

NLO NNLO LO $d\hat{\sigma} = d\hat{\sigma}_{(0,0)} + \alpha_{S} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{S}^{2} \cdot d\hat{\sigma}_{(2,0)} + \dots$

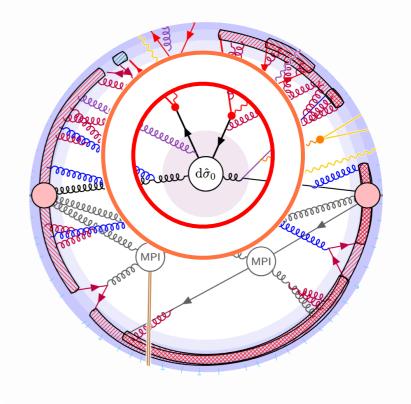
Fixed-order (FO) predictions, based on perturbation theory $\alpha_{\rm S} \ll 1$

Fixed-order (FO) predictions, based on perturbation theory $\alpha_{\rm S} \ll 1$

$$\begin{split} & \text{LO} \qquad \text{NLO} \qquad \text{NNLO} \\ d\hat{\sigma} &= d\hat{\sigma}_{(0,0)} + \alpha_{\text{S}} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{\text{S}}^2 \cdot d\hat{\sigma}_{(2,0)} + \dots \\ &+ \alpha_{\text{EW}} \cdot d\hat{\sigma}_{(0,1)} + \dots \end{split}$$

Subleading corrections from expansion in the electroweak coupling $\alpha_{\rm EW}\sim\alpha_{\rm S}^2$

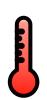
Fixed-order (FO) predictions, based on perturbation theory $\alpha_{\rm S} \ll 1$



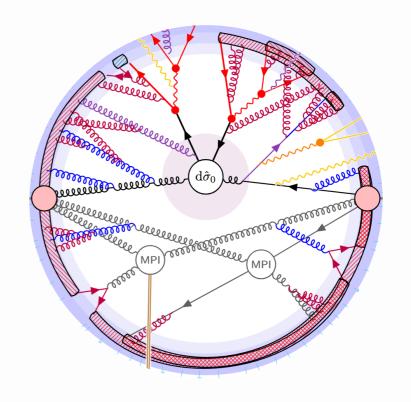
Resummation of large logarithmic contributions $\alpha_{\rm S} \log(Q_1/Q_2) \sim 1 \qquad o \quad {\rm Parton \ Showers \ (PS)}$

Subleading corrections from expansion in the electroweak coupling $\alpha_{\rm EW}\sim\alpha_{\rm S}^2$

$$\begin{split} & \text{LO} \qquad \text{NLO} \qquad \text{NNLO} \\ d\hat{\sigma} &= d\hat{\sigma}_{(0,0)} + \alpha_{\text{S}} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{\text{S}}^2 \cdot d\hat{\sigma}_{(2,0)} + \dots \\ &+ \alpha_{\text{EW}} \cdot d\hat{\sigma}_{(0,1)} + \dots \end{split}$$



Fixed-order (FO) predictions, based on perturbation theory $\alpha_{\rm S} \ll 1$



Resummation of large logarithmic contributions $\alpha_{\rm S} \log(Q_1/Q_2) \sim 1 \qquad o \quad {\rm Parton \ Showers \ (PS)}$

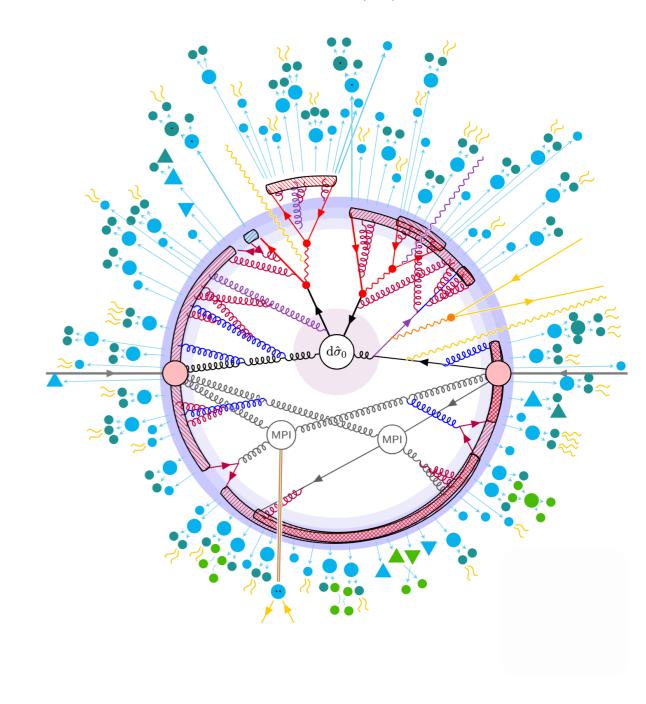
Subleading corrections from expansion in the electroweak coupling $\alpha_{\rm EW}\sim\alpha_{\rm S}^2$

