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Black-hole binary spin precession
1. A sweet relativistic effect full of surprises 

2. A treasure trove for black-hole astrophysics

Waveform modulations, frame dragging, 
resonances, instabilities, superkicks 

Formation channels, supernova kicks, mass transfer, tides, 
core-envelope interactions, accretion disk physics 



Three things today…

1. Precession-averaged PN dynamics 

2. Up-down instability 

3. What precession parameter 

DG+ 2015, arXiv:1506.03492
DG+ 2023, arXiv:2304.04801

DG+ 2015, arXiv:1506.09116
Mould, DG 2020, arXiv:2003.02281

DG+ 2021, arXiv:2011.11948

Fumagalli, DG 2023, arXiv:2310.16893
(Eccentricity in the next talk by Giulia)



A tale of three timescales

1. Orbital motion 
2. Spin & orbital-plane precession 
3. GW emission and inspiral tRR / (r/rg)

4

torb / (r/rg)
3/2

Kepler’s third law 

Quadrupole formula 
Peters & Matthews 1963

tpre / (r/rg)
5/2

Apostolatos et al 1994

if (Post-)Newtonian

Precession InspiralOrbit << <<
:  timescale hierarchy

BH binary multi-timescale analysis:
1. Solve the dynamics (hopefully analytically) on the shorter time 
2. Quasi-adiabatic evolution (“average”) on the longer time

r � rg = GM/c2

DG+ 2015, 2023



Two-spin PN dynamics

• Spin magnitudes are const. Frame (3 constraints) 
• Three momenta, 9 components L,S1,S2

tRR

Racine 2008

•     and also                                     vary on  
• Effective spin is constant (at least) at 2PN
r J = |L+ S1 + S2|

r, ✓1, ✓2, ��Spin precession is a 4D problem:

Precession InspiralOrbit << <<

Spin precession is (actually) a 1D problem!
DG+ 2015

These 1D solutions are now at the heart of the “twisting up” 
procedure in some of the modern precessing GW waveforms

<latexit sha1_base64="rk5O+E3VApkEc3jFl5trsYQn3S0=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WPRi8cK9gObUDabSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXX6DjfVmltfWNzq7xd2dnd2z+oHh51dJIpBm2WiET1AqpBcAlt5CiglyqgcSCgG4xvZ373CZTmiXzASQp+TIeSR5xRNNKjF4JA6rERH1RrTt2Zw14lbkFqpEBrUP3ywoRlMUhkgmrdd50U/Zwq5EzAtOJlGlLKxnQIfUMljUH7+fziqX1mlNCOEmVKoj1Xf0/kNNZ6EgemM6Y40sveTPzP62cYXfs5l2mGINliUZQJGxN79r4dcgUMxcQQyhQ3t9psRBVlaEKqmBDc5ZdXSeei7jbqjfvLWvOmiKNMTsgpOScuuSJNckdapE0YkeSZvJI3S1sv1rv1sWgtWcXMMfkD6/MHkymQ3w==</latexit>

ωε

2

which at next-to-leading order in M2/L are given by [15]

⌦1 =
M2

2r3(1 + q)2


4 + 3q �

3q�e↵

(1 + q)

M2

L

�
, (3)

⌦2 =
qM2

2r3(1 + q)2


4q + 3 �

3q�e↵

(1 + q)

M2

L

�
, (4)

where �e↵ is the effective spin [15, 16]

�e↵ =
�1Ŝ1 + q�2Ŝ2

1 + q
· L̂ . (5)

The amount of orbital-plane precession is thus set by
the magnitude

�����
dL̂

dt

�����

2

=

⇣
⌦1�1|Ŝ1 ⇥ L̂|

⌘2
+

⇣
⌦2�2|Ŝ2 ⇥ L̂|

⌘2

+ 2⌦1⌦2�1�2

⇣
Ŝ1 ⇥ L̂

⌘
·

⇣
Ŝ2 ⇥ L̂

⌘
. (6)

We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are

cos ✓1 = Ŝ1 · L̂ , (7)

cos ✓2 = Ŝ2 · L̂ , (8)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·
Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (9)

which yields
�����
dL̂

dt

�����

2

= (⌦1�1 sin ✓1)
2

+ (⌦2�2 sin ✓2)
2

+ 2⌦1⌦2�1�2 sin ✓1 sin ✓2 cos �� . (10)

The argument made in Ref. [2] where �p is first intro-
duced can be recast as follows. The factor cos �� can (in
principle, at least) take values between �1 and +1. At
those extrema one has

�����
dL̂

dt

�����
±

= |⌦1�1 sin ✓1 ± ⌦2�2 sin ✓2| . (11)

The parameter �p is defined as the arithmetic mean of
these two contributions normalized by the frequency ⌦1,
i.e.

�p ⌘
1

2⌦1

 �����
dL̂

dt

�����
+

+

�����
dL̂

dt

�����
�

!

= max

⇣
�1 sin ✓1, ⌦̃�2 sin ✓2

⌘
, (12)

1
The angle �� is sometimes indicated as �12 in LIGO/Virgo

analyses and data products.

where we introduced the ratio between the spin frequencies

⌦̃ =
⌦2

⌦1
= q

4q + 3

4 + 3q
�

3�e↵q2(1 � q)

(4 + 3q)2(1 + q)

M2

L
+ O

✓
M4

L2

◆
.

(13)

To leading order in M2/L, one has

�p ' max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
, (14)

which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
�� all vary on the same timescale tpre / (r/M)

5/2. One
is not justified to devise a procedure that removes the
�� dependence from Eq. (10) while at the same time
retaining ✓1 and ✓2. The definition of �p given in Eq. (14)
is therefore inconsistent because it contains some, but not
all, short-timescale variations. Let us stress that this is
not the case for the other commonly used spin parameter
�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
retain all the precession-timescale variations, or integrate
them out.

If precession-timescale variations are to be retained,
one can immediately generalize the definition of �p as the
magnitude of dL̂/dt normalized by ⌦1, i.e.:

�p ⌘

�����
dL̂

dt

�����
1

⌦1
=


(�1 sin ✓1)

2
+

⇣
⌦̃�2 sin ✓2

⌘2

+ 2⌦̃�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (15)

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity  (t) that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of �p can be found by evaluating

h�pi =

Z
�p( )

✓
d 

dt

◆�1

d 

Z ✓
d 

dt

◆�1

d 

. (16)

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles ✓1( ), ✓2( ), and ��( ) all vary on
the precession timescale and thus depend (perhaps non-
trivially) on  . On the other hand, the ratio ⌦̃ is constant
at leading order and presents only long-timescale varia-
tions if the first PN correction is included, see Eq. (13).
Two explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter  (t) can be
chosen to be either the angle

cos'0
=

S1 · [(S1 ⇥ L) ⇥ S2 + (S2 ⇥ L) ⇥ S2]

|S1 ⇥ S2| | (S1 + S2) ⇥ L|
(17)

DG+ 2023
…and it’s analytically tractable!



• Quasi-adiabatic approach 
• Only r and J vary on        . 

Averaging the average

Now GW emission

tRR

Usual orbit average
Some parameters for the dynamics 
(say Kepler’s true anomaly)

Orbital period
hXiorb =

R
d X dt/d R
d dt/d 

Now a precession average
Dynamics is now parametrized by  

Precession period

Precession InspiralOrbit << <<
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→X↑pre =
∫
dωε →X↑orb dt/dωε∫

dωεdt/dωε
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FIG. 1. Reference frames used in this paper to study BBH
spin precession. The angles ✓1, ✓2, ��, and ✓12 are defined
is a frame aligned with the orbital angular momentum L (left
panel). The binary dynamics can also be studied in a frame
aligned with the total angular momentum J (right panel).
Once L is taken to lie in the xz-plane, its direction is spec-
ified by S through the angle ✓L. The angle '0 corresponds
to rotations of S1 and S2 about the total spin S. The two
frames pictured here are not inertial because the direction of
L changes together with the spins to conserve J. These angles
are defined in Eqs. (2), (4) and (9).

of these parameters, greatly reducing the number of de-
grees of freedom. At the PN order considered here, the
magnitudes of both spins are conserved throughout the
inspiral, reducing the number of degrees of freedom from
nine to seven. The magnitude of the orbital angular mo-
mentum is conserved on the precession time (although
it shrinks on the radiation-reaction time), further reduc-
ing the number of degrees of freedom from seven to six.
The total angular momentum J = L + S1 + S2 is also
conserved on the precession time, reducing the number
of degrees of freedom from six to three. As described
in greater detail in the next subsection, the projected
e↵ective spin ⇠ [55, 56] is also conserved by both the
orbit-averaged spin-precession equations at 2PN and ra-
diation reaction at 2.5 PN, providing a final constraint
that reduces the system to just two degrees of freedom.
In an appropriately chosen non-inertial reference frame
precessing about J, precessional motion associated with
one of these degrees of freedom can be suppressed, im-
plying that the relative orientations of the three angu-
lar momenta L, S1 and S2 can be specified by just a
single coordinate! We will provide an explicit analytic
construction of this procedure in this and the following
subsection.

We begin by introducing two alternative reference
frames in which the relative orientations of the three an-
gular momenta can be specified explicitly. As shown in
the left panel of Fig. 1, one may choose the z0-axis to lie
along L, the x0-axis such that S1 lies in the x0z0-plane,
and the y0-axis to complete the orthonormal triad. In

this frame only three independent coordinates are needed
to describe the relative orientations of the angular mo-
menta; we choose them to be the angles

cos ✓1 = Ŝ1 · L̂ , (2a)

cos ✓2 = Ŝ2 · L̂ , (2b)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·

Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (2c)

where the sign of �� is given by (cf. Fig. 1)

sgn �� = sgn{L · [(S1 ⇥ L) ⇥ (S2 ⇥ L)]}. (2d)

The relative orientations of the three angular momenta
can alternatively be specified in a frame aligned with the
total angular momentum J. For fixed values of L, S1,
and S2, the allowed range for J = |J| is

Jmin  J  Jmax (3a)

where

Jmin = max(0, L � S1 � S2, |S1 � S2| � L) , (3b)

Jmax = L + S1 + S2 . (3c)

As shown in the right panel of Fig. 1, one can choose the
z-axis parallel to J and the x-axis such that L lies in the
xz-plane:

J = J ẑ and L = L sin ✓Lx̂ + L cos ✓Lẑ . (4)

The third unit vector ŷ = ẑ ⇥ x̂ completes the orthonor-
mal triad. The total spin S = S1 + S2 = J � L will also
lie in the xz-plane:

S = �L sin ✓Lx̂ + (J � L cos ✓L)ẑ , (5)

implying

cos ✓L =
J2 + L2

� S2

2JL
. (6)

We can also define a unit vector

Ŝ? =
(J � L cos ✓L)x̂ + L sin ✓Lẑ

S
(7)

which also lies in the xz-plane but is orthogonal to Ŝ.
While the magnitudes L and J of the orbital and to-

tal angular momenta are conserved on the precession
timescale, the same is not true for the total-spin mag-
nitude S, which oscillates within the range

Smin  S  Smax , (8a)

where

Smin = max(|J � L|, |S1 � S2|) , (8b)

Smax = min(J + L, S1 + S2) . (8c)

• Only way evolve from infinitely 
large separations 

• Takes seconds! 
• Now LVK reports spins at 

infinity with this formalism
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FIG. 11. Evolution of the spin morphology and the allowed ranges of the spin angles ✓i over a precession cycle as functions of
the binary separation r. Each panel shows the range of cos ✓1 (purple/darker) and cos ✓2 (orange/lighter) for di↵erent initial
conditions cos ✓i1. The current morphology is tracked by the horizontal bar above each panel. Morphologies are indicated as
C (green) for circulating, L0 (blue) for �� librating about 0, and L⇡ (red) for �� librating about ⇡. The morphology changes
whenever cos ✓i = ±1 (vertical dashed lines). BBHs in the leftmost column do not undergo any transitions in the PN regime;
one transition into a librating morphology occurs for BBHs in the center columns; two transitions (circulating to librating,
librating to circulating) occur for BBHs in the rightmost column. The mass ratio and spin magnitudes are q = 0.95, �1 = 0.5,
and �2 = 1 in all panels.
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FIG. 4. E↵ective potentials ⇠±(S) of Eq. (14) for values of L, J , S1, and S2 leading to three di↵erent sets of spin morphologies.
The loop formed by the two curves encloses all allowed configurations for the constants listed in the legends. As in the left panel
of Fig. 2, empty squares mark the extrema of S (Smin and Smax), empty triangles mark the extrema of ⇠ (⇠min and ⇠max), and
conservation of ⇠ restricts the BBH spins to precess along horizontal lines between the turning points S±. BBH spin precession
can be classified into three di↵erent morphologies by the behavior of �� during a precession cycle: oscillation about 0 (blue
region), circulation from �⇡ to ⇡ (green region), or oscillation about ⇡ (red region). The dashed boundaries between these
morphologies occur at values of ⇠ where the dotted curves cos ✓i = ±1 intersect the e↵ective-potential loop, as shown by the
empty circles. All three morphologies are present if one intersection occurs on ⇠+(S) and a second occurs on ⇠�(S) (left panel),
oscillation of �� about 0 is forbidden if two intersections occur on either ⇠+(S) or ⇠�(S) (middle panel), and only oscillations
about ⇡ are allowed if there are no such intersections (right panel).

