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MOTIVATION
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Why should we give up our beloved 
Hamiltonian paradigm?
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EOB with post-Minkowskian information
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χPM( j, γ, ãi) = ∑
n

2
χn(γ, ãi, ν)

jn

PM results EOB mass-shell constraint

𝒞 = gμν
eff(xρ, γ, ãi)pμpν + 1 = 0

χn(γ, ãi, ν) gμν
eff(xρ, γ, ãi)

Lorentz factorγ = γ = Eeff /μ
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EOB with post-Minkowskian information
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χPM( j, γ, ãi) = ∑
n

2
χn(γ, ãi, ν)

jn

PM results EOB mass-shell constraint

𝒞 = gμν
eff(xρ, γ, ãi)pμpν + 1 = 0

χn(γ, ãi, ν) gμν
eff(xρ, γ, ãi)

In particular, for spin-aligned binaries:

𝒞 = −
[γ − 𝒢(r, γ, ãi)pφ]2

A(r, γ, ãi)
+

p2
r

B(r, γ, ãi)
+

p2
φ

rc(r, γ, ãi)2
+ 1

𝒢(r, γ, ãi) = GS(r, γ, ãi) ̂S + GS*
(r, γ, ãi) ̂S*

+gauge fixingχai−even
n A, B, rc χai−odd

n GS, GS*

Lorentz factorγ = γ = Eeff /μ
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Ĥeff = Ĥeff(r, pr, pφ, γ, ãi)

EOB Hamiltonian in PM gravity

𝒞 = −
[γ − 𝒢(r, γ, ãi)pφ]2

A(r, γ, ãi)
+

p2
r

B(r, γ, ãi)
+

p2
φ

rc(r, γ, ãi)2
+ 1 = 0

 here   , and the constraint is solved for     γ → Ĥeff Ĥeff

[M. Khalil et al.; 2022] [A. Buonanno et al.; 02/2024] [A. Buonanno et al.; 05/2024]
[A. Antonelli et al.; 2019][T. Damour; 2018]
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EOB Hamiltonian in PM gravity

𝒞 = −
[γ − 𝒢(r, γ, ãi)pφ]2

A(r, γ, ãi)
+

p2
r

B(r, γ, ãi)
+

p2
φ

rc(r, γ, ãi)2
+ 1 = 0

 here   , and the constraint is solved for     γ → Ĥeff Ĥeff

[M. Khalil et al.; 2022] [A. Buonanno et al.; 02/2024] [A. Buonanno et al.; 05/2024]
[A. Antonelli et al.; 2019][T. Damour; 2018]

This is a recursive definition: at each PM order every  must be replaced by the 
ordinary Hamiltonian  obtained at the previous orders,  

starting from 

γ
Ĥeff(r, pr, pφ, ãi)

Ĥ1PM
eff = ĤKerr(r, pr, pφ, ãi)

First issue:

• 3PM  hyperbolic functions→
• 4PM  elliptic integrals, polylogs →

 has an intricate dependence on   𝒞 γ
+  required recursive steps
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EOB Hamiltonian in PM gravity
Second issue: 

• Colored dots  local minima,  
stable circular orbits 

• Black dots  position of the 
effective particle as it moves 
along the radiation-reacted 
dynamics 

→

→

Radial potential of the corresponding conservative dynamics

Using the results of [A. Buonanno et al.; 05/2024]

[ν = 1/4, ãi = 0]
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EOB Hamiltonian in PM gravity
Second issue: 

• Colored dots  local minima,  
stable circular orbits 

• Black dots  position of the 
effective particle as it moves 
along the radiation-reacted 
dynamics 

→

→

 2 local minima (and maxima)→

Radial potential of the corresponding conservative dynamics

Using the results of [A. Buonanno et al.; 05/2024]

[ν = 1/4, ãi = 0]
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EOB Hamiltonian in PM gravity
Second issue: 

• Colored dots  local minima,  
stable circular orbits 

• Black dots  position of the 
effective particle as it moves 
along the radiation-reacted 
dynamics 

→

→

 2 local minima (and maxima)→

 Singular behaviour around → r̃ = 2

Radial potential of the corresponding conservative dynamics

Using the results of [A. Buonanno et al.; 05/2024]

[ν = 1/4, ãi = 0]
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Why a Lagrangian EOB?
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Both the issues are solved! 

