

Physics at future muon colliders

Xing Wang Università & INFN Roma Tre

> @ GGI, Firenze July 31, 2025

Standard Model

 The Standard Model has been quite successful in describing the physics at small scales.

Standard Model of Flomontany Dartisles

Standard Model

The Standard Model has been quite successful in describing the physics

at small scales.

- Intriguing puzzles:
 - Hierarchy problem
 - Dark matter
 - Neutrino oscillation
 - Baryon asymmetry
 - •

Standard Model

The Standard Model has been quite successful in describing the physics

at small scales.

Intriguing puzzles:

Hierarchy problem

· What can we learn at muon colliders?

- Neutrino oscillation
- Baryon asymmetry
- •

10⁻³ GeV ← electron mass ➤

-10⁻⁹ cm

Muon Collider

- Muon colliders offer:
 - Compact machine
 - Less synchrotron radiation / beamstrahlung
 - Point-like particle, no energy "waste"

3 TeV CLIC

Muon Collider

Building a muon colliders is also challenging:

Accelerator challenges
See Neuffer's talk

> Demos needed

- Ionization cooling
- Can components be built?
- Rf within B-fields and with beam
- Cool by large factor? >2?
- Target
- Can be built?
- Target production/heating?
- π/μ capture?
- Acceleration
- Rf/magnets can be built?
- Operate in desired mode?

> Demos needed

- Final Cooling
- B=40?T, low-frequency rf?
- Operate with beam ?
- Wedge alternative ?
- Front End
- Optimize, demonstrate ???
- Magnets
- · Build, test, operate
- High field,
- RCS ramp?

Detector challenges See <u>Lee's talk</u>

Central Challenges

- Build a detector robust against residual BIB
- At 10 TeV, annihilation processes will always give multi-TeV objects!

Challenging environment for particle physics.

Let's try to build an experiment...

But very often, challenging is also synonymous to exciting!

Content

- Introduction
- (Novel) SM physics at MuC
- BSM physics at MuC
 - BSM at energy frontier
 - BSM at precision frontier
- Conclusion

SM Physics at MuC

Higgs Precision

Precision measurement of Higgs couplings.

- The Higgs self-coupling is the least measured SM parameter.
- It may shed light on the origin of EWSB.
- Hard to measure at LHC due to destructive interference.
- FCC-ee/CEPC can only measure via loop effects.

Plenty of Higgs pairs will be produced at MuC.

	\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})		1	4	10	20	90
σ (fb): $WW \to H$		490	700	830	950	1200
	ZZ o H	51	72	89	96	120
	WW o HH	0.80	1.8	3.2	4.3	6.7
	ZZ o HH	0.11	0.24	0.43	0.57	0.91

$$\mathcal{O}(10^3 - 10^5)$$
 di-Higgs
 $\Rightarrow \mathcal{O}(10^{-2} - 10^{-3})$ precision

Buttazzo, Franceschini, Wulzer arXiv: 2012.11555

Muon colliders offer us the opportunity to precisely measure
the Higgs self-coupling
 T. Han, D. Liu, I. Low, XW arXiv: 2008.12204

Buttazzo, Franceschini, Wulzer arXiv: 2012.11555

 $C_6 \times v^2$

- At high energies $E\gg m_W$, the EW group $SU(2)\times U(1)$ is approximately unbroken EW restoration.
- EW radiation will behave like QCD!

 High energy muons can have rich parton contents due to EW radiations.

EW radiation enhanced by $\log^2 \frac{Q^2}{m_W^2}$

See also <u>Pagani's lecture</u>

 High energy muons can have rich "parton" contents due to EW radiations.