FIG. 5. The (J, ⇠) parameter space for BBHs with di↵erent minimum allowed total angular momentum Jmin. BBH spin
morphology is shown with di↵erent colors, as indicated in the legend. The extrema ⇠min(J) and ⇠max(J) of the e↵ective
potentials constitute the edges of the allowed regions and are marked by solid blue (red) curves for �� = 0 (⇡). Dashed
lines mark the boundaries between the di↵erent morphologies. The parameters q, �1, �2 and r are chosen as in Fig. 4, whose
panels can be thought of as vertical (constant J) “sections” of this figure (where we suppress the S dependence). The lowest
allowed value of ⇠ occurs at J = |L � S1 � S2| in all three panels. Three phases are present for each vertical section with
J > |L� S1 � S2|. This condition may either cover the entire parameter space (left panel) or leave room for additional regions
where vertical sections include two di↵erent phases in which �� oscillates about ⇡ and a circulating phase in between (center
panel) or only a single phase where the spins librate about �� = ⇡ (right panel). An animated version of this figure evolving
on the radiation-reaction time tRR is available online [54].
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FIG. 11. Evolution of the spin morphology and the allowed ranges of the spin angles ✓i over a precession cycle as functions of
the binary separation r. Each panel shows the range of cos ✓1 (purple/darker) and cos ✓2 (orange/lighter) for di↵erent initial
conditions cos ✓i1. The current morphology is tracked by the horizontal bar above each panel. Morphologies are indicated as
C (green) for circulating, L0 (blue) for �� librating about 0, and L⇡ (red) for �� librating about ⇡. The morphology changes
whenever cos ✓i = ±1 (vertical dashed lines). BBHs in the leftmost column do not undergo any transitions in the PN regime;
one transition into a librating morphology occurs for BBHs in the center columns; two transitions (circulating to librating,
librating to circulating) occur for BBHs in the rightmost column. The mass ratio and spin magnitudes are q = 0.95, �1 = 0.5,
and �2 = 1 in all panels.

Precesion-
averaged 
evolutions

DG+ 2015

(Updates on this business in the very recent:                     )DG, Foroni+ 2025



It’s accurate!
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FIG. 8. Precession-averaged BBH inspirals as described in Sec. III C (purple/darker) compared to numerical integration of the
orbit-averaged PN equations [35, 36] (orange/lighter). Marginalized distributions of the spin angles ✓1, ✓2, and |��| (rows) are
shown at several separations along the inspirals [columns: ri = 1000M , 500M, 100M, 50M , and 10M ]. The three initial spin
distributions are isotropic (top panels), one aligned BH (middle panels), and Gaussian spikes (bottom panels) as described in
Sec. III C. The two approaches are in good agreement except for minor deviations in the distribution of �� at r ⇠ 10M . We
take q = 0.7, �1 = 0.8 and �2 = 0.4 for all BBHs. An animated version of this figure is available online [55].
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* = We might have a different definition of “accuracy”… 
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It’s fast! Incredibly favourable scaling with the separation 
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FIG. 9. CPU time needed to evolve BBHs from an initial
separation ri to a final separation rf = 10M using our new
precession-averaged approach (purple circles) and the stan-
dard orbit-averaged approach (orange triangles). Each CPU
time is averaged over N = 100 executions with isotropic initial
spin orientation (flat distributions in cos ✓1, cos ✓2 and ��).

Dashed lines show the expected scalings: t / r3/2i for the
orbit-averaged approach and t / log ri for our new precession-
averaged approach. These computations have been performed
on a single core of a 2013 Intel i5-3470 3.20GHz CPU.

and Fig. 7. Precession-averaged inspirals may even be
computed from infinite separations through a change of
variables to u ⌘ (2L)�1. The integrator spends most of
the computational time at small separations, where spin
e↵ects – notably the numerical evaluation of S± – need
to be tracked with high accuracy to avoid violations of
the constraints (3). As shown in Fig. 9, these expected
scalings are well reproduced by both of our codes.

In addition to the time needed to integrate Eq. (38),
the precession-averaged approach must generate a final
distribution for S (step 4 above), implying that the com-
putational cost does not go to zero as ri ! rf . While
this step makes the calculation of a single BBH inspiral
non-deterministic and more expensive, precession aver-
aging e↵ectively reduces the dimensionality of the BBH
population during the inspiral. If the n members of this
final distribution for S are regarded as distinct binaries,
the total number of integrations required to produce a
fixed number of BBHs at rf is reduced by a factor of
n in the precession-averaged approach compared to the
orbit-averaged approach.

IV. MORPHOLOGICAL PHASE TRANSITIONS

As BBHs inspiral on the radiation-reaction timescale,
they can transition between the spin-precession mor-
phologies described in Sec. II C. BBH spins predom-
inantly circulate at large separations but increasingly
transition into one of the two librating morphologies
as spin-spin coupling becomes important (Sec. IV A).
The probability of encountering one of these morpho-
logical phase transitions during the inspiral depends on
the asymmetry between the masses and the spin magni-
tudes of the two BBHs (Sec. IVB). Asymmetric binaries
are more likely to circulate, while BBHs with comparable
mass and spin ratios populate the librating morphologies.
BBH spin morphologies at finite separations can be de-
termined from their asymptotic spin orientations cos ✓i1
(or equivalently ⇠ and 1) as discussed in Sec. IVC.

A. Phenomenology of phase transitions

As extensively discussed in Sec. II C, BBH spin pre-
cession can be unambiguously classified into one of three
morphologies depending on the values of q, �1, �2, ⇠,
r (or L), and J . While the first four of these param-
eters remain constant throughout the inspiral, r and J
evolve on the radiation-reaction timescale according to
Eq. (38). Binaries may therefore change their preces-
sional morphology while evolving towards merger. The
boundaries between di↵erent morphologies (cf. Sec. II C)
are set by the (anti)alignment condition sin ✓i = 0; the
binary morphology changes whenever radiation reaction
brings J and L to values that satisfy this condition (which
can only occur on the e↵ective-potential loop ⇠±(S), as
seen in Fig. 4). Figure 10 shows two examples of these
phase transitions. At the radii rtr where phase tran-
sitions occur, �� changes discontinuously either at S�
(left panel) or S+ (right panel), causing the solutions
��(S) of Eqs. (20) to transition between the qualita-
tively di↵erent shapes seen in the bottom panel of Fig. 3.
The BBHs in the left (right) panel evolve from the circu-
lating morphology to the morphology in which �� oscil-
lates about 0 (⇡).

A more complete phenomenology of phase transitions
is illustrated in Fig. 11. The evolution of cos ✓1 and cos ✓2

along the inspiral is shown for a variety of initial condi-
tions cos ✓i1. At each separation r, the angles ✓i vary on
the precession time within a finite range specified by the
conditions ⇠ = ⇠±(S) (cf. Fig. 3). These envelopes vary
on the radiation-reaction time as J evolves according to
Eq. (38); their width shrinks to a zero as r/M ! 1

according to Eqs. (45), and tends to thicken at smaller
separations because of the increasing importance of terms
proportional to S2 in Eqs. (20). Horizontal bars above
each panel track the binary morphologies, which we la-
bel as C, L0, and L⇡ for circulation, libration about
�� = 0, and libration about �� = ⇡. These morpholo-
gies change whenever one of the allowed ranges reach the
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FIG. 8. Distribution of the CPU time (in seconds) required to
perform precession-averaged evolutions. The blue histogram
reports timings obtained with the version of the code presented
in this paper (precession v2). The orange histogram reports
timings obtained for the same BH binaries evolved with the
version of the code presented in Ref. [5] (precession v1). The
unit on the y-axis is arbitrary.

rules. By convention, outputs are returned as arrays of
shape (M, N), where M is the number of features and
N is the number of binaries under study (as given in
the input arrays). For consistency, this convention also
applies to N = 1 such that studying a single GW source
returns two-dimensional arrays of shape (M, 1) and not
one-dimensional arrays of length M (this is somewhat
inspired by the convention adopted in the popular scikit-
learn Python package [90]).

Lengthy equations have been generated using the
computer-algebra software Mathematica and exported
to Python. Our source Mathematica notebook is made
available in the precession repository [41].

B. Performance

We test the performance of our new implementa-
tion on a population of 10

5 BH binaries with q, ω1,
and ω2 distributed uniformly in [0.1, 1] and isotropic
spin orientations. We evolve these sources along their
precession-averaged inspiral from ri to rf = 10M , where
ri → [10

6M, 10M) is distributed uniformly in log ri. We
record the execution times required to perform the entire
procedure outlined in Sec. III B, i.e., both an integration
of the dε/du ODE as well as a resampling of the preces-
sional phase at rf . Tests were run on parallel threads
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FIG. 9. CPU time (in seconds) required to perform precession-
averaged evolutions in bins of initial separation ri (top panel,
green) and mass ratio q (bottom panel, purple). Dashed
(solid) lines indicate the median (90% interval) wall-clock time
recorded across a broad population of sources.

using two Intel Xeon Gold 5220R processors.
Figure 8 compares the performance of precession v2

against that of precession v1 from Ref. [5]. We report
wall-clock times tv2 = 0.06

+0.09
→0.03 s for the new code com-

pared to tv1 = 2.75
+10.38
→1.86 s obtained with the previous ver-

sion (where we quote medians and the 90% interval across
all simulated sources). This corresponds to a speedup of
tv1/tv2 = 49.6+104.4

→19.5 .
Figure 9 shows the execution times of the new code in

bins of ri and q. The scaling with ri is essentially constant
(or, more conservatively, logarithmic [4]). Binaries with
mass ratios close to unity take, on average, about a factor
of ↭ 3 longer to evolve compared to sources with q↑ 0.1.
This is expected because the importance of spin–spin
couplings scales as S2/S1 ↓ q2.

C. Profiling

Figure 10 shows code profiling results for a set of
precession-averaged evolutions from the same population
described above. In particular, the ODE integrator takes
about 96% of the time while the remaining ↑ 4% is spent
resampling the precessional phase at the final orbital sep-
aration. Within the integrator, the evaluation of the
right-hand side from Eq. (62) requires the vast majority
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FIG. 10. Code profiling of precession v2. The length of each colored bar indicates the fraction of the total CPU time spent on
a given operation, as indicated on the bottom x-axis. The top x-axis is rescaled to the mean CPU time per binary → 0.064
s. Performing a precession-averaged evolution requires an ODE integration (blue) and a resampling of the precessional phase
at the final separation (yellow). In turn, the integrator requires multiple evaluations of the right-hand side (orange) and the
ODE stepper (cyan). In turn, evaluating the right-hand side requires finding the roots of the cubic polynomial !(ωε) (green),
computing the coe!cients ϑi (red), and evaluating elliptic integrals (purple). Minor additional operations are marked in gray.

of the resources (about 95% of the total execution time)
while a minor fraction of the time is taken by the ODE
stepper. Deeper into the code, the computation of the
right-hand side requires three operations with a noticeable
computational footprint: the evaluation of the coe!cients
from Eqs. (A3)-(A6), the root finder to evaluate ωε±,3,
and the evaluation of the elliptic integral from Eq. (59).
These tasks require → 28%, → 54%, and → 11% of the to-
tal execution time. Possible computational improvements
include exploring just-in-time compilation for the eval-
uation of ϑi [91] as well as porting the polynomial root
finder to GPUs [92].

VII. Summary and future developments

The dynamics of precessing BH binaries is rich and
fascinating. This paper presents a complete reinvestiga-
tion of the related phenomenology using multi-timescale
methods. Our strategy relies on double averaging the
equations of motion over both the orbital and the preces-
sional timescale. Radiation reaction is then captured in a
quasi-adiabatic fashion.

