Physics At The Highest Energies With Colliders # Flavour beyond the TeV scale # Lorenzo Calibbi Why flavour? #### **Standard Model of Elementary Particles** see e.g. J. Zupan's review arXiv:1903.05062 Hierarchical fermion masses (why?) You are here (why?) #### Flavor in the SM courtesy of O. Sumensari - The SM flavor sector is loose: (even w/o considering neutrinos) - \Rightarrow 13 free parameters (masses and quark mixing) fixed by data. $$\mathcal{L}_{\text{Yuk}} = -