$$\begin{split} & \text{LO} \qquad \text{NLO} \qquad \text{NNLO} \\ d\hat{\sigma} &= d\hat{\sigma}_{(0,0)} + \alpha_{\text{S}} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{\text{S}}^2 \cdot d\hat{\sigma}_{(2,0)} + \dots \\ &+ \alpha_{\text{EW}} \cdot d\hat{\sigma}_{(0,1)} + \dots \end{split}$$

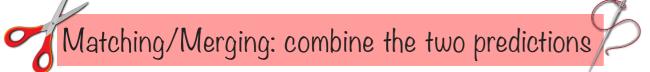
Matching/Merging: combine the two predictions

Fixed-order (FO) predictions, based on perturbation theory $\alpha_{\rm S} \ll 1$

Resummation of large logarithmic contributions $\alpha_{\rm S} \log(Q_1/Q_2) \sim 1 \rightarrow \text{Parton Showers (PS)}$



Non-perturbative physics $lpha_{
m S}\gtrsim 1$



Subleading corrections from expansion in the electroweak coupling $\alpha_{\rm EW} \sim \alpha_{\rm S}^2$

$$\begin{split} & \text{LO} & \text{NLO} & \text{NNLO} \\ d\hat{\sigma} &= d\hat{\sigma}_{(0,0)} + \alpha_{\text{S}} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{\text{S}}^2 \cdot d\hat{\sigma}_{(2,0)} + \dots \\ & + \alpha_{\text{EW}} \cdot d\hat{\sigma}_{(0,1)} + \dots \end{split}$$

High accuracy for LHC Phenomenology: this talk

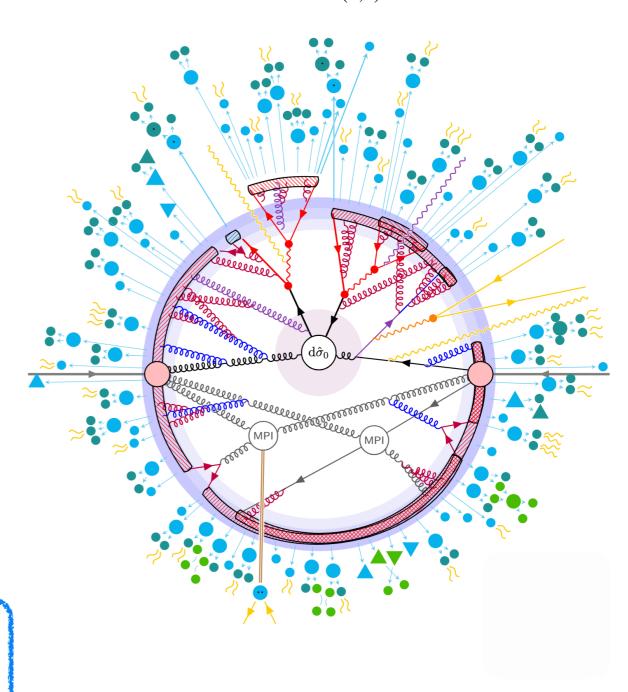
Fixed-order (FO) predictions, based on perturbation theory $\alpha_{\rm S} \ll 1$

Resummation of large logarithmic contributions $\alpha_{\rm S} \log(Q_1/Q_2) \sim 1 \rightarrow \text{Parton Showers (PS)}$

NNLOQCD+PS accuracy

Match NNLO predictions for colour-singlet processes using POWHEG + MiNNLOps: $Z\gamma$, W+W-, ZZ, and W±Z.

Non-perturbative physics $lpha_{
m S}\gtrsim 1$



Subleading corrections from expansion in the electroweak coupling $\alpha_{\rm EW} \sim \alpha_{\rm S}^2$

MOCANLO NLO corrections to multi-leg processes

Full off-shell effects at NLO for processes with intricate resonance structure: HZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.

$$\begin{split} & \text{LO} & \text{NLO} & \text{NNLO} \\ d\hat{\sigma} = d\hat{\sigma}_{(0,0)} + \alpha_{\text{S}} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{\text{S}}^2 \cdot d\hat{\sigma}_{(2,0)} + \dots \\ & + \alpha_{\text{EW}} \cdot d\hat{\sigma}_{(0,1)} + \dots \end{split}$$

NNLOQCD+PS

Lombardi, Wiesemann, Zanderighi

[arXiv:2010.10478, arXiv:2108.11315]

Lombardi, Wiesemann, Zanderighi

[arXiv:2103.12077]

Buonocore, Koole, Lombardi, Rottoli, Wiesemann,

Zanderighi [arXiv:2108.05337]

W±Z

Lindert, Lombardi, Wiesemann, Zanderighi,

Zanoli [arXiv:2208.12660]

Match NNLO predictions for coloursinglet processes using POWHEG + MiŇNLÒps: Z_{γ} , W+W-, ZZ, and W±Z.