Our previous approach [4] parametrized the dynamics
on the precession timescale using the magnitude of the
total spin S. While intuitive, it results in a coordinate
singularity when the two BHs have equal masses. On
the other hand, the formulation presented here uses the
weighted spin di"erence ωε which allows us to capture the
q ↑ 1 limit, at least for finite orbital separations. The
joint limits of q ↑ 1 and r ↑ ↓ still need to be fully
understood, and we anticipate the solution will require
identifying a new radiation-timescale parameter to be
adopted instead of ϖ.

Using the new ωε formulation, we expanded upon pre-
vious results (most notably Ref. [20]) and expressed the
2PN spin-precession dynamics in closed form. While some
of the mathematical expressions presented in this paper
might appear convoluted, the entire evolution on tpre is

written down in terms of elliptic integrals and Jacobi
elliptic functions, which are extremely fast to evaluate
using standard numerical libraries.

Our numerical implementation is distributed in v2 of
the precession module for the Python programming
language; see github.com/dgerosa/precession [41]. Per-
forming precession-averaged binary BH inspirals from
(infinitely) large separations to the PN breakdown takes
↭ 0.1s on a standard, o"-the-shelf chip. This increased
speedup has important applications in GW astronomy,
including:

(i) Post-processing long posterior chains describing GW
events. These are provided at separations where
BHs are visible and need to be propagated backward
to separations where they form (e.g., Refs. [15, 34]).

(ii) Evolve outputs from population-synthesis predic-
tions of astrophysical nature. These are provided
where BHs form and might need to be propagated
forward to small separations where they become
detectable (e.g., Refs. [23, 24]).

In this paper, we only tackled BHs on quasi-circular
orbits. A generalization of our formalism to eccentric
systems is under development; cf. Refs. [10, 20, 93] for
existing investigations. Further extensions include consid-
ering higher-order PN terms, as well as neutron stars (or
exotic compact objects) in addition to BHs [21, 94, 95].
These two lines of research might require a similar math-
ematical formalism as they both cause variations of εe! ,
which ceases to be a constant of motion. The dynamics
presented in this paper could provide the background
solution for a perturbative approach where εe! is allowed
to undergo small oscillations. Finally, some of the most
recent advances in PN theory include the identification of
constants of motion for the non-averaged problem, with-
out recursing to any adiabatic approximation [96–99]. A
detailed comparison of our predictions against theirs is
another promising avenue for future work.

Current perfomance is 
O(0.1s) on a laptop, 
but one can do better



Try this at home
precession: open-source python module 

pip install precession 
>>> import precession

1. Precessional dynamics 
2. Orbit-averaged inspirals 
3. Precession-averaged inspirals 
4. Remnant predictions 
5. API documentation 
6. Tests and tutorial

Features

github.com/dgerosa/precessionUsed in >100 papers to date, 
by many people

DG+ 2015, DG+ 2023, Fumagalli DG+ 2023



Aligned configurations

All these configurations are solutions  
of the PN equations at any separation…  

• Astrophysical processes drive binary here (maybe) 
• Used as testbed for waveforms developing

are they stable?

2

Up-up

L

S
1

m
1

S
2

m
2

Down-down

L

S
1

m
1

S
2

m
2

Down-up

L

S
1

m
1

S
2

m
2

Up-down

L

S
1

m
1

S
2

m
2

FIG. 1. The four binary BH configurations with aligned spins. The BH with higher (lower) mass is indexed by the number 1 (2).
We refer to the orientation of a BH whose spin vector Si is parallel (antiparallel) to the orbital angular momentum vector L as
“up” (“down”). The four distinct binary configurations are then labeled with the orientation of the primary (secondary) BH
appearing before (after) the hyphen.

approximately aligned under a small perturbation of the
spin directions. This is not the case for up-down binaries,
i.e. those where the heavier BH is aligned with the orbital
angular momentum while the lighter BH is antialigned.
They report the presence of a critical orbital separation

rud+ =

�p
�1 +

p
q�2

�4

(1 � q)2
M (1)

which defines the onset of the instability (here q < 1 is
the binary mass ratio, M is the total mass, �1 and �2

are the Kerr parameters of the more and less massive BH,
respectively, and we use geometrical units G = c = 1). An
up-down binary that is formed at large orbital separations
r > rud+ will at first inspiral much as the other stable
aligned binaries do, with the spins remaining arbitrarily
close to the aligned configuration. However, upon reaching
the instability onset at r = rud+, the binary becomes
unstable to spin precession, leading to large misalignments
of the spins.

Figure 2 shows the evolution of the spins for a binary BH
in the up-down configuration. The binary is evolved from
an orbital separation of r = 1000M > rud+ to r = 10M .
At the initial separation, the spin directions are perturbed
such that there is a misalignment of 1

� in the spins from
the exact up-down configuration. The response to this
perturbation is initially tight polar oscillations (black dots
in Fig. 2) of the BH spins around the aligned configuration.
After the onset of instability, precession induces large spin
misalignments (colored tracks in Fig. 2).

A key question so far unanswered is the following: after
becoming unstable, to what configuration do up-down
binaries evolve? In other words: what is the endpoint of
the up-down instability?

In this paper, we present a detailed study on the onset
and evolution of unstable up-down binary BHs. In Sec. II
we provide a novel derivation of the stability onset directly
from the orbit-averaged 2PN spin precession equations.
We test the robustness of the result with numerical PN

FIG. 2. Numerical evolution of the normalized spins Ŝi =
Si/Si of a BH binary with mass ratio q = 0.5 and dimension-
less spins �1 = �2 = 1. The blue (red) curve traces the path
of the spin vector S1 (S2) of the heavier (lighter) BH over
the evolution. The integration is performed from a binary
separation r = 1000M to 10M ; the colors of the curves darken
with decreasing separation. The binary is initialized with
misalignments of 1� in the BH spins from the up-down con-
figuration. The vertical z-axis is initially aligned to the total
angular momentum, the x-axis is constructed such that the
initial orbital angular momentum lies in the x-z plane, and the
y-axis completes the orthogonal frame. The black dots show
the location of the spins for r > rud+ ' 34M , before the onset
of instability. The arrows show the orientation of the spins at
the final separation r = 10M . The binary is approaching the
endpoint listed in Eq. (2). An animated version of this figure
is available at www.davidegerosa.com/spinprecession.



New precessional instability!

• First found using the effective potentials 
• Then with explicit perturbation theory (still PN) 
• And then even with full numerical relativity! 
• Injections into LVK noise

Varma Mould DG 2021

DG+ 2015b
 Mould DG 2020, Lousto Healy 2016

De Renzis DG 2022
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FIG. 2. The angles cos ✓i = Ŝi · L̂ for spin-orbit resonances
[extrema of ⇠±(S)] for BHs with q = 0.95, �1 = 0.3, and
�2 = 1. The solid (dashed) curves indicate the �� = 0 (⇡)
family and the five curves for each family correspond to binary
separations r/M = 3000, 720, 170, 40, and 10. The up-down
configuration (bottom right corner) belongs to the �� = 0
family for r > rud+ ' 2149M , to the �� = ⇡ family for r <
rud� ' 13M , and is unstable for intermediate values rud� <
r < rud+. An animated version of this figure is available
online at Ref. [35].

⇠�(S) coincide. Whether this point is also an extremum
⇠min,max depends on the slopes of these two functions
at that point. Both slopes are always negative for the
down-up configuration, implying that it is a maximum
⇠max and thus a spin-orbit resonance like the up-up and
down-down configurations. At large binary separations
r, the slopes of ⇠±(S) are both positive for the up-down
configuration, making it a minimum ⇠min. However, be-
low rud+ given by

rud± =
(
p
�1 ± p

q�2)4

(1 � q)2
M , (2)

the slope of ⇠�(S) becomes negative and up-down is no
longer an extremum of the e↵ective-potential loop, as
seen in Fig. 1. At separations below rud�, the slope of
⇠+(S) also becomes negative and up-down is again an
extremum, this time a maximum ⇠max. Misaligned BHs
with the same values of J and ⇠ as the up-down con-
figuration but S > Smin exist in the intermediate range
rud� < r < rud+, as shown by the dashed red line. These
misaligned BHs have an infinite precessional period ⌧ :
they exponentially approach the up-down configuration
on the precession time tpre but never reach it.

The evolving relationship between the up-down con-
figuration and the spin-orbit resonances parameterized
by the angles ✓i is seen in Fig. 2. The solid curves
show the �� = 0 resonances [⇠min(J)] for separations
10M  r  3000M , while the dashed curves show the
�� = ⇡ resonances [⇠max(J)]. The up-down configura-

FIG. 3. Precession-averaged radiation reaction dJ/dL as a
function of J and ⇠ for binaries with q = 0.8, �1 = �2 = 1, and
separation r = 10M in the unstable region rud� < r < rud+.
Spin-orbit resonances including the up-up, down-down, and
down-up configurations are extrema of ⇠±(S) and constitute
the boundary of the allowed region. All four aligned con-
figurations are maxima where dJ/dL = 1, but the unstable
up-down configuration (shown in the inset) is a cusp. An
animated version of this figure is available online at Ref. [35].

tion is located in the bottom right corner of this figure.
For r > rud+, the up-down configuration lies on the solid
curves and belongs to the �� = 0 family, but for smaller
separations these curves detach from the bottom right
corner, and thus up-down is no longer a minimum of
⇠±(S). The dashed curves indicating the �� = ⇡ fam-
ily migrate to the right with decreasing separation and
reach the bottom right corner, making the up-down con-
figuration a maximum of ⇠±(S), for r < rud�. The up-up
and down-down configurations (top right and bottom left
corners) belong to both resonant families, reflecting the
degeneracy of the e↵ective-potential loop as a single point
that is both minimum and maximum. The down-up con-
figuration (top left) always belongs to the �� = ⇡ family
and is thus a maximum ⇠max.

The stability of a system is determined by its re-
sponse to perturbations, in this case to the spin angles
(�✓1, �✓2, ���) or equivalently to the angular momenta
(�S, �J, �⇠). After such a perturbation, configurations
that are extrema of ⇠±(S) (all aligned configurations ex-
cept up-down for rud� < r < rud+) will undergo oscil-
lations in S (and thus the three spin angles) that are
linear in the perturbation amplitude, and have a period
⌧ that is independent of this amplitude. This is a sta-
ble response equivalent to that of a simple harmonic os-
cillator. The response of the up-down configuration for
rud� < r < rud+ is very di↵erent, as seen in the middle
panels of Fig. 1: S oscillates between the turning points
S± independent of the perturbation amplitude, but the
period ⌧ of these oscillations – as predicted by Eq. (27) of
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FIG. 1. The four binary BH configurations with aligned spins. The BH with higher (lower) mass is indexed by the number 1 (2).
We refer to the orientation of a BH whose spin vector Si is parallel (antiparallel) to the orbital angular momentum vector L as
“up” (“down”). The four distinct binary configurations are then labeled with the orientation of the primary (secondary) BH
appearing before (after) the hyphen.

approximately aligned under a small perturbation of the
spin directions. This is not the case for up-down binaries,
i.e. those where the heavier BH is aligned with the orbital
angular momentum while the lighter BH is antialigned.
They report the presence of a critical orbital separation

rud+ =
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p
q�2

�4

(1 � q)2
M (1)

which defines the onset of the instability (here q < 1 is
the binary mass ratio, M is the total mass, �1 and �2

are the Kerr parameters of the more and less massive BH,
respectively, and we use geometrical units G = c = 1). An
up-down binary that is formed at large orbital separations
r > rud+ will at first inspiral much as the other stable
aligned binaries do, with the spins remaining arbitrarily
close to the aligned configuration. However, upon reaching
the instability onset at r = rud+, the binary becomes
unstable to spin precession, leading to large misalignments
of the spins.

Figure 2 shows the evolution of the spins for a binary BH
in the up-down configuration. The binary is evolved from
an orbital separation of r = 1000M > rud+ to r = 10M .
At the initial separation, the spin directions are perturbed
such that there is a misalignment of 1

� in the spins from
the exact up-down configuration. The response to this
perturbation is initially tight polar oscillations (black dots
in Fig. 2) of the BH spins around the aligned configuration.
After the onset of instability, precession induces large spin
misalignments (colored tracks in Fig. 2).

A key question so far unanswered is the following: after
becoming unstable, to what configuration do up-down
binaries evolve? In other words: what is the endpoint of
the up-down instability?