• No need to recursively solve for an Hamiltonian

• Radial potential closer to the test-mass counterpart

• Colored dots  local minima,  
stable circular orbits 

• Black dots  position of the 
effective particle as it moves 
along the radiation-reacted 
dynamics 

→

→

[ν = 1/4, ãi = 0]
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HOW DOES IT 
WORK?
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Euler-Lagrange EOB equations
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LEOB: a novel Lagrange-multiplier approach
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S[Xμ, Pμ] = ∫ [PμdXμ]on−shell = ∫ PidXi − Heff(Xi, Pi)dTeff

replaced by

S[Xμ, Pμ, eL] = ∫ PμdXμ − eL 𝒞(Xμ, Pμ)dτ

Lagrange multiplier

EOB mass-shell constraint 

δS[Xμ, Pμ, eL] = 0 →
dXμ

dτ
= eL

∂𝒞
∂Pμ

,
dPμ

dτ
= − eL

∂𝒞
∂Xμ

, 𝒞 = 0

From the variational principle:

Evolution parameter associated to eL
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S[Xμ, Pμ] = ∫ [PμdXμ]on−shell = ∫ PidXi − Heff(Xi, Pi)dTeff

replaced by

S[Xμ, Pμ, eL] = ∫ PμdXμ − eL 𝒞(Xμ, Pμ)dτ

Lagrange multiplier

EOB mass-shell constraint 

δS[Xμ, Pμ, eL] = 0 →
dXμ

dτ
= eL

∂𝒞
∂Pμ

,
dPμ

dτ
= − eL

∂𝒞
∂Xμ

, 𝒞 = 0

From the variational principle:

Evolution parameter associated to eL

Fixing  while considering  and τ = Treal
dTeff

dTreal
=

dEreal

dEeff
=

M
Ereal

X0 = Teff

M
Ereal

= eL
∂𝒞
∂P0

= − eL
∂𝒞

∂Eeff
eL = −

M
Ereal ( d𝒞

dEeff )
−1
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h =
Ereal

M
= 1 + 2ν(γ − 1)

LEOB equations of motion
In terms of mass-rescaled quantities, the resulting Euler-Lagrange equations are:

dxi

dtreal
= −

1
h ( ∂𝒞

∂γ )
−1 ∂𝒞

∂pi
,

dpi

dtreal
=

1
h ( ∂𝒞

∂γ )
−1 ∂𝒞

∂xi
,

dγ
dtreal

= 0

The extra equation  is only relevant for the initial conditions 𝒞 = 0
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h =
Ereal

M
= 1 + 2ν(γ − 1)

LEOB equations of motion
In terms of mass-rescaled quantities, the resulting Euler-Lagrange equations are:

dxi

dtreal
= −

1
h ( ∂𝒞

∂γ )
−1 ∂𝒞

∂pi
,

dpi

dtreal
=

1
h ( ∂𝒞

∂γ )
−1 ∂𝒞

∂xi
,

dγ
dtreal

= 0

The extra equation  is only relevant for the initial conditions 𝒞 = 0

Adding dissipative effects:  
+ radiation-reaction force  in the evolution equation of  , i.e.ℱμ pμ

dxi

dtreal
= −

1
h ( ∂𝒞

∂γ )
−1 ∂𝒞

∂pi
,

dpi

dtreal
=

1
h ( ∂𝒞

∂γ )
−1 ∂𝒞

∂xi
+ ℱi,

dγ
dtreal

= − ℱ0

with the condition  ensuring that  holds along the whole 

radiation-reacted evolution

dxμ

dtreal
ℱμ = 0 𝒞 = 0
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APPLICATION
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A PM-informed LEOB waveform model 
for quasi-circular spin-aligned binaries
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• a

Our choices for the model
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Gauge fixing:  

    (as in a Kerr metric in BL coordinates) A(r, γ, ãi)B(r, γ, ãi) =
r2

r2
c (r, γ, ãi)

• rc(r, γ, ãi) = rKerr
c (r, ãi)

Analytical information:

• local 4PM contributions + 4PN completion (non-local part up to ) in  

• 4PM + static 5PM-4PN contribution in  

•  and 4PM spin-spin term in  

• 5PM spin-spin term in  

• 5PM spin^4 term in 

ã0
i → e6 A

ã1
i → GS, GS*

ã2
i → rKerr

c A

ã3
i → GS, GS*

ã4
i → A

We consider here the physical PM 
counting: +1 order for each power 
of  and  1/r ãi