Matching/Merging: combine the two predictions

• The accuracy of predictions based on perturbation theory depends on how many orders in $\alpha_{\rm S}$ are computed

$$d\hat{\sigma} = d\hat{\sigma}_{(0,0)} + \alpha_{\mathrm{S}} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{\mathrm{S}}^2 \cdot d\hat{\sigma}_{(2,0)} + \dots$$

Fixed-Order (FO) prediction

The accuracy of a Parton shower (PS) is named after the class of logarithmic contributions it resums

$$\int\! d\hat{\sigma} \cdot \theta(O < e^{-L}) = \exp\!\left\{L\,g_1(\alpha_{\rm S}L) + g_2(\alpha_{\rm S}L) + \alpha_{\rm S}\,g_3(\alpha_{\rm S}L) + \ldots\right\} \qquad \text{Resummed prediction}$$

POWHEG combines calculations up to NLO to PS (general)

MINNLOps combines calculations up to NNLO to PS (only for some processes)

NNLOQCD+PS

Lombardi, Wiesemann, Zanderighi

[arXiv:2010.10478, arXiv:2108.11315]

Lombardi, Wiesemann, Zanderighi

[arXiv:2103.12077]

Buonocore, Koole, Lombardi, Rottoli, Wiesemann,

Zanderighi [arXiv:2108.05337]

W±Z

Lindert, Lombardi, Wiesemann, Zanderighi,

Zanoli [arXiv:2208.12660]

Match NNLO predictions for coloursinglet processes using POWHEG + MiŇNLÒps: Z_{γ} , W+W-, ZZ, and W±Z.

Matching/Merging: combine the two predictions

* The accuracy of predictions based on perturbation theory depends on how many orders in $\alpha_{\rm S}$ are computed

$$d\hat{\sigma} = d\hat{\sigma}_{(0,0)} + \alpha_{\mathrm{S}} \cdot d\hat{\sigma}_{(1,0)} + \alpha_{\mathrm{S}}^2 \cdot d\hat{\sigma}_{(2,0)} + \dots$$

Fixed-Order (FO) prediction

The accuracy of a Parton shower (PS) is named after the class of logarithmic contributions it resums

POWHEG combines calculations up to NLO to PS (general)

MINNLOps combines calculations up to NNLO to PS (only for some processes)

NNLOQCD+PS

Lombardi, Wiesemann, Zanderighi

[arXiv:2010.10478, arXiv:2108.11315]

Lombardi, Wiesemann, Zanderighi

[arXiv:2103.12077]

Buonocore, Koole, Lombardi, Rottoli, Wiesemann,

Zanderighi [arXiv:2108.05337]

W±Z

Lindert, Lombardi, Wiesemann, Zanderighi,

Zanoli [arXiv:2208.12660]

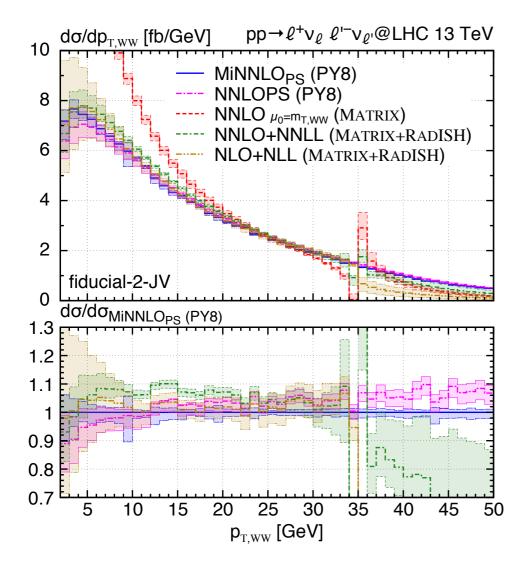
Match NNLO predictions for coloursinglet processes using POWHEG + MiNNLOps: Z_{γ} , W+W-, ZZ, and W±Z.