In this paper, we present a detailed study on the onset
and evolution of unstable up-down binary BHs. In Sec. II
we provide a novel derivation of the stability onset directly
from the orbit-averaged 2PN spin precession equations.
We test the robustness of the result with numerical PN

FIG. 2. Numerical evolution of the normalized spins Ŝi =
Si/Si of a BH binary with mass ratio q = 0.5 and dimension-
less spins �1 = �2 = 1. The blue (red) curve traces the path
of the spin vector S1 (S2) of the heavier (lighter) BH over
the evolution. The integration is performed from a binary
separation r = 1000M to 10M ; the colors of the curves darken
with decreasing separation. The binary is initialized with
misalignments of 1� in the BH spins from the up-down con-
figuration. The vertical z-axis is initially aligned to the total
angular momentum, the x-axis is constructed such that the
initial orbital angular momentum lies in the x-z plane, and the
y-axis completes the orthogonal frame. The black dots show
the location of the spins for r > rud+ ' 34M , before the onset
of instability. The arrows show the orientation of the spins at
the final separation r = 10M . The binary is approaching the
endpoint listed in Eq. (2). An animated version of this figure
is available at www.davidegerosa.com/spinprecession.
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up-down binary that is formed at large orbital separations
r > rud+ will at first inspiral much as the other stable
aligned binaries do, with the spins remaining arbitrarily
close to the aligned configuration. However, upon reaching
the instability onset at r = rud+, the binary becomes
unstable to spin precession, leading to large misalignments
of the spins.

Figure 2 shows the evolution of the spins for a binary BH
in the up-down configuration. The binary is evolved from
an orbital separation of r = 1000M > rud+ to r = 10M .
At the initial separation, the spin directions are perturbed
such that there is a misalignment of 1

� in the spins from
the exact up-down configuration. The response to this
perturbation is initially tight polar oscillations (black dots
in Fig. 2) of the BH spins around the aligned configuration.
After the onset of instability, precession induces large spin
misalignments (colored tracks in Fig. 2).

A key question so far unanswered is the following: after
becoming unstable, to what configuration do up-down
binaries evolve? In other words: what is the endpoint of
the up-down instability?

In this paper, we present a detailed study on the onset
and evolution of unstable up-down binary BHs. In Sec. II
we provide a novel derivation of the stability onset directly
from the orbit-averaged 2PN spin precession equations.
We test the robustness of the result with numerical PN

FIG. 2. Numerical evolution of the normalized spins Ŝi =
Si/Si of a BH binary with mass ratio q = 0.5 and dimension-
less spins �1 = �2 = 1. The blue (red) curve traces the path
of the spin vector S1 (S2) of the heavier (lighter) BH over
the evolution. The integration is performed from a binary
separation r = 1000M to 10M ; the colors of the curves darken
with decreasing separation. The binary is initialized with
misalignments of 1� in the BH spins from the up-down con-
figuration. The vertical z-axis is initially aligned to the total
angular momentum, the x-axis is constructed such that the
initial orbital angular momentum lies in the x-z plane, and the
y-axis completes the orthogonal frame. The black dots show
the location of the spins for r > rud+ ' 34M , before the onset
of instability. The arrows show the orientation of the spins at
the final separation r = 10M . The binary is approaching the
endpoint listed in Eq. (2). An animated version of this figure
is available at www.davidegerosa.com/spinprecession.
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FIG. 2. The angles cos ✓i = Ŝi · L̂ for spin-orbit resonances
[extrema of ⇠±(S)] for BHs with q = 0.95, �1 = 0.3, and
�2 = 1. The solid (dashed) curves indicate the �� = 0 (⇡)
family and the five curves for each family correspond to binary
separations r/M = 3000, 720, 170, 40, and 10. The up-down
configuration (bottom right corner) belongs to the �� = 0
family for r > rud+ ' 2149M , to the �� = ⇡ family for r <
rud� ' 13M , and is unstable for intermediate values rud� <
r < rud+. An animated version of this figure is available
online at Ref. [35].

⇠�(S) coincide. Whether this point is also an extremum
⇠min,max depends on the slopes of these two functions
at that point. Both slopes are always negative for the
down-up configuration, implying that it is a maximum
⇠max and thus a spin-orbit resonance like the up-up and
down-down configurations. At large binary separations
r, the slopes of ⇠±(S) are both positive for the up-down
configuration, making it a minimum ⇠min. However, be-
low rud+ given by

rud± =
(
p
�1 ± p

q�2)4

(1 � q)2
M , (2)

the slope of ⇠�(S) becomes negative and up-down is no
longer an extremum of the e↵ective-potential loop, as
seen in Fig. 1. At separations below rud�, the slope of
⇠+(S) also becomes negative and up-down is again an
extremum, this time a maximum ⇠max. Misaligned BHs
with the same values of J and ⇠ as the up-down con-
figuration but S > Smin exist in the intermediate range
rud� < r < rud+, as shown by the dashed red line. These
misaligned BHs have an infinite precessional period ⌧ :
they exponentially approach the up-down configuration
on the precession time tpre but never reach it.

The evolving relationship between the up-down con-
figuration and the spin-orbit resonances parameterized
by the angles ✓i is seen in Fig. 2. The solid curves
show the �� = 0 resonances [⇠min(J)] for separations
10M  r  3000M , while the dashed curves show the
�� = ⇡ resonances [⇠max(J)]. The up-down configura-

FIG. 3. Precession-averaged radiation reaction dJ/dL as a
function of J and ⇠ for binaries with q = 0.8, �1 = �2 = 1, and
separation r = 10M in the unstable region rud� < r < rud+.
Spin-orbit resonances including the up-up, down-down, and
down-up configurations are extrema of ⇠±(S) and constitute
the boundary of the allowed region. All four aligned con-
figurations are maxima where dJ/dL = 1, but the unstable
up-down configuration (shown in the inset) is a cusp. An
animated version of this figure is available online at Ref. [35].

tion is located in the bottom right corner of this figure.
For r > rud+, the up-down configuration lies on the solid
curves and belongs to the �� = 0 family, but for smaller
separations these curves detach from the bottom right
corner, and thus up-down is no longer a minimum of
⇠±(S). The dashed curves indicating the �� = ⇡ fam-
ily migrate to the right with decreasing separation and
reach the bottom right corner, making the up-down con-
figuration a maximum of ⇠±(S), for r < rud�. The up-up
and down-down configurations (top right and bottom left
corners) belong to both resonant families, reflecting the
degeneracy of the e↵ective-potential loop as a single point
that is both minimum and maximum. The down-up con-
figuration (top left) always belongs to the �� = ⇡ family
and is thus a maximum ⇠max.

The stability of a system is determined by its re-
sponse to perturbations, in this case to the spin angles
(�✓1, �✓2, ���) or equivalently to the angular momenta
(�S, �J, �⇠). After such a perturbation, configurations
that are extrema of ⇠±(S) (all aligned configurations ex-
cept up-down for rud� < r < rud+) will undergo oscil-
lations in S (and thus the three spin angles) that are
linear in the perturbation amplitude, and have a period
⌧ that is independent of this amplitude. This is a sta-
ble response equivalent to that of a simple harmonic os-
cillator. The response of the up-down configuration for
rud� < r < rud+ is very di↵erent, as seen in the middle
panels of Fig. 1: S oscillates between the turning points
S± independent of the perturbation amplitude, but the
period ⌧ of these oscillations – as predicted by Eq. (27) of
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evolutions of BH binaries and find that unstable binaries
tend to cluster in specific locations of the parameter space
by the end of their evolutions. In Sec. III we explore
this observation analytically. Previous investigations [40]
highlighted connections between the up-down instability
and the so-called spin-orbit resonances [42] – peculiar
BH binary configurations where the two spins and the
angular momentum remain coplanar. We present a new
semianalytic scheme to locate the resonances and confirm
that the evolution of the up-down instability is inherently
connected to the nature of these configurations.

We obtain a surprisingly simple result (Sec. IV): after
undergoing the instability, up-down binaries tend to the
very special configuration where the two BH spins S1 and
S2 are coaligned with each other and equally misaligned
with the orbital angular momentum L. More specifically,
the endpoint of the up-down instability is a precessing
configuration with (using hats to denote unit vectors)

Ŝ1 = Ŝ2 and Ŝ1 · L̂ = Ŝ2 · L̂ =
�1 � q�2

�1 + q�2

. (2)

From the distribution of endpoints of populations of up-
down binaries, we characterize the typical conditions re-
quired for such binaries to become unstable before the
end of their evolutions and the typical growth time of the
precessional instability. We then explore the astrophysical
relevance of our finding for a population of stellar-mass
BH binaries formed in AGN disks, and finally draw our
concluding remarks (Sec. V).

II. INSTABILITY THRESHOLD

A. 2PN binary black hole spin precession

We denote vectors in bold, e.g. v, magnitudes with
v = |v|, and unit vectors with v̂. Throughout the paper
we use geometrical units G = c = 1. Let us consider
binary BHs with component masses m1 and m2, total
mass M = m1 + m2, mass ratio q = m2/m1  1 and
symmetric mass ratio ⌘ = q/(1+q)2. We denote the binary
separation with r and the Newtonian angular momentum
with L = ⌘(M3r)1/2. The spins of the two BHs are
denoted by Si = m2

i �iŜi (i = 1, 2), where 0  �i  1

are the dimensionless Kerr parameters. The total spin is
S = S1+S2 and the total angular momentum is J = L+S.
We consider orbital separations r � 10M , which is taken
as the breakdown of the PN approximation [43–45].

There are three timescales on which generically precess-
ing binary BHs evolve:

• the orbital timescale, given by the Keplarian expres-
sion torb/M ' (r/M)

3/2, on which the BHs orbit
each other,

• the precession timescale, torb/M ' (r/M)
5/2, on

which S1, S2, and L change direction [9], and

• the radiation-reaction timescale, torb/M ' (r/M)
4,

on which the binary separation shrinks due to GW
emission [46].

In the post-Newtonian (PN) regime r � M these
timescales are separated, so that

torb ⌧ tpre ⌧ tRR . (3)

The BHs orbit each other many times before completing
one precession cycle, and complete many precession cycles
before the binary separation decreases. This hierarchy
of timescales allows each part of the binary dynamics –
the orbital, precessional, and radiation-reaction motion
– to be addressed independently. The inequality torb ⌧

tpre has been used to study precession in binary BHs
by averaging the motion over the orbital period (e.g.,
[42, 47]). Further, the inequality tpre ⌧ tRR has been
used to separate the precessional motion from the GW-
driven inspiral [38, 39, 48–50].

The 2PN orbit-averaged equations describing the evolu-
tions of the BH spins and the orbital angular momentum
read [47]

dS1

dt
=

1

2r3

⇢
4 + 3q �

3M2q⇠

(1 + q)L

�
L + S2

�
⇥ S1 , (4a)

dS2
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3

q
�

3M2⇠

(1 + q)L

�
L + S1

�
⇥ S2 , (4b)
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(1 + q)L

�
S1

+
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4 +

3

q
�

3M2⇠

(1 + q)L

�
S2

�
⇥ L +

dL

dt
L̂ , (4c)

where ⇠ is the projected effective spin (often referred to
as �e↵ [1, 51]),

⇠ =
1

M2


(1 + q)S1 +

✓
1 +

1

q

◆
S2

�
· L̂ . (5)

On the precessional timescale, dL/dt ' 0 and the evo-
lutionary equations describe precessional motions of the
three vectors L, S1, and S2 about J. The evolution on
the longer radiation-reaction timescale is supplemented
by a PN equation for dL/dt. In this paper we include
(non) spinning terms up to 3.5PN (2PN); cf. e.g. Eq. (27)
in Ref. [52].

The effective spin ⇠ is a constant of motion of the orbit-
averaged problem at 2PN in spin precession and 2.5PN in
radiation reaction [47]. The magnitudes S1 and S2 of the
BHs spins are also constant. On the short precessional
timescale, the separation r and total angular momentum

J = |L + S1 + S2| (6)

are conserved. The entire precessional dynamics can
be parametrized with a single variable, the total spin
magnitude [38, 39]

S = |S1 + S2| . (7)
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sion torb/M ' (r/M)

3/2, on which the BHs orbit
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on which the binary separation shrinks due to GW
emission [46].