EW radiation enhanced by $\log^2 \frac{Q^2}{m_W^2}$

Parton description of W/Z bosons?

$$\sigma_{\rm pp \to VV \to X'}(s) = \int_{\tau_{\rm min}}^{1} d\tau \frac{dL}{d\tau} \bigg|_{\rm pp/VV} \sigma_{\rm VV \to X'}(\tau s) .$$

$$\left. \frac{\mathrm{d}L}{\mathrm{d}\tau} \right|_{\mathrm{qq/v^iv^i}} = \int_{\tau}^{1} f_{\mathrm{q/v^i}}(x) f_{\mathrm{q/v^i}}(\tau/x) \frac{\mathrm{d}x}{x}$$

$$f_{q/v'}(x) \xrightarrow{E>M_{V}} \frac{C_{V}^{2} + C_{A}^{2}}{8\pi^{2}x} (x^{2} + 2(1-x)) \log (4E^{2}/M_{V}^{2}).$$

$$f_{q/V'}(x) \xrightarrow{E>M_{V}} \frac{C_{V}^{2} + C_{A}^{2}}{4\pi^{2}} \frac{1-x}{x}.$$

• Unlike QCD, the EW group $SU(2) \times U(1)$ is broken after all.

EW symmetry restored at $E \gg v$

Physical IR cutoff $\Lambda_{\rm IR} \sim m_W$

EW "color" is observable (ν_{μ}, μ^{-})

Active field, many questions still to be addressed!

THE EFFECTIVE W^{\pm} , Z^{0} APPROXIMATION FOR HIGH ENERGY COLLISIONS

G.L. KANE 1

Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109, USA

W.W. REPKO²

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

and

W.B. ROLNICK 1

Department of Physics, Wayne State University, Detroit, MI 48202, USA

Received 7 May 1984

THE EFFECTIVE W APPROXIMATION*

Sally DAWSON

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

Received 30 April 1984

THE TeV PHYSICS OF STRONGLY INTERACTING W's AND Z's*

Michael S CHANOWITZ

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

Mary K GAILLARD

Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720, USA

Received 24 June 1985

Neutrino Beam

Muon colliders offer high energy / high quality neutrino

Neutrino DIS

See Morales-Alvarado's talk

 Muon colliders offer high energy / high quality neutrino beams.

Neutrino DIS

See Morales-Alvarado's talk

 Muon colliders offer high energy / high quality neutrino beams.

BSM Searches at MuC

Minimal Dark Matter

Simple but well-motivated model.

Mo	Therm.		
(color	target		
(1,2,1/2)	Dirac	1.1 TeV	
(1,3,0)	Majorana	2.8 TeV	
$(1,3,\epsilon)$	Dirac	2.0 TeV	
(1,5,0)	Majorana	11 TeV	
$(1,5,\epsilon)$	Dirac	6.6 TeV	
(1,7,0)	Majorana	23 TeV	
$(1,7,\epsilon)$ Dirac		16 TeV	
Section 1997 and the second section 1997			

Minimal Dark Matter

- Conventional missing mass searches
 - · mono-muon

mono-photon/W

• di-muon

Minimal Dark Matter

Search for Exotic signatures from

compressed spectra

$$m_{\chi^\pm} - m_{\chi^0} \simeq egin{cases} 355 \ {
m MeV} & {
m Higgsino} \ 164 \ {
m MeV} & {
m Wino} \ \ au \sim \mathcal{O}(0.01-0.1) \ {
m ns} \ \end{cases}$$

Disappearing track

Soft tracks

Extension of SM (+singlet)

 Simplest extension of the Higgs sector

$$h = h_0 \cos \gamma + S \sin \gamma,$$

$$\phi = S \cos \gamma - h_0 \sin \gamma,$$

- Indirect probe $\mu_h = \mu_h^{\rm SM} \cos^2 \gamma \, .$
- Direct search

$$VV \to \phi$$

Extension of SM (2HDM)

 Heavy Higgs can be produced in pair

$$\mu^+\mu^- \to \gamma^*, Z^* \to H^+H^-,$$

 $\mu^+\mu^- \to Z^* \to HA.$

$$m_{\Phi} \sim \frac{\sqrt{s}}{2}$$

 $ightarrow H^+H^-
ightarrow tar{t}bar{b}$ \square LHC 14 TeV $b\bar{b}$ 10 Type-I 2.0 5.0 5.0 1.0 10.0 20.0 2.0 10.0 20.0 $m_{\Phi} [\text{TeV}]$ m_{Φ} [TeV] 10 Type-L Type-F 5.0 1.0 2.0 10.0 20.0 0.51.0 2.0 5.0 10.0 20.0 $m_{\Phi} [\text{TeV}]$ $m_{\Phi} [{\rm TeV}]$ 26

Han, Li, Su, Su, Wu arXiv: 2102.08386

Buttazzo, Redigolo, Sala, Tesi, arXiv: 1807.04743

Xing Wang, Roma3

Heavy Neutral Lepton

HNL is ubiquitous in BSM models that address neutrino masses.