Matching/Merging: combine the two predictions

* The accuracy of predictions based on perturbation theory depends on how many orders in $\alpha_{\rm S}$ are computed

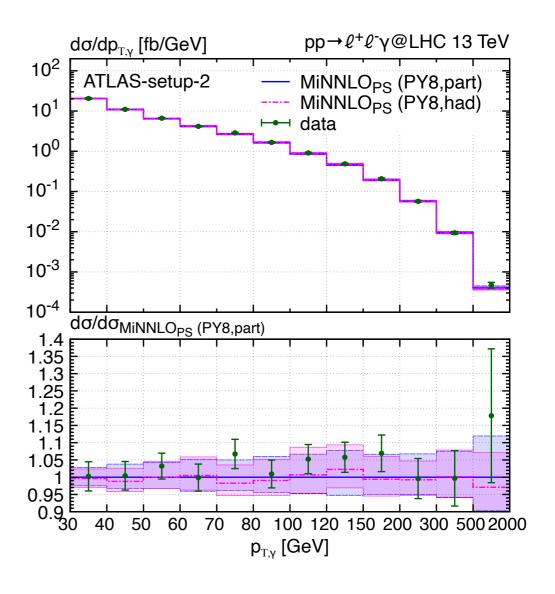
Fixed-Order (FO) prediction

The accuracy of a Parton shower (PS) is named after the class of logarithmic contributions it resums


$$\int d\hat{\sigma} \cdot \theta(O < e^{-L}) = \exp \left\{ L \, g_1(\alpha_{\rm S} L) + g_2(\alpha_{\rm S} L) + \alpha_{\rm S} \, g_3(\alpha_{\rm S} L) + \ldots \right\} \qquad \text{Resummed prediction}$$

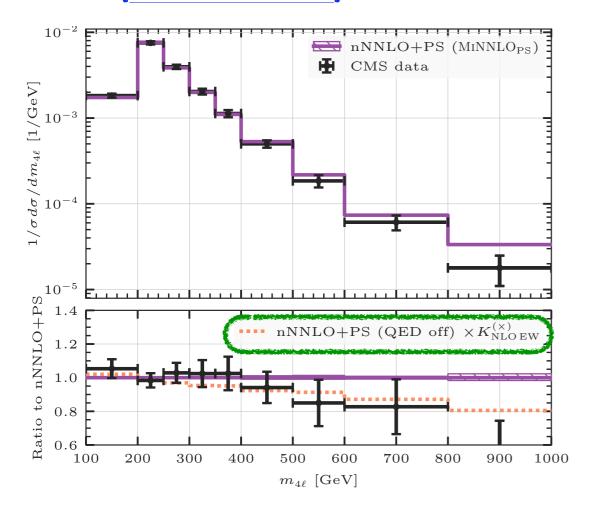
POWHEG combines calculations up to NLO to PS (general)

MINNLOps combines calculations up to NNLO to PS (only for some processes)


NNLO+PS for di-bosons (1)

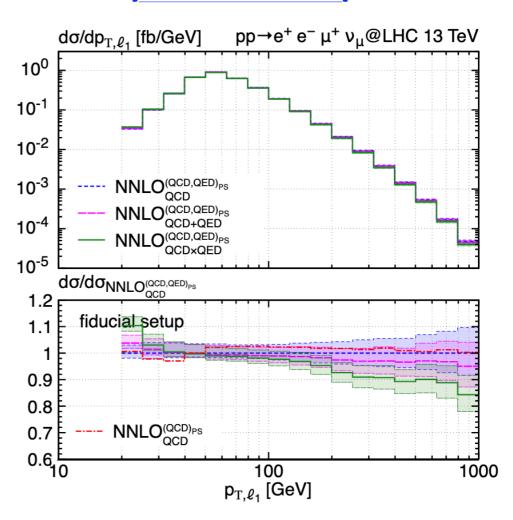
Lombardi, Wiesemann, Zanderighi W+W-[arXiv:2103.12077]

Fiducial phase-space with jet-veto cut at 35 GeV: NNLO+PS results provide physical description both below and above jet-veto threshold


Lombardi, Wiesemann, Zanderighi [arXiv:2010.10478]

First MiNNLOps extension to general colour-singlet processes compared to ATLAS data!