In the post-Newtonian (PN) regime r � M these
timescales are separated, so that

torb ⌧ tpre ⌧ tRR . (3)

The BHs orbit each other many times before completing
one precession cycle, and complete many precession cycles
before the binary separation decreases. This hierarchy
of timescales allows each part of the binary dynamics –
the orbital, precessional, and radiation-reaction motion
– to be addressed independently. The inequality torb ⌧

tpre has been used to study precession in binary BHs
by averaging the motion over the orbital period (e.g.,
[42, 47]). Further, the inequality tpre ⌧ tRR has been
used to separate the precessional motion from the GW-
driven inspiral [38, 39, 48–50].

The 2PN orbit-averaged equations describing the evolu-
tions of the BH spins and the orbital angular momentum
read [47]
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where ⇠ is the projected effective spin (often referred to
as �e↵ [1, 51]),

⇠ =
1

M2
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On the precessional timescale, dL/dt ' 0 and the evo-
lutionary equations describe precessional motions of the
three vectors L, S1, and S2 about J. The evolution on
the longer radiation-reaction timescale is supplemented
by a PN equation for dL/dt. In this paper we include
(non) spinning terms up to 3.5PN (2PN); cf. e.g. Eq. (27)
in Ref. [52].

The effective spin ⇠ is a constant of motion of the orbit-
averaged problem at 2PN in spin precession and 2.5PN in
radiation reaction [47]. The magnitudes S1 and S2 of the
BHs spins are also constant. On the short precessional
timescale, the separation r and total angular momentum

J = |L + S1 + S2| (6)

are conserved. The entire precessional dynamics can
be parametrized with a single variable, the total spin
magnitude [38, 39]

S = |S1 + S2| . (7)

• But how about binaries that start 
precessing while being 
observed?!
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Originally designed for waveform approximants, the effective precession parameter �p is the most
commonly used quantity to characterize spin-precession effects in gravitational-wave observations of
black-hole binary coalescences. We point out that the current definition of �p retains some, but not
all, variations taking place on the precession timescale. We rectify this inconsistency and propose
more general definitions that either fully consider or fully average those oscillations. Our generalized
parameter �p 2 [0, 2] presents an exclusive region �p > 1 that can only be populated by binaries
with two precessing spins. We apply our prescriptions to current LIGO/Virgo events and find that
posterior distributions of �p tend to show longer tails at larger values. This appears to be a generic
feature, implying that (i) current �p measurement errors might be underestimated, but also that (ii)
evidence for spin precession in current data might be stronger than previously inferred. Among the
gravitational-wave events released to date, that which shows the most striking behavior is GW190521.

I. INTRODUCTION

Spin precession is a key phenomenological feature of
black-hole (BH) binary coalescences. As the two BHs in-
spiral toward merger due to the emission of gravitational-
waves (GWs), relativistic spin-spin and spin-orbit cou-
plings cause the orbital plane and the spins to precess
about the direction of the total angular momentum [1].

BH binary spin precession is often characterized us-
ing a single effective parameter, denoted as �p. First
introduced by Schmidt et al. [2] for waveform building
purposes, �p is now widely used in state-of-the-art analy-
ses of LIGO/Virgo data to infer the occurrence of spin
precession [3–5]. A confident measurement of �p away
from zero with significant information gain from the prior
is considered a strong indication that orbital-plane preces-
sion has been measured. Alternatively, Ref. [6] proposed
to quantify spin precession in terms of the excess signal-
to-noise-ratio (SNR) ⇢p of a precessing signal compared
to a non-precessing one.

Most recently, the parameter �p was the main tool used
by Abbott et al. [7] to claim that, although evidence for
spin precession in individual events is mild to moderate,
current data show a much stronger collective evidence
for precessing spins that emerges at the population level.
This has important consequences for the astrophysical
interpretation of BH mergers, most notably in terms of
their formation channel(s). Precessing spins are a key
prediction of BH binaries formed in dense clusters, but
might also be present in the case of sources formed in
isolation because of, e.g., supernova kicks [8–14].

In this paper, we reinvestigate the derivation of �p and
rectify an inconsistency in its current definition —namely
that only some, but not all, of the precession-timescale
oscillations are averaged. Section II provides a concrete
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recipe to either retain all such variations or properly av-
erage them. The latter approach results in an augmented
definition of �p that varies only on the longer radiation-
reaction timescale and includes two-spin effects. Some
details of the full averaging procedure are postponed to
Appendix A. Section III presents a brief exploration of
the parameter space using post-Newtonian (PN) inte-
grations and quantifies the extent to which the current
definition of �p fails to properly capture two-spin effects.
Section IV explores the consequences of our findings on
current LIGO/Virgo events. The proposed generalization
of �p causes long tails in the posterior distributions, in-
dicating that evidence for spin precession inferred from
current data might be underestimated, while the accuracy
may be overestimated. This is a generic feature, with po-
tential consequences for GW population studies. Finally,
in Sec. V we make our conclusions and discuss future
prospects.

II. HOW TO QUANTIFY PRECESSION?

Let us consider a quasicircular BH binary with total
mass M = m1 + m2, mass ratio q = m2/m1  1, spin
vectors S1,2, and dimensionless spin magnitudes �1,2. We
employ geometric units G = c = 1. The orbit-averaged
evolution of the orbital angular momentum L can be
written as

dL

dt
=

dL̂

dt
L +

dL

dt
L̂ = (⌦L ⇥ L̂)L +

dL

dt
L̂ , (1)

where the first term describes precession and the second
term encodes radiation reaction. The magnitude of the
angular momentum L is related to the orbital separation r
by the Newtonian expression L/M2

= (r/M)
1/2q/(1+q)2.

The precession frequency ⌦L includes contributions from
both spins,

⌦L = ⌦1�1Ŝ1 + ⌦2�2Ŝ2 , (2)
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Originally designed for waveform approximants, the effective precession parameter �p is the most
commonly used quantity to characterize spin-precession effects in gravitational-wave observations of
black-hole binary coalescences. We point out that the current definition of �p retains some, but not
all, variations taking place on the precession timescale. We rectify this inconsistency and propose
more general definitions that either fully consider or fully average those oscillations. Our generalized
parameter �p 2 [0, 2] presents an exclusive region �p > 1 that can only be populated by binaries
with two precessing spins. We apply our prescriptions to current LIGO/Virgo events and find that
posterior distributions of �p tend to show longer tails at larger values. This appears to be a generic
feature, implying that (i) current �p measurement errors might be underestimated, but also that (ii)
evidence for spin precession in current data might be stronger than previously inferred. Among the
gravitational-wave events released to date, that which shows the most striking behavior is GW190521.

I. INTRODUCTION

Spin precession is a key phenomenological feature of
black-hole (BH) binary coalescences. As the two BHs in-
spiral toward merger due to the emission of gravitational-
waves (GWs), relativistic spin-spin and spin-orbit cou-
plings cause the orbital plane and the spins to precess
about the direction of the total angular momentum [1].

BH binary spin precession is often characterized us-
ing a single effective parameter, denoted as �p. First
introduced by Schmidt et al. [2] for waveform building
purposes, �p is now widely used in state-of-the-art analy-
ses of LIGO/Virgo data to infer the occurrence of spin
precession [3–5]. A confident measurement of �p away
from zero with significant information gain from the prior
is considered a strong indication that orbital-plane preces-
sion has been measured. Alternatively, Ref. [6] proposed
to quantify spin precession in terms of the excess signal-
to-noise-ratio (SNR) ⇢p of a precessing signal compared
to a non-precessing one.

Most recently, the parameter �p was the main tool used
by Abbott et al. [7] to claim that, although evidence for
spin precession in individual events is mild to moderate,
current data show a much stronger collective evidence
for precessing spins that emerges at the population level.
This has important consequences for the astrophysical
interpretation of BH mergers, most notably in terms of
their formation channel(s). Precessing spins are a key
prediction of BH binaries formed in dense clusters, but
might also be present in the case of sources formed in
isolation because of, e.g., supernova kicks [8–14].

In this paper, we reinvestigate the derivation of �p and
rectify an inconsistency in its current definition —namely
that only some, but not all, of the precession-timescale
oscillations are averaged. Section II provides a concrete
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recipe to either retain all such variations or properly av-
erage them. The latter approach results in an augmented
definition of �p that varies only on the longer radiation-
reaction timescale and includes two-spin effects. Some
details of the full averaging procedure are postponed to
Appendix A. Section III presents a brief exploration of
the parameter space using post-Newtonian (PN) inte-
grations and quantifies the extent to which the current
definition of �p fails to properly capture two-spin effects.
Section IV explores the consequences of our findings on
current LIGO/Virgo events. The proposed generalization
of �p causes long tails in the posterior distributions, in-
dicating that evidence for spin precession inferred from
current data might be underestimated, while the accuracy
may be overestimated. This is a generic feature, with po-
tential consequences for GW population studies. Finally,
in Sec. V we make our conclusions and discuss future
prospects.

II. HOW TO QUANTIFY PRECESSION?

Let us consider a quasicircular BH binary with total
mass M = m1 + m2, mass ratio q = m2/m1  1, spin
vectors S1,2, and dimensionless spin magnitudes �1,2. We
employ geometric units G = c = 1. The orbit-averaged
evolution of the orbital angular momentum L can be
written as

dL

dt
=

dL̂

dt
L +

dL

dt
L̂ = (⌦L ⇥ L̂)L +

dL

dt
L̂ , (1)

where the first term describes precession and the second
term encodes radiation reaction. The magnitude of the
angular momentum L is related to the orbital separation r
by the Newtonian expression L/M2

= (r/M)
1/2q/(1+q)2.

The precession frequency ⌦L includes contributions from
both spins,

⌦L = ⌦1�1Ŝ1 + ⌦2�2Ŝ2 , (2)
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which at next-to-leading order in M2/L are given by [15]

⌦1 =
M2

2r3(1 + q)2


4 + 3q �

3q�e↵

(1 + q)

M2

L

�
, (3)

⌦2 =
qM2

2r3(1 + q)2


4q + 3 �

3q�e↵

(1 + q)

M2

L

�
, (4)

where �e↵ is the effective spin [15, 16]

�e↵ =
�1Ŝ1 + q�2Ŝ2

1 + q
· L̂ . (5)

The amount of orbital-plane precession is thus set by
the magnitude

�����
dL̂

dt

�����

2

=

⇣
⌦1�1|Ŝ1 ⇥ L̂|

⌘2
+

⇣
⌦2�2|Ŝ2 ⇥ L̂|

⌘2

+ 2⌦1⌦2�1�2

⇣
Ŝ1 ⇥ L̂

⌘
·

⇣
Ŝ2 ⇥ L̂

⌘
. (6)

We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are

cos ✓1 = Ŝ1 · L̂ , (7)

cos ✓2 = Ŝ2 · L̂ , (8)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·
Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (9)

which yields
�����
dL̂

dt

�����

2

= (⌦1�1 sin ✓1)
2

+ (⌦2�2 sin ✓2)
2

+ 2⌦1⌦2�1�2 sin ✓1 sin ✓2 cos �� . (10)

The argument made in Ref. [2] where �p is first intro-
duced can be recast as follows. The factor cos �� can (in
principle, at least) take values between �1 and +1. At
those extrema one has

�����
dL̂

dt

�����
±

= |⌦1�1 sin ✓1 ± ⌦2�2 sin ✓2| . (11)

The parameter �p is defined as the arithmetic mean of
these two contributions normalized by the frequency ⌦1,
i.e.

�p ⌘
1

2⌦1

 �����
dL̂

dt

�����
+

+

�����
dL̂

dt

�����
�

!

= max

⇣
�1 sin ✓1, ⌦̃�2 sin ✓2

⌘
, (12)

1
The angle �� is sometimes indicated as �12 in LIGO/Virgo

analyses and data products.

where we introduced the ratio between the spin frequencies

⌦̃ =
⌦2

⌦1
= q

4q + 3

4 + 3q
�

3�e↵q2(1 � q)

(4 + 3q)2(1 + q)

M2

L
+ O

✓
M4

L2

◆
.

(13)

To leading order in M2/L, one has

�p ' max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
, (14)

which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
�� all vary on the same timescale tpre / (r/M)

5/2. One
is not justified to devise a procedure that removes the
�� dependence from Eq. (10) while at the same time
retaining ✓1 and ✓2. The definition of �p given in Eq. (14)
is therefore inconsistent because it contains some, but not
all, short-timescale variations. Let us stress that this is
not the case for the other commonly used spin parameter
�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
retain all the precession-timescale variations, or integrate
them out.