(BSM) Precision From Energy

Precision at Higher Energies

10 TeV MuC can probe new physics well beyond 10 TeV!

Precision at Higher Energies

• SMEFT is a useful framework to study indirect effects of BSM physics

1 (5) 1 (6)

 $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}^{(5)} + \frac{1}{\Lambda^2} \mathcal{L}^{(6)} + \cdots$

· At dimension-6, BSM amplitudes can have scaling

$$\mathcal{A} = \mathcal{A}_{SM} + \left(\frac{v^2}{\Lambda^2} \mathcal{A}_0^{(6)} + \frac{vE}{\Lambda^2} \mathcal{A}_1^{(6)} + \frac{E^2}{\Lambda^2} \mathcal{A}_2^{(6)}\right) + \cdots$$

• For high energy muon colliders, $\frac{E^2}{\Lambda^2}\gg \frac{v^2}{\Lambda^2}$

$$\sigma_{\rm BSM} \sim \frac{E^2}{\Lambda^2} \Re \left[\mathcal{A}_{\rm SM} \left(\mathcal{A}_2^{(6)} \right)^* \right]$$

BSM reach at muon colliders

$$\frac{1}{\sqrt{N}} \sim \frac{E^2}{\Lambda^2} \qquad \Lambda \sim 100 \text{ TeV} \left(\frac{E}{10 \text{ TeV}}\right) \left(\frac{\sigma}{1 \text{ fb}}\right)^{\frac{1}{4}} \left(\frac{\mathcal{L}}{10 \text{ fb}^{-1}}\right)^{\frac{1}{4}}$$

$$\mathcal{O}_{\ell\ell} = (\overline{\ell_L} \gamma^{\mu} \ell_L) (\overline{\ell_L} \gamma_{\mu} \ell_L),$$

$$\mathcal{O}_{\ell q}^{(1)} = (\overline{\ell_L} \gamma^{\mu} \ell_L) (\overline{q_L} \gamma_{\mu} q_L),$$

$$\mathcal{O}_{\ell q}^{(3)} = (\overline{\ell_L} \gamma^{\mu} \sigma^I \ell_L) (\overline{q_L} \gamma_{\mu} \sigma^I q_L),$$

$$\vdots$$

$$\mathcal{O}_{\ell q}^{(3)} = (\overline{\ell_L} \gamma^{\mu} \sigma^I \ell_L) (\overline{q_L} \gamma_{\mu} \sigma^I q_L),$$

 $E \sim 10 \text{ TeV}$ $1\% \Rightarrow \Lambda \sim 100 \text{ TeV}$

Also see Glioti's talk for details

Also see Glioti's talk for details

ESPPU Muon Collider Report arXiv: 2504.21417

Also see Glioti's talk for details

BSM with VBF

More details in previous talk

 VBF in general has weaker sensitivity compared to annihilation processes.

BSM with VBF

More details in previous talk

- VBF in general has weaker sensitivity compared to annihilation processes.
- Useful for operators that are not directly accessible via annihilations or complementarity to resolve flat directions.
- Generically,

BSM with VBF

Figure 16.3.3: 68% CL reach on EFT from a global fit at the 10 TeV muon collider.

Conclusion

- Muon collider not only probes exciting new physics, it is also an technologically exciting project to work on.
- We not only measure SM more precisely, we will see new (SM) phenomena.
- Directly probe BSM states up to $\sqrt{s/2}$ (pair) or \sqrt{s} (single).

• Indirectly probe BSM effects up to $\mathcal{O}(10-100)$ TeV.

Thanks!

Backups

Higgs Cross Sections

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab ⁻¹)	1	4	10	20	90
σ (fb): $WW \to H$	490	700	830	950	1200
ZZ o H	51	72	89	96	120
$WW \rightarrow HH$	0.80	1.8	3.2	4.3	6.7
ZZ o HH	0.11	0.24	0.43	0.57	0.91
WW o ZH	9.5	22	33	42	67
$WW \to t \bar{t} H$	0.012	0.046	0.090	0.14	0.28
$WW \rightarrow Z$	2200	3100	3600	4200	5200
WW o ZZ	57	130	200	260	420

WIMP

Combined missing mass search &

 Muon collider has great potential in DM search

 Decisive statements on Minimal DM.