NNLO+PS for di-bosons (2)


Buonocore, Koole, Lombardi, Rottoli, Wiesemann, Zanderighi [arXiv:2108.05337]

nNNLO + PS generator: combination of

- * qq-induced channels at NNLO+PS with MiNNLOps
- ◆ gg-induced channels at NLO+PS with POWHEG

Lindert, Lombardi, Wiesemann, W±2 Zanderighi, Zanoli [arXiv:2208.12660]

Inclusion of EW corrections in NNLO+PS generator with two independent generators:

- NNLOQCD + PS with MiNNLOps
- NLOEW + PS with POWHEG

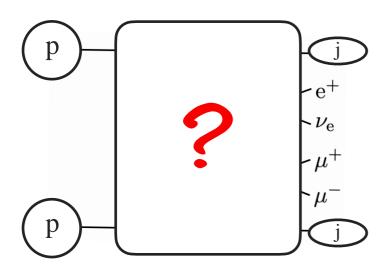
Additive scheme NNLOQCD + NLOEW - LO Multiplicative scheme NNLOQCD x (NLOEW / LO)

Associated top-pair production: tt2

Semi-leptonic VBS at LO

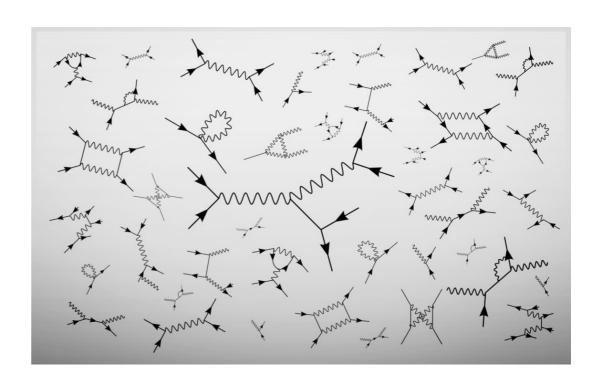
Tri-boson production: WZ+jj

Doubly-Polarised W2 production


Denner, Lombardi, Pelliccioli [arXiv:2306.13535]

Denner, Lombardi, Schwan [arXiv:2406.12301]

Denner, Lombardi, Lopez, Pelliccioli [arXiv:2407.21558]


Denner, Franken, Haitz, Lombardi, Pelliccioli [arXiv:2510.26462]

Realistic event description must account for experimental definition of signal: only access to final states

MOCANLO NLO corrections to multi-leg processes

Full off-shell effects at NLO for processes with intricate resonance structure: ttZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.

- EW corrections have a prominent role in tails of distributions;
- QED radiation significantly distorts shape of observables;
- Off-shell effects crucial in high $p_{\rm T}$ regions or close to kinematical boundaries.

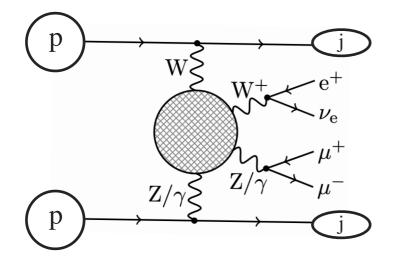
Associated top-pair production: tt2

Semi-leptonic VBS at LO

Tri-boson production: WZ+jj

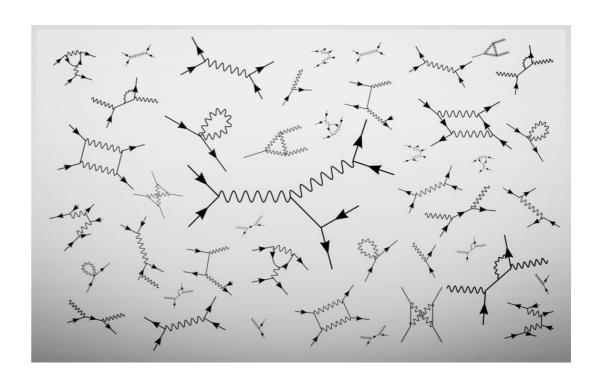
Doubly-Polarised W2 production

Denner, Lombardi, Pelliccioli [arXiv:2306.13535]


Denner, Lombardi, Schwan [arXiv:2406.12301]

Denner, Lombardi, Lopez, Pelliccioli [arXiv:2407.21558]

Denner, Franken, Haitz, Lombardi, Pelliccioli [arXiv:2510.26462]


Realistic event description must account for experimental definition of signal: only access to final states

VBS

MOCANLO NLO corrections to multi-leg processes

Full off-shell effects at NLO for processes with intricate resonance structure: ttZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.

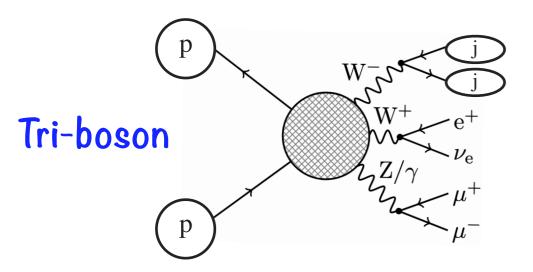
- EW corrections have a prominent role in tails of distributions;
- QED radiation significantly distorts shape of observables;
- Off-shell effects crucial in high $p_{\rm T}$ regions or close to kinematical boundaries.