If precession-timescale variations are to be retained,
one can immediately generalize the definition of �p as the
magnitude of dL̂/dt normalized by ⌦1, i.e.:

�p ⌘

�����
dL̂

dt

�����
1

⌦1
=


(�1 sin ✓1)

2
+

⇣
⌦̃�2 sin ✓2

⌘2

+ 2⌦̃�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (15)

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity  (t) that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of �p can be found by evaluating

h�pi =

Z
�p( )

✓
d 

dt

◆�1

d 

Z ✓
d 

dt

◆�1

d 

. (16)

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles ✓1( ), ✓2( ), and ��( ) all vary on
the precession timescale and thus depend (perhaps non-
trivially) on  . On the other hand, the ratio ⌦̃ is constant
at leading order and presents only long-timescale varia-
tions if the first PN correction is included, see Eq. (13).
Two explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter  (t) can be
chosen to be either the angle

cos'0
=

S1 · [(S1 ⇥ L) ⇥ S2 + (S2 ⇥ L) ⇥ S2]

|S1 ⇥ S2| | (S1 + S2) ⇥ L|
(17)
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where �e↵ is the effective spin [15, 16]
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Ŝ2 ⇥ L̂

⌘
. (6)

We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are
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which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
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�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
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FIG. 5. Statistical properties of the precession parameter �p

for current GW events. We contrast the averaged [Eq. (16),
x-axis] and heuristic [Eq. (14), y-axis] definitions of �p. Scat-
ter points show the medians of the posterior distributions
(orange circles), the width of their 90% confidence interval
(purple triangles), and the KL divergence between prior and
posterior measured in bits (teal squares). The KL divergence
of GW190814 is ⇠ 4.3 bits, which is off the scale of this figure
in the direction of the arrow.

momentum is often condensed into �p for interpretation
purposes (for measurement accuracies on the individual
spins see e.g. [34, 35]). It is indeed very desirable to have
a single parameter that, if measured confidently, can be
interpreted as “the amount of precession” in a given GW
observation.

The parameter �p was first defined in Ref. [2] with
specific assumptions that are here relaxed for the first time.
In particular, we propose that the common definition

�p = max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
(22)

should be generalized to

�p =


(�1 sin ✓1)

2
+

✓
q
4q + 3

4 + 3q
�2 sin ✓2

◆2

+ 2q
4q + 3

4 + 3q
�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (23)

The latter can then be precession averaged as in
Eq. (16) and Appendix A. For a public implemen-
tation using the Python programming language see
github.com/dgerosa/generalizedchip [36].

The crucial difference between the two definitions above
is that �p depends not only on the magnitudes of the

in-plane spin components �1 sin ✓1 and �2 sin ✓2 but also
on the angle �� between them.

It is worth noting that the generalization we propose
is bound by �p  2, compared to �p  1 for the heuris-
tic definition. This reflects one’s intuition that binaries
where both BHs contribute significantly to the precession
dynamics cannot be reduced to an effective system with a
single spin. From the definition of Eq. (23) one can imme-
diately prove that �p < 1 if either spin is parallel to the
orbital angular momentum (�i sin ✓i = 0). It follows that
the additional region �p > 1 is exclusive to binaries with
two precessing spins. Much like an observation where �p

is confidently > 0 would indicate the presence of at least
one precessing spin, a GW event in the �p > 1 region can
be interpreted as a detection of two-spin effects.

It is important to note that there is some arbitrariness
in the precise definition of �p. For instance, instead of
the magnitude |dL̂/dt| adopted in Sec. II, one could use
the projection of the total spin onto the orbital plane

�? ⌘
|(S1 + S2) ⇥ L̂|

M2
=

1

(1 + q)2
⇥
(�1 sin ✓1)

2

+ (q�2 sin ✓2)
2

+ 2q�1�2 sin ✓1 sin ✓2 cos ��
⇤1/2

,
(24)

which differs from Eq. (23) only by some factors of q (see
also [37]). Similarly, in Eq. (15) we, somehow arbitrarily,
opted for normalizing the magnitude of dL̂/dt by the
precession frequency of the primary BH ⌦1. This is the
same choice made in Ref. [2] and was here retained to
allow for a meaningful comparison between our results
and theirs. This ensures that our �p re-definition agrees
with the heuristic one in the �p ! 0 limit, as evidenced by
the small-�p regions in Fig. 4. A reflection of this feature
is that the single-spin limit is preserved [cf. Eq. (21)].
An alternative normalization, which goes further in the
direction of putting the two BHs on equal footing, would
be to divide |dL̂/dt| by ⌦1 + ⌦2. Our results can trivially
be rescaled to that choice by the transformation

�p �!
�p

1 + ⌦̃
. (25)

In this case, one would obtain a precession parameter
that is  1 but it would present a different small-spin
behavior, resulting in an estimator that cannot be easily
compared with the heuristic definition.

We stress that our recipe for evaluating �p does not
require new or different parameter-estimation runs, which
are computationally expensive, but can be carried out
entirely in postprocessing. In this paper, we pursued
this strategy using public posterior samples from the
LIGO/Virgo events reported to date. We report the
generic occurrence of long tails in the posterior distribu-
tions of �p that extend smoothly into the previously
forbidden region where �p & 1. The most relevant
case to date which shows the importance of defining
a consistent precession parameter is GW190521, where

precession radiation reaction 
2PN spin precession equations: 
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which at next-to-leading order in M2/L are given by [15]
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where �e↵ is the effective spin [15, 16]

�e↵ =
�1Ŝ1 + q�2Ŝ2

1 + q
· L̂ . (5)

The amount of orbital-plane precession is thus set by
the magnitude
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We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are
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The argument made in Ref. [2] where �p is first intro-
duced can be recast as follows. The factor cos �� can (in
principle, at least) take values between �1 and +1. At
those extrema one has
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where we introduced the ratio between the spin frequencies
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To leading order in M2/L, one has
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which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
�� all vary on the same timescale tpre / (r/M)

5/2. One
is not justified to devise a procedure that removes the
�� dependence from Eq. (10) while at the same time
retaining ✓1 and ✓2. The definition of �p given in Eq. (14)
is therefore inconsistent because it contains some, but not
all, short-timescale variations. Let us stress that this is
not the case for the other commonly used spin parameter
�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
retain all the precession-timescale variations, or integrate
them out.

If precession-timescale variations are to be retained,
one can immediately generalize the definition of �p as the
magnitude of dL̂/dt normalized by ⌦1, i.e.:

�p ⌘

�����
dL̂

dt

�����
1
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2
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⌦̃�2 sin ✓2

⌘2

+ 2⌦̃�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (15)

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity  (t) that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of �p can be found by evaluating

h�pi =

Z
�p( )

✓
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dt

◆�1
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Z ✓
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dt

◆�1
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. (16)

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles ✓1( ), ✓2( ), and ��( ) all vary on
the precession timescale and thus depend (perhaps non-
trivially) on  . On the other hand, the ratio ⌦̃ is constant
at leading order and presents only long-timescale varia-
tions if the first PN correction is included, see Eq. (13).
Two explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter  (t) can be
chosen to be either the angle

cos'0
=

S1 · [(S1 ⇥ L) ⇥ S2 + (S2 ⇥ L) ⇥ S2]

|S1 ⇥ S2| | (S1 + S2) ⇥ L|
(17)
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which at next-to-leading order in M2/L are given by [15]
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where �e↵ is the effective spin [15, 16]

�e↵ =
�1Ŝ1 + q�2Ŝ2

1 + q
· L̂ . (5)

The amount of orbital-plane precession is thus set by
the magnitude
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Ŝ1 ⇥ L̂

⌘
·

⇣
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We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are

cos ✓1 = Ŝ1 · L̂ , (7)

cos ✓2 = Ŝ2 · L̂ , (8)

cos �� =
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The argument made in Ref. [2] where �p is first intro-
duced can be recast as follows. The factor cos �� can (in
principle, at least) take values between �1 and +1. At
those extrema one has
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The parameter �p is defined as the arithmetic mean of
these two contributions normalized by the frequency ⌦1,
i.e.
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The angle �� is sometimes indicated as �12 in LIGO/Virgo

analyses and data products.

where we introduced the ratio between the spin frequencies
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To leading order in M2/L, one has

�p ' max
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which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
�� all vary on the same timescale tpre / (r/M)

5/2. One
is not justified to devise a procedure that removes the
�� dependence from Eq. (10) while at the same time
retaining ✓1 and ✓2. The definition of �p given in Eq. (14)
is therefore inconsistent because it contains some, but not
all, short-timescale variations. Let us stress that this is
not the case for the other commonly used spin parameter
�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
retain all the precession-timescale variations, or integrate
them out.

If precession-timescale variations are to be retained,
one can immediately generalize the definition of �p as the
magnitude of dL̂/dt normalized by ⌦1, i.e.:

�p ⌘

�����
dL̂

dt

�����
1

⌦1
=


(�1 sin ✓1)

2
+

⇣
⌦̃�2 sin ✓2

⌘2

+ 2⌦̃�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (15)

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity  (t) that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of �p can be found by evaluating

h�pi =

Z
�p( )

✓
d 

dt

◆�1

d 

Z ✓
d 

dt

◆�1
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. (16)

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles ✓1( ), ✓2( ), and ��( ) all vary on
the precession timescale and thus depend (perhaps non-
trivially) on  . On the other hand, the ratio ⌦̃ is constant
at leading order and presents only long-timescale varia-
tions if the first PN correction is included, see Eq. (13).
Two explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter  (t) can be
chosen to be either the angle

cos'0
=

S1 · [(S1 ⇥ L) ⇥ S2 + (S2 ⇥ L) ⇥ S2]

|S1 ⇥ S2| | (S1 + S2) ⇥ L|
(17)
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Two strategies to fix this

1. Retain all variations on the precessional timescale. 

9

FIG. 5. Statistical properties of the precession parameter �p

for current GW events. We contrast the averaged [Eq. (16),
x-axis] and heuristic [Eq. (14), y-axis] definitions of �p. Scat-
ter points show the medians of the posterior distributions
(orange circles), the width of their 90% confidence interval
(purple triangles), and the KL divergence between prior and
posterior measured in bits (teal squares). The KL divergence
of GW190814 is ⇠ 4.3 bits, which is off the scale of this figure
in the direction of the arrow.

momentum is often condensed into �p for interpretation
purposes (for measurement accuracies on the individual
spins see e.g. [34, 35]). It is indeed very desirable to have
a single parameter that, if measured confidently, can be
interpreted as “the amount of precession” in a given GW
observation.

The parameter �p was first defined in Ref. [2] with
specific assumptions that are here relaxed for the first time.
In particular, we propose that the common definition

�p = max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
(22)

should be generalized to

�p =


(�1 sin ✓1)

2
+

✓
q
4q + 3

4 + 3q
�2 sin ✓2

◆2

+ 2q
4q + 3

4 + 3q
�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (23)

The latter can then be precession averaged as in
Eq. (16) and Appendix A. For a public implemen-
tation using the Python programming language see
github.com/dgerosa/generalizedchip [36].

The crucial difference between the two definitions above
is that �p depends not only on the magnitudes of the

in-plane spin components �1 sin ✓1 and �2 sin ✓2 but also
on the angle �� between them.

It is worth noting that the generalization we propose
is bound by �p  2, compared to �p  1 for the heuris-
tic definition. This reflects one’s intuition that binaries
where both BHs contribute significantly to the precession
dynamics cannot be reduced to an effective system with a
single spin. From the definition of Eq. (23) one can imme-
diately prove that �p < 1 if either spin is parallel to the
orbital angular momentum (�i sin ✓i = 0). It follows that
the additional region �p > 1 is exclusive to binaries with
two precessing spins. Much like an observation where �p

is confidently > 0 would indicate the presence of at least
one precessing spin, a GW event in the �p > 1 region can
be interpreted as a detection of two-spin effects.