- Missing mass
- Disappearing tracks
- Further optimizations
- Can be extended beyond minimal DM.

Disappearing track

2HDM

Type-I:
$$\xi_{Huu} = \xi_{Auu} = \cot \beta$$
, $\xi_{Hdd} = -\xi_{Add} = \cot \beta$, $\xi_{H\ell\ell} = -\xi_{A\ell\ell} = \cot \beta$;

Type-II:
$$\xi_{Huu} = \xi_{Auu} = \cot \beta$$
, $-\xi_{Hdd} = \xi_{Add} = \tan \beta$, $-\xi_{H\ell\ell} = \xi_{A\ell\ell} = \tan \beta$;

Type-L:
$$\xi_{Huu} = \xi_{Auu} = \cot \beta$$
, $\xi_{Hdd} = -\xi_{Add} = \cot \beta$, $-\xi_{H\ell\ell} = \xi_{A\ell\ell} = \tan \beta$;

Type-F:
$$\xi_{Huu} = \xi_{Auu} = \cot \beta$$
, $-\xi_{Hdd} = \xi_{Add} = \tan \beta$, $\xi_{H\ell\ell} = -\xi_{A\ell\ell} = \cot \beta$.

WW vs. ZZ Fusion

• Can we distinguishing WW vs. ZZ fusion?

$$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu \ HH \ (WW \text{ fusion}),$$

$$\mu^+\mu^- \to \mu^+\mu^- HH \quad (ZZ \text{ fusion}).$$

But the outgoing muons are quite forward!

WW vs. ZZ Fusion

Distinguishing WW vs. ZZ fusion

$$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu \ HH \ (WW \text{ fusion}),$$

$$\mu^+\mu^- \to \mu^+\mu^- HH \quad (ZZ \text{ fusion}).$$

• Forward muon tagging $|\eta| < 6$ (even poor resolution is still ok)

$$p_T \sim \mathcal{O}(m_Z)$$

$$\eta \sim \cosh^{-1}\left(\frac{\sqrt{s}}{2m_Z}\right)$$

$$\sim 3.5, 4.7, 5.8$$
for 3, 10, 30 TeV

For more applications/discussions: Li, Liu, Lyu, arXiv: 2401.08756

$VV \to ff$

- Large SM rate from $\gamma\gamma \to ff$
- Forward muon tagging?

$$E=3~{\rm TeV},~\eta=6~\Rightarrow~p_T\sim 15~{\rm GeV}$$

• Cannot distinguish W vs. γ

Different kT dependence

$$\frac{dP}{dk_T} \sim \begin{cases} \frac{dk_T^2}{k_T^2} & \text{for } \gamma \\ \frac{k_T^2 dk_T^2}{(k_T^2 - (1-z)m_V^2)^2} & \text{for } V_T \\ \frac{m_V^2 dk_T^2}{(k_T^2 - (1-z)m_V^2)^2} & \text{for } V_L \end{cases}$$

47

k_T [GeV] <u>xing.wang@uniroma3.it</u>

$VV \to ff$

- Large SM rate from $\gamma\gamma \to ff$
- Forward muon tagging?

$$E = 3 \text{ TeV}, \quad \eta = 6 \quad \Rightarrow \quad p_T \sim 15 \text{ GeV}$$

• Cannot distinguish W vs. γ

Different pT spectra $p_{T,ff}$

$$VV \to ff$$

For bb final state,

$$\mathcal{O}_{Hq} = i \left(H^{\dagger \stackrel{\longleftrightarrow}{D}}_{\mu} H \right) (\bar{q_L} \gamma^{\mu} q_L) ,$$

$$\mathcal{O}'_{Hq} = i \left(H^{\dagger} \sigma^a \stackrel{\longleftrightarrow}{D}_{\mu} H \right) (\bar{q_L} \sigma^a \gamma^{\mu} q_L) ,$$