Associated top-pair production: tt2

Semi-leptonic VBS at LO

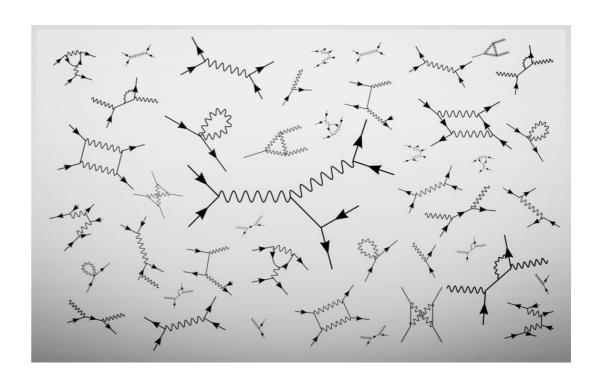
Tri-boson production: WZ+jj

Doubly-Polarised W2 production


Denner, Lombardi, Pelliccioli [arXiv:2306.13535]

Denner, Lombardi, Schwan [arXiv:2406.12301]

Denner, Lombardi, Lopez, Pelliccioli [arXiv:2407.21558]


Denner, Franken, Haitz, Lombardi, Pelliccioli [arXiv:2510.26462]

Realistic event description must account for experimental definition of signal: only access to final states

MOCANLO NLO corrections to multi-leg processes

Full off-shell effects at NLO for processes with intricate resonance structure: ttZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.

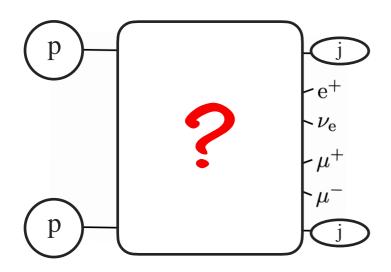
- EW corrections have a prominent role in tails of distributions;
- QED radiation significantly distorts shape of observables;
- Off-shell effects crucial in high $p_{\rm T}$ regions or close to kinematical boundaries.

Associated top-pair production: tt2

Semi-leptonic VBS at LO

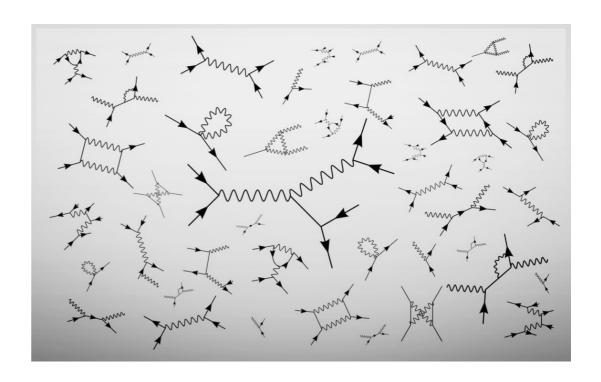
Tri-boson production: WZ+jj

Doubly-Polarised W2 production


Denner, Lombardi, Pelliccioli [arXiv:2306.13535]

Denner, Lombardi, Schwan [arXiv:2406.12301]

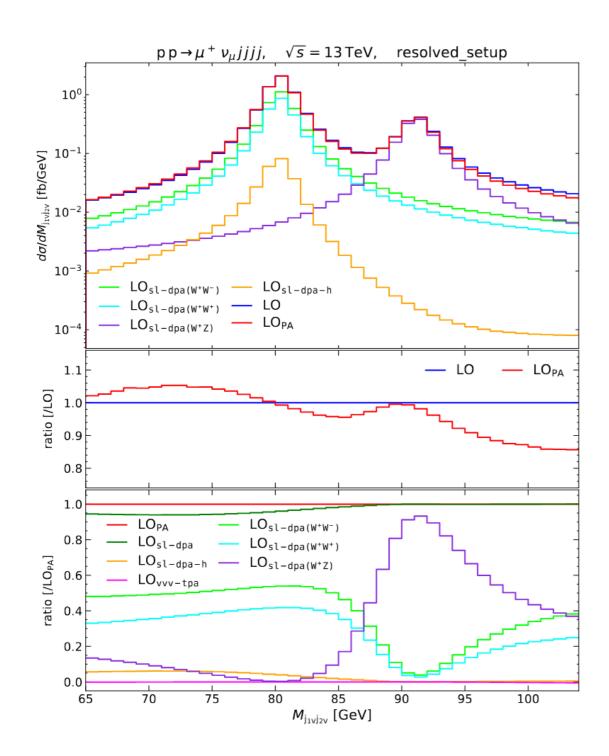
Denner, Lombardi, Lopez, Pelliccioli [arXiv:2407.21558]