It is important to note that there is some arbitrariness
in the precise definition of �p. For instance, instead of
the magnitude |dL̂/dt| adopted in Sec. II, one could use
the projection of the total spin onto the orbital plane

�? ⌘
|(S1 + S2) ⇥ L̂|

M2
=

1

(1 + q)2
⇥
(�1 sin ✓1)

2

+ (q�2 sin ✓2)
2

+ 2q�1�2 sin ✓1 sin ✓2 cos ��
⇤1/2

,
(24)

which differs from Eq. (23) only by some factors of q (see
also [37]). Similarly, in Eq. (15) we, somehow arbitrarily,
opted for normalizing the magnitude of dL̂/dt by the
precession frequency of the primary BH ⌦1. This is the
same choice made in Ref. [2] and was here retained to
allow for a meaningful comparison between our results
and theirs. This ensures that our �p re-definition agrees
with the heuristic one in the �p ! 0 limit, as evidenced by
the small-�p regions in Fig. 4. A reflection of this feature
is that the single-spin limit is preserved [cf. Eq. (21)].
An alternative normalization, which goes further in the
direction of putting the two BHs on equal footing, would
be to divide |dL̂/dt| by ⌦1 + ⌦2. Our results can trivially
be rescaled to that choice by the transformation

�p �!
�p

1 + ⌦̃
. (25)

In this case, one would obtain a precession parameter
that is  1 but it would present a different small-spin
behavior, resulting in an estimator that cannot be easily
compared with the heuristic definition.

We stress that our recipe for evaluating �p does not
require new or different parameter-estimation runs, which
are computationally expensive, but can be carried out
entirely in postprocessing. In this paper, we pursued
this strategy using public posterior samples from the
LIGO/Virgo events reported to date. We report the
generic occurrence of long tails in the posterior distribu-
tions of �p that extend smoothly into the previously
forbidden region where �p & 1. The most relevant
case to date which shows the importance of defining
a consistent precession parameter is GW190521, where

2

which at next-to-leading order in M2/L are given by [15]

⌦1 =
M2

2r3(1 + q)2


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, (4)

where �e↵ is the effective spin [15, 16]

�e↵ =
�1Ŝ1 + q�2Ŝ2

1 + q
· L̂ . (5)

The amount of orbital-plane precession is thus set by
the magnitude
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⌘
. (6)

We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are

cos ✓1 = Ŝ1 · L̂ , (7)

cos ✓2 = Ŝ2 · L̂ , (8)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·
Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (9)

which yields
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dt
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2

= (⌦1�1 sin ✓1)
2

+ (⌦2�2 sin ✓2)
2

+ 2⌦1⌦2�1�2 sin ✓1 sin ✓2 cos �� . (10)

The argument made in Ref. [2] where �p is first intro-
duced can be recast as follows. The factor cos �� can (in
principle, at least) take values between �1 and +1. At
those extrema one has

�����
dL̂

dt

�����
±

= |⌦1�1 sin ✓1 ± ⌦2�2 sin ✓2| . (11)

The parameter �p is defined as the arithmetic mean of
these two contributions normalized by the frequency ⌦1,
i.e.

�p ⌘
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�1 sin ✓1, ⌦̃�2 sin ✓2

⌘
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The angle �� is sometimes indicated as �12 in LIGO/Virgo

analyses and data products.

where we introduced the ratio between the spin frequencies

⌦̃ =
⌦2

⌦1
= q

4q + 3
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3�e↵q2(1 � q)
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To leading order in M2/L, one has

�p ' max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
, (14)

which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
�� all vary on the same timescale tpre / (r/M)

5/2. One
is not justified to devise a procedure that removes the
�� dependence from Eq. (10) while at the same time
retaining ✓1 and ✓2. The definition of �p given in Eq. (14)
is therefore inconsistent because it contains some, but not
all, short-timescale variations. Let us stress that this is
not the case for the other commonly used spin parameter
�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
retain all the precession-timescale variations, or integrate
them out.

If precession-timescale variations are to be retained,
one can immediately generalize the definition of �p as the
magnitude of dL̂/dt normalized by ⌦1, i.e.:

�p ⌘
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dL̂

dt
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1

⌦1
=
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(�1 sin ✓1)

2
+
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⌦̃�2 sin ✓2

⌘2

+ 2⌦̃�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (15)

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity  (t) that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of �p can be found by evaluating

h�pi =

Z
�p( )

✓
d 

dt

◆�1

d 

Z ✓
d 

dt

◆�1

d 

. (16)

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles ✓1( ), ✓2( ), and ��( ) all vary on
the precession timescale and thus depend (perhaps non-
trivially) on  . On the other hand, the ratio ⌦̃ is constant
at leading order and presents only long-timescale varia-
tions if the first PN correction is included, see Eq. (13).
Two explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter  (t) can be
chosen to be either the angle

cos'0
=

S1 · [(S1 ⇥ L) ⇥ S2 + (S2 ⇥ L) ⇥ S2]

|S1 ⇥ S2| | (S1 + S2) ⇥ L|
(17)
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x-axis] and heuristic [Eq. (14), y-axis] definitions of �p. Scat-
ter points show the medians of the posterior distributions
(orange circles), the width of their 90% confidence interval
(purple triangles), and the KL divergence between prior and
posterior measured in bits (teal squares). The KL divergence
of GW190814 is ⇠ 4.3 bits, which is off the scale of this figure
in the direction of the arrow.

momentum is often condensed into �p for interpretation
purposes (for measurement accuracies on the individual
spins see e.g. [34, 35]). It is indeed very desirable to have
a single parameter that, if measured confidently, can be
interpreted as “the amount of precession” in a given GW
observation.

The parameter �p was first defined in Ref. [2] with
specific assumptions that are here relaxed for the first time.
In particular, we propose that the common definition

�p = max
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(22)

should be generalized to
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The latter can then be precession averaged as in
Eq. (16) and Appendix A. For a public implemen-
tation using the Python programming language see
github.com/dgerosa/generalizedchip [36].

The crucial difference between the two definitions above
is that �p depends not only on the magnitudes of the

in-plane spin components �1 sin ✓1 and �2 sin ✓2 but also
on the angle �� between them.

It is worth noting that the generalization we propose
is bound by �p  2, compared to �p  1 for the heuris-
tic definition. This reflects one’s intuition that binaries
where both BHs contribute significantly to the precession
dynamics cannot be reduced to an effective system with a
single spin. From the definition of Eq. (23) one can imme-
diately prove that �p < 1 if either spin is parallel to the
orbital angular momentum (�i sin ✓i = 0). It follows that
the additional region �p > 1 is exclusive to binaries with
two precessing spins. Much like an observation where �p

is confidently > 0 would indicate the presence of at least
one precessing spin, a GW event in the �p > 1 region can
be interpreted as a detection of two-spin effects.

It is important to note that there is some arbitrariness
in the precise definition of �p. For instance, instead of
the magnitude |dL̂/dt| adopted in Sec. II, one could use
the projection of the total spin onto the orbital plane
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=
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2
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(24)

which differs from Eq. (23) only by some factors of q (see
also [37]). Similarly, in Eq. (15) we, somehow arbitrarily,
opted for normalizing the magnitude of dL̂/dt by the
precession frequency of the primary BH ⌦1. This is the
same choice made in Ref. [2] and was here retained to
allow for a meaningful comparison between our results
and theirs. This ensures that our �p re-definition agrees
with the heuristic one in the �p ! 0 limit, as evidenced by
the small-�p regions in Fig. 4. A reflection of this feature
is that the single-spin limit is preserved [cf. Eq. (21)].
An alternative normalization, which goes further in the
direction of putting the two BHs on equal footing, would
be to divide |dL̂/dt| by ⌦1 + ⌦2. Our results can trivially
be rescaled to that choice by the transformation

�p �!
�p

1 + ⌦̃
. (25)

In this case, one would obtain a precession parameter
that is  1 but it would present a different small-spin
behavior, resulting in an estimator that cannot be easily
compared with the heuristic definition.

We stress that our recipe for evaluating �p does not
require new or different parameter-estimation runs, which
are computationally expensive, but can be carried out
entirely in postprocessing. In this paper, we pursued
this strategy using public posterior samples from the
LIGO/Virgo events reported to date. We report the
generic occurrence of long tails in the posterior distribu-
tions of �p that extend smoothly into the previously
forbidden region where �p & 1. The most relevant
case to date which shows the importance of defining
a consistent precession parameter is GW190521, where

same terms as before 
this is new! 
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which at next-to-leading order in M2/L are given by [15]

⌦1 =
M2

2r3(1 + q)2


4 + 3q �

3q�e↵

(1 + q)

M2

L

�
, (3)

⌦2 =
qM2

2r3(1 + q)2


4q + 3 �

3q�e↵

(1 + q)

M2

L

�
, (4)

where �e↵ is the effective spin [15, 16]

�e↵ =
�1Ŝ1 + q�2Ŝ2

1 + q
· L̂ . (5)

The amount of orbital-plane precession is thus set by
the magnitude

�����
dL̂

dt

�����

2

=

⇣
⌦1�1|Ŝ1 ⇥ L̂|

⌘2
+

⇣
⌦2�2|Ŝ2 ⇥ L̂|

⌘2

+ 2⌦1⌦2�1�2

⇣
Ŝ1 ⇥ L̂

⌘
·

⇣
Ŝ2 ⇥ L̂

⌘
. (6)

We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are

cos ✓1 = Ŝ1 · L̂ , (7)

cos ✓2 = Ŝ2 · L̂ , (8)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·
Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (9)

which yields
�����
dL̂

dt

�����

2

= (⌦1�1 sin ✓1)
2

+ (⌦2�2 sin ✓2)
2

+ 2⌦1⌦2�1�2 sin ✓1 sin ✓2 cos �� . (10)

The argument made in Ref. [2] where �p is first intro-
duced can be recast as follows. The factor cos �� can (in
principle, at least) take values between �1 and +1. At
those extrema one has

�����
dL̂

dt

�����
±

= |⌦1�1 sin ✓1 ± ⌦2�2 sin ✓2| . (11)

The parameter �p is defined as the arithmetic mean of
these two contributions normalized by the frequency ⌦1,
i.e.

�p ⌘
1

2⌦1

 �����
dL̂

dt

�����
+

+

�����
dL̂

dt

�����
�

!

= max

⇣
�1 sin ✓1, ⌦̃�2 sin ✓2

⌘
, (12)

1
The angle �� is sometimes indicated as �12 in LIGO/Virgo

analyses and data products.

where we introduced the ratio between the spin frequencies

⌦̃ =
⌦2

⌦1
= q

4q + 3

4 + 3q
�

3�e↵q2(1 � q)

(4 + 3q)2(1 + q)

M2

L
+ O

✓
M4

L2

◆
.

(13)

To leading order in M2/L, one has

�p ' max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
, (14)

which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
�� all vary on the same timescale tpre / (r/M)

5/2. One
is not justified to devise a procedure that removes the
�� dependence from Eq. (10) while at the same time
retaining ✓1 and ✓2. The definition of �p given in Eq. (14)
is therefore inconsistent because it contains some, but not
all, short-timescale variations. Let us stress that this is
not the case for the other commonly used spin parameter
�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
retain all the precession-timescale variations, or integrate
them out.

If precession-timescale variations are to be retained,
one can immediately generalize the definition of �p as the
magnitude of dL̂/dt normalized by ⌦1, i.e.:

�p ⌘

�����
dL̂

dt

�����
1

⌦1
=


(�1 sin ✓1)

2
+

⇣
⌦̃�2 sin ✓2

⌘2

+ 2⌦̃�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (15)

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity  (t) that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of �p can be found by evaluating

h�pi =

Z
�p( )

✓
d 

dt

◆�1

d 

Z ✓
d 

dt

◆�1

d 

. (16)

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles ✓1( ), ✓2( ), and ��( ) all vary on
the precession timescale and thus depend (perhaps non-
trivially) on  . On the other hand, the ratio ⌦̃ is constant
at leading order and presents only long-timescale varia-
tions if the first PN correction is included, see Eq. (13).
Two explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter  (t) can be
chosen to be either the angle

cos'0
=

S1 · [(S1 ⇥ L) ⇥ S2 + (S2 ⇥ L) ⇥ S2]

|S1 ⇥ S2| | (S1 + S2) ⇥ L|
(17)

The common        expression is a partial average over the precession timescale 

Two things one can do: 
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which at next-to-leading order in M2/L are given by [15]

⌦1 =
M2

2r3(1 + q)2


4 + 3q �

3q�e↵

(1 + q)

M2

L

�
, (3)

⌦2 =
qM2

2r3(1 + q)2


4q + 3 �

3q�e↵

(1 + q)

M2

L

�
, (4)

where �e↵ is the effective spin [15, 16]

�e↵ =
�1Ŝ1 + q�2Ŝ2

1 + q
· L̂ . (5)

The amount of orbital-plane precession is thus set by
the magnitude

�����
dL̂

dt

�����

2

=

⇣
⌦1�1|Ŝ1 ⇥ L̂|

⌘2
+

⇣
⌦2�2|Ŝ2 ⇥ L̂|

⌘2

+ 2⌦1⌦2�1�2

⇣
Ŝ1 ⇥ L̂

⌘
·

⇣
Ŝ2 ⇥ L̂

⌘
. (6)

We follow common practice and describe the geometry of
the systems in terms of the tilt angles ✓1,2 and the differ-
ence �� between the phases of the in-plane components
of the two spins.1 In symbols, these are

cos ✓1 = Ŝ1 · L̂ , (7)

cos ✓2 = Ŝ2 · L̂ , (8)

cos �� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·
Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
, (9)

which yields
�����
dL̂

dt

�����

2

= (⌦1�1 sin ✓1)
2

+ (⌦2�2 sin ✓2)
2

+ 2⌦1⌦2�1�2 sin ✓1 sin ✓2 cos �� . (10)

The argument made in Ref. [2] where �p is first intro-
duced can be recast as follows. The factor cos �� can (in
principle, at least) take values between �1 and +1. At
those extrema one has

�����
dL̂

dt

�����
±

= |⌦1�1 sin ✓1 ± ⌦2�2 sin ✓2| . (11)

The parameter �p is defined as the arithmetic mean of
these two contributions normalized by the frequency ⌦1,
i.e.

