<].7 j=1...M, Zj>17 j=M+1...N, leman:l___M{Zj}
Z1 72 —171 M — 71
z21—1" 1—29 1—2q
where all variables are - and
ZM+1 — 721 ZN — 71
1—2z; 7 1—2z1’
where all variables are _
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Equal masses sunrise

After partial quadratization of the Symanzik polynomials we obtain

1
S :/ dpdxp®(1—x)(ax®+bx+c) L
0

a=-b=p(m?>—-sc), c=-m?c, o=1-p.

The integral can be rewritten as
1 1 1 _
S:—2/ dp dxp3(1—x) [a(x—7)2+B} 1,
m< Jo 2

B=—32(p—p)(p—ps).  pr=ny [A+3: VA1 9)

It follows that A =1 corresponds to the pseudo-threshold while A =9

corresponds to the normal threshold . We have four different regions:
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® A <0, where pg>1and p_>1, p; <O0.
@ 0<A<1, where pg <0 and ps > 1
@ 1 <A <9, where 0 < pg <1 and pi are complex

@ A>9 where0<p_<pi <1

In all cases we always start with (pp=1—1/1)

1

S:—2/01dpp3 [(P—Pf)(P—P+)]_12F1(17 5 g; p(p—fpo))) .

(p—p-)(p—p+

The strategy below the normal threshold will be as follows:

o for oF1(...;z < 0) we use the standard MB representation.

o For oF1(...;2>0) and 0 <z < 1 we transform the HF before using the
MB representation.

(N)

After that we perform the p integration, obtaining an F,"/ Lauricella function.

If needed we transform it (below the normal threshold) so that we always have
to deal with F](DN) with negative arguments; only at this point we use the

corresponding MB representation v/
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One example only

- dSJ M2(1/24s1)
S(0<A<1) = JITI/ 217r F(3/24s1) M (9/24+51)

x T (=s2)T(1/2—s82) T (sp—s1) T (4+852+451)

1\ 12 1\ Y2 /g e
x (1—po)* (1-— 1-— z
o= (1-5) p+> <4>
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General strategy:

Given an irreducible quadratic form in N variables always write it as
V= (x—X)"H(x—X)+By,
since By = 0 induces a pinch (AT) con the integration contour at x = X if

0<XN<...<X1<1.

o for the vertex Cp~InBs ,

o for the box Dy NBgl/z ,
o for the pentagon Eg ~ BZl ,

o no singularity for the hexagon Fy in 4dimensions.

Let L be the number of internal lines and v the number of loops; define
p=2v—1/2(L+1), the leading behavior of the diagram is given by
1
B for p<0, BETY? for p=k+3., BBy for p=k, keZ’.

Therefore for L=2(2v+n)—1 and n € Z" the AT is a pole of order n for the
amplitude, e.g. a simple pole for the one-loop pentagon, for two-loop diagrams
with 9 propagators etc. In all other cases it is a branch point.
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Infrared poles

1
I:/ dxx 1 (1—x) 61 (1 —zx)72.
0

I=T(¢) r(lf(;)e) 2Fi(a,€;¢;2).
e—g) e Me+s) Mats)
T T(a) Lioo - M(c+s) e

O Solution: use contiguity

(c—b—1),F; = f[azfc+(b+1)(2fz)] 2F1(b+1)—(b+1)(z—1)2F1(b+2),
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I

1=

obtaining I=1; + 1,

— Hy(ite) /-Hoo M(—s) r(a+Sr)(E(f$8+S) (7Z)S

_ H1(27c+2s)/+_'°°r(7s) r(a+sr)(£(+1:)8+s) (—2)° .

—fjoo

+ico Ma+s)F(2+e+s) (—n)+1

= H(+e) [ (=) .
Ma+s)F(1+€e+s) (=o)L

- mars) [T F(ots)

r(e) Mc—e) 1 r(e) Mc—e) 1

M+e)() cmi—e’ 27 TR+e)(a) co1-¢"
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