Denner, Franken, Haitz, Lombardi, Pelliccioli [arXiv:2510.26462]

Realistic event description must account for experimental definition of signal: only access to final states

MOCANLO NLO corrections to multi-leg processes

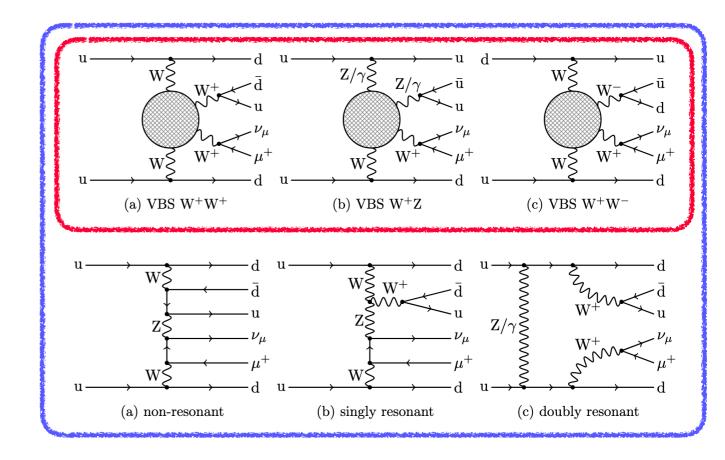
Full off-shell effects at NLO for processes with intricate resonance structure: ttZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.



- EW corrections have a prominent role in tails of distributions;
- QED radiation significantly distorts shape of observables;
- Off-shell effects crucial in high $p_{\rm T}$ regions or close to kinematical boundaries.

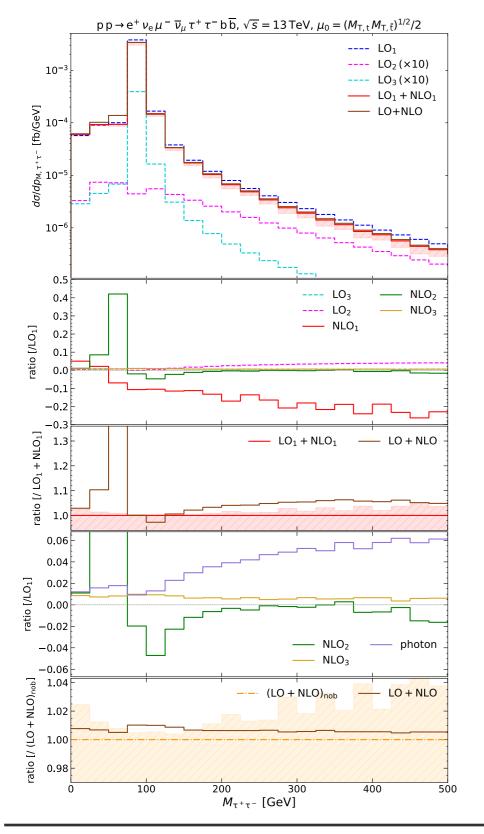
Off-shell effects in semileptonic VBS

Semi-leptonic VBS at LO

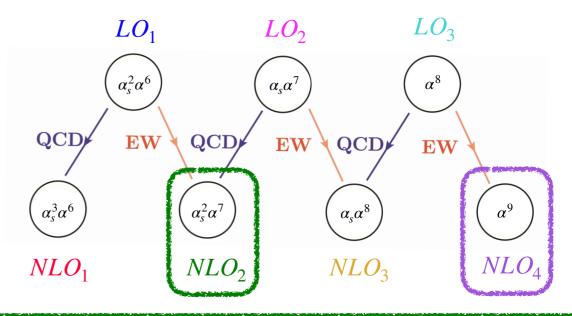

Denner, Lombardi, Schwan [arXiv:2406.12301]

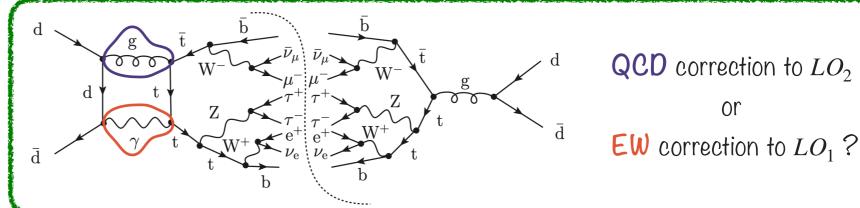
MOCANLO NLO corrections to multi-leg processes

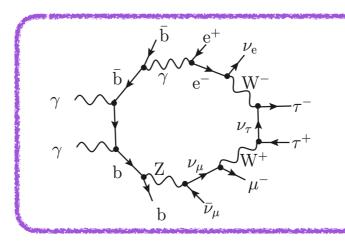
Full off-shell effects at NLO for processes with intricate resonance structure: ttZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.