�p ⌘
1

2⌦1

 �����
dL̂

dt

�����
+

+

�����
dL̂

dt

�����
�

!

= max

⇣
�1 sin ✓1, ⌦̃�2 sin ✓2

⌘
, (12)

1
The angle �� is sometimes indicated as �12 in LIGO/Virgo

analyses and data products.

where we introduced the ratio between the spin frequencies

⌦̃ =
⌦2

⌦1
= q

4q + 3

4 + 3q
�

3�e↵q2(1 � q)

(4 + 3q)2(1 + q)

M2

L
+ O

✓
M4

L2

◆
.

(13)

To leading order in M2/L, one has

�p ' max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
, (14)

which is the expression from Ref. [2] used in current GW
analyses (e.g. [3–5]).

While the simplicity of this procedure is appealing, it
is worth pointing out that the three angles ✓1, ✓2 and
�� all vary on the same timescale tpre / (r/M)

5/2. One
is not justified to devise a procedure that removes the
�� dependence from Eq. (10) while at the same time
retaining ✓1 and ✓2. The definition of �p given in Eq. (14)
is therefore inconsistent because it contains some, but not
all, short-timescale variations. Let us stress that this is
not the case for the other commonly used spin parameter
�e↵ , which is a constant of motion at 2PN [15].

There are two possible strategies one can pursue: either
retain all the precession-timescale variations, or integrate
them out.

If precession-timescale variations are to be retained,
one can immediately generalize the definition of �p as the
magnitude of dL̂/dt normalized by ⌦1, i.e.:

�p ⌘

�����
dL̂

dt

�����
1

⌦1
=


(�1 sin ✓1)

2
+

⇣
⌦̃�2 sin ✓2

⌘2

+ 2⌦̃�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (15)

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity  (t) that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of �p can be found by evaluating

h�pi =

Z
�p( )

✓
d 

dt

◆�1

d 

Z ✓
d 

dt

◆�1

d 

. (16)

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles ✓1( ), ✓2( ), and ��( ) all vary on
the precession timescale and thus depend (perhaps non-
trivially) on  . On the other hand, the ratio ⌦̃ is constant
at leading order and presents only long-timescale varia-
tions if the first PN correction is included, see Eq. (13).
Two explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter  (t) can be
chosen to be either the angle

cos'0
=

S1 · [(S1 ⇥ L) ⇥ S2 + (S2 ⇥ L) ⇥ S2]

|S1 ⇥ S2| | (S1 + S2) ⇥ L|
(17)
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FIG. 5. Statistical properties of the precession parameter �p

for current GW events. We contrast the averaged [Eq. (16),
x-axis] and heuristic [Eq. (14), y-axis] definitions of �p. Scat-
ter points show the medians of the posterior distributions
(orange circles), the width of their 90% confidence interval
(purple triangles), and the KL divergence between prior and
posterior measured in bits (teal squares). The KL divergence
of GW190814 is ⇠ 4.3 bits, which is off the scale of this figure
in the direction of the arrow.

momentum is often condensed into �p for interpretation
purposes (for measurement accuracies on the individual
spins see e.g. [34, 35]). It is indeed very desirable to have
a single parameter that, if measured confidently, can be
interpreted as “the amount of precession” in a given GW
observation.

The parameter �p was first defined in Ref. [2] with
specific assumptions that are here relaxed for the first time.
In particular, we propose that the common definition

�p = max

✓
�1 sin ✓1, q

4q + 3

4 + 3q
�2 sin ✓2

◆
(22)

should be generalized to

�p =


(�1 sin ✓1)

2
+

✓
q
4q + 3

4 + 3q
�2 sin ✓2

◆2

+ 2q
4q + 3

4 + 3q
�1�2 sin ✓1 sin ✓2 cos ��

�1/2
. (23)

The latter can then be precession averaged as in
Eq. (16) and Appendix A. For a public implemen-
tation using the Python programming language see
github.com/dgerosa/generalizedchip [36].

The crucial difference between the two definitions above
is that �p depends not only on the magnitudes of the

in-plane spin components �1 sin ✓1 and �2 sin ✓2 but also
on the angle �� between them.

It is worth noting that the generalization we propose
is bound by �p  2, compared to �p  1 for the heuris-
tic definition. This reflects one’s intuition that binaries
where both BHs contribute significantly to the precession
dynamics cannot be reduced to an effective system with a
single spin. From the definition of Eq. (23) one can imme-
diately prove that �p < 1 if either spin is parallel to the
orbital angular momentum (�i sin ✓i = 0). It follows that
the additional region �p > 1 is exclusive to binaries with
two precessing spins. Much like an observation where �p

is confidently > 0 would indicate the presence of at least
one precessing spin, a GW event in the �p > 1 region can
be interpreted as a detection of two-spin effects.

It is important to note that there is some arbitrariness
in the precise definition of �p. For instance, instead of
the magnitude |dL̂/dt| adopted in Sec. II, one could use
the projection of the total spin onto the orbital plane

�? ⌘
|(S1 + S2) ⇥ L̂|

M2
=

1

(1 + q)2
⇥
(�1 sin ✓1)

2

+ (q�2 sin ✓2)
2

+ 2q�1�2 sin ✓1 sin ✓2 cos ��
⇤1/2

,
(24)

which differs from Eq. (23) only by some factors of q (see
also [37]). Similarly, in Eq. (15) we, somehow arbitrarily,
opted for normalizing the magnitude of dL̂/dt by the
precession frequency of the primary BH ⌦1. This is the
same choice made in Ref. [2] and was here retained to
allow for a meaningful comparison between our results
and theirs. This ensures that our �p re-definition agrees
with the heuristic one in the �p ! 0 limit, as evidenced by
the small-�p regions in Fig. 4. A reflection of this feature
is that the single-spin limit is preserved [cf. Eq. (21)].
An alternative normalization, which goes further in the
direction of putting the two BHs on equal footing, would
be to divide |dL̂/dt| by ⌦1 + ⌦2. Our results can trivially
be rescaled to that choice by the transformation

�p �!
�p

1 + ⌦̃
. (25)

In this case, one would obtain a precession parameter
that is  1 but it would present a different small-spin
behavior, resulting in an estimator that cannot be easily
compared with the heuristic definition.

We stress that our recipe for evaluating �p does not
require new or different parameter-estimation runs, which
are computationally expensive, but can be carried out
entirely in postprocessing. In this paper, we pursued
this strategy using public posterior samples from the
LIGO/Virgo events reported to date. We report the
generic occurrence of long tails in the posterior distribu-
tions of �p that extend smoothly into the previously
forbidden region where �p & 1. The most relevant
case to date which shows the importance of defining
a consistent precession parameter is GW190521, where
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FIG. 5. Statistical properties of the precession parameter �p

for current GW events. We contrast the averaged [Eq. (16),
x-axis] and heuristic [Eq. (14), y-axis] definitions of �p. Scat-
ter points show the medians of the posterior distributions
(orange circles), the width of their 90% confidence interval
(purple triangles), and the KL divergence between prior and
posterior measured in bits (teal squares). The KL divergence
of GW190814 is ⇠ 4.3 bits, which is off the scale of this figure
in the direction of the arrow.

momentum is often condensed into �p for interpretation
purposes (for measurement accuracies on the individual
spins see e.g. [34, 35]). It is indeed very desirable to have
a single parameter that, if measured confidently, can be
interpreted as “the amount of precession” in a given GW
observation.

The parameter �p was first defined in Ref. [2] with
specific assumptions that are here relaxed for the first time.
In particular, we propose that the common definition
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The latter can then be precession averaged as in
Eq. (16) and Appendix A. For a public implemen-
tation using the Python programming language see
github.com/dgerosa/generalizedchip [36].

The crucial difference between the two definitions above
is that �p depends not only on the magnitudes of the

in-plane spin components �1 sin ✓1 and �2 sin ✓2 but also
on the angle �� between them.

It is worth noting that the generalization we propose
is bound by �p  2, compared to �p  1 for the heuris-
tic definition. This reflects one’s intuition that binaries
where both BHs contribute significantly to the precession
dynamics cannot be reduced to an effective system with a
single spin. From the definition of Eq. (23) one can imme-
diately prove that �p < 1 if either spin is parallel to the
orbital angular momentum (�i sin ✓i = 0). It follows that
the additional region �p > 1 is exclusive to binaries with
two precessing spins. Much like an observation where �p

is confidently > 0 would indicate the presence of at least
one precessing spin, a GW event in the �p > 1 region can
be interpreted as a detection of two-spin effects.

It is important to note that there is some arbitrariness
in the precise definition of �p. For instance, instead of
the magnitude |dL̂/dt| adopted in Sec. II, one could use
the projection of the total spin onto the orbital plane
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(24)

which differs from Eq. (23) only by some factors of q (see
also [37]). Similarly, in Eq. (15) we, somehow arbitrarily,
opted for normalizing the magnitude of dL̂/dt by the
precession frequency of the primary BH ⌦1. This is the
same choice made in Ref. [2] and was here retained to
allow for a meaningful comparison between our results
and theirs. This ensures that our �p re-definition agrees
with the heuristic one in the �p ! 0 limit, as evidenced by
the small-�p regions in Fig. 4. A reflection of this feature
is that the single-spin limit is preserved [cf. Eq. (21)].
An alternative normalization, which goes further in the
direction of putting the two BHs on equal footing, would
be to divide |dL̂/dt| by ⌦1 + ⌦2. Our results can trivially
be rescaled to that choice by the transformation

�p �!
�p

1 + ⌦̃
. (25)

In this case, one would obtain a precession parameter
that is  1 but it would present a different small-spin
behavior, resulting in an estimator that cannot be easily
compared with the heuristic definition.

We stress that our recipe for evaluating �p does not
require new or different parameter-estimation runs, which
are computationally expensive, but can be carried out
entirely in postprocessing. In this paper, we pursued
this strategy using public posterior samples from the
LIGO/Virgo events reported to date. We report the
generic occurrence of long tails in the posterior distribu-
tions of �p that extend smoothly into the previously
forbidden region where �p & 1. The most relevant
case to date which shows the importance of defining
a consistent precession parameter is GW190521, where
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Three things today…

1. Precession-averaged PN dynamics 

2. Up-down instability 

3. What precession parameter 

DG+ 2015, arXiv:1506.03492
DG+ 2023, arXiv:2304.04801

DG+ 2015, arXiv:1506.09116
Mould, DG 2020, arXiv:2003.02281

DG+ 2021, arXiv:2011.11948



Spins and waveforms Our solutions now somewhere in PhenomX 

Spins and eccentricity Extremely interesting interplay 
(notion of “effective circular binary”) Fumagalli, DG+ 2023, 2024

More spin things!

Spins and tides What happens with neutron stars? 

Spins and population stats Need to go back to past time infinity! 
Now LVK GWTC4 catalog quoting spins back in time Mould, DG+ 2022

See Giulia’s talk…  

LaHaye+ 2022

Spin and kicks Big kicks only come from spins! 
Rodrigues+ 2007, Campanelli+ 2007, DG+ 2018

e.g. Antonini+ 2017
Spins and three body Clustering in the orbital plane 

Chatziioannou+ 2017, Khan+ 2019, Pratten + 2023

Spins and astrophysics Tidal interactions, supernova kicks, 
mass transfer accretion DG+ 2013, 2018 and infintitely many more
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