Lagrange-Just-Boyer-Lindquist gauge
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Our choices for the model
Waveform and radiation reaction:  

Standard PN-based prescription of TEOBResumS-Dalí [A. Nagar et al.; 07/2024]

hℓm = hN
ℓmĥℓmĥNQC

ℓm

ℱ̂φ = −
32
5

νr4
ΩΩ5 ̂f(x; ν) + ℱ̂H

φ

ℱ̂r = 0

NR calibration of the dynamics:  

• 5PM-5PN parameter  in the orbital part 

• 5PM-4PN parameter   (the same in both functions)

A → aNR
52 (ν)

GS, GS*
→ ̂gNR

32 (ν, ãi)
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Nonspinning case - uncalibrated
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q > 4

Unfaithfulness on a sample of 18 SXS nonspinning simulations with   1 ≤ q ≤ 15
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Nonspinning case - calibrated
Unfaithfulness on a sample of 18 SXS nonspinning simulations with   1 ≤ q ≤ 15

20 40 60 80 100 120 140 160 180 200

10-4
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10-2

10-1 For nearly equal-mass 
configurations the 
NR-calibration yields 
an improvement of 
almost two orders of 
magnitude.
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Performance consistent with the  
PN-based TEOB models

ã0 = ã1 + ã2
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The simplification and flexibility brought about by the LEOB approach have a notable 
impact in the development of PM-based EOB models, and we expect even more 
benefits when higher-order PM results will be released.

Conclusions

16

With LEOB, our novel Lagrange-multiplier approach, we are able to provide a 
complete description, within the EOB framework and in the form of Euler-Lagrange 
equations, of the dynamical evolution of black hole binaries. 

Crucially, LEOB avoids the need to solve the EOB mass-shell constraint for an 
effective Hamiltonian, at the cost of having one additional evolution equation for the 
energy .γ

When applied to a complete waveform model for quasi-circular spin-aligned binaries,  
the LEOB approach yields good results already before any NR tuning of the dynamics. 
Moreover, the LEOB dynamics is flexible enough to allow for a successful NR 
calibration, which pushes the performance of the model at the level of the state-of-
the-art PN-based EOB models
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The simplification and flexibility brought about by the LEOB approach have a notable 
impact in the development of PM-based EOB models, and we expect even more 
benefits when higher-order PM results will be released.

Conclusions

16

With LEOB, our novel Lagrange-multiplier approach, we are able to provide a 
complete description, within the EOB framework and in the form of Euler-Lagrange 
equations, of the dynamical evolution of black hole binaries. 

Crucially, LEOB avoids the need to solve the EOB mass-shell constraint for an 
effective Hamiltonian, at the cost of having one additional evolution equation for the 
energy .γ

When applied to a complete waveform model for quasi-circular spin-aligned binaries,  
the LEOB approach yields good results already before any NR tuning of the dynamics. 
Moreover, the LEOB dynamics is flexible enough to allow for a successful NR 
calibration, which pushes the performance of the model at the level of the state-of-
the-art PN-based EOB models

Thanks for your  
attention!
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Backup Slides
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NR-tuned parameters

̂gNR
32 (ν, ãi) = ̂g=

32 + ̂g≠
32

ã0 = ã1 + ã2, ã12 = ã1 − ã2

aNR
52 (ν) = 263.55ν − 0.171

Orbital part:

Spin part:
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Link between LEOB and the -based EOB H
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The traditional Hamiltonian EOB dynamics is regained when using a mass-shell 
constraint in the explicitly solved form

𝒞̂H ≡ Ĥeff(xi, pi) − γ

which implies

∂𝒞̂H

∂γ
= − 1 ,

∂𝒞̂H

∂pi
=

∂Ĥeff

∂pi
,

∂𝒞̂H

∂xi
=

∂Ĥeff

∂xi

dxi

dtreal
= −

1
h ( ∂𝒞̂H

∂γ )
−1

∂𝒞̂H

∂pi
,

dpi

dtreal
=

1
h ( ∂𝒞̂H

∂γ )
−1

∂𝒞̂H

∂xi
+ ℱi,

dγ
dtreal

= − ℱ0

Under this conditions in fact:

dxi

dtreal
=

1
h

∂Ĥeff

∂pi
,

dpi

dtreal
= −

1
h

∂Ĥeff

∂xi
+ ℱi



Andrea Placidi

Effect of NQC corrections and ringdown
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Kepler-preserving radius in LEOB