•
$$pp \rightarrow W^+(\ell^+\nu_\ell)Z(jj)jj$$
, — $LO_{sl-dpa(W^+Z)}$

Beyond NLO QCD corrections

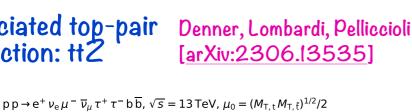

Associated top-pair production: tt2


Denner, Lombardi, Pelliccioli [arXiv:2306.13535]

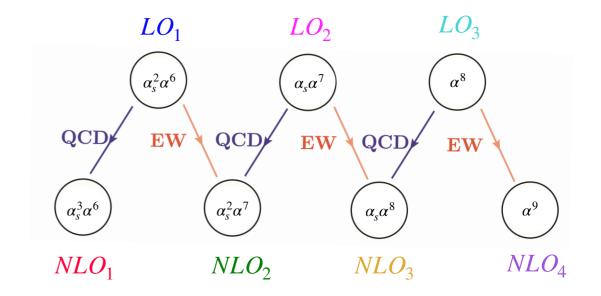


MOCANLO NLO corrections to multi-leg processes

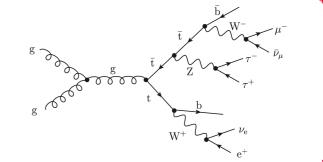
Full off-shell effects at NLO for processes with intricate resonance structure: ttZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.



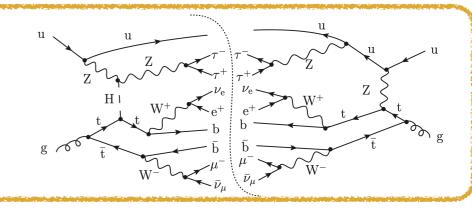
Computationally challenging virtual terms: high number of rank-6 10-point 1-loop functions to be evaluated!

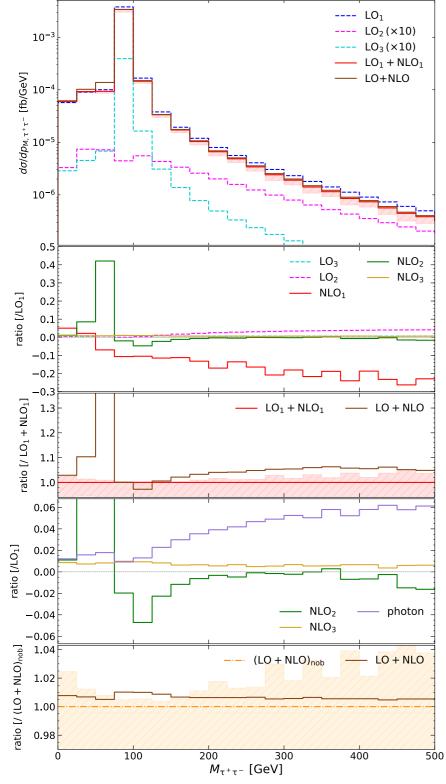

Beyond NLO QCD corrections

Associated top-pair production: #2



Full off-shell effects at NLO for processes with intricate resonance structure: ttZ, semi-leptonic vector-boson scattering (VBS) and tri-boson.




· Negative NLO₁ corrections in the far off-shell region.

• NLO2 corrections are the dominant ones around the Zmass pole (radiative return due to real-photon radiation).

 Flat QCD-like corrections from NLO3 terms.

Conclusions

- NNLO+PS generators using NLO POWHEG matching and MiNNLOps method
 - Inclusion of NLOEW corrections at generation level directly starting from simpler processes
 - Matching to PS with new NLL (or higher) logarithmic accuracy

- General treatment of NLO corrections and off-shell effects with MoCaNLO
 - Moving beyond LO for semi-leptonic VBS
 - Using DPA for definition of polarised cross sections at NLO
 - NLO matching using CS-based MC@NLO

Conclusions

- NNLO+PS generators using NLO POWHEG matching and MiNNLOps method
 - Inclusion of NLOEW corrections at generation level directly starting from simpler processes
 - Matching to PS with new NLL (or higher) logarithmic accuracy

MoCANLO

- General treatment of NLO corrections and off-shell effects with MoCaNLO
 - Moving beyond LO for semi-leptonic VBS
 - Using DPA for definition of polarised cross sections at NLO
 - NLO matching using CS-based MC@NLO

Thank you for your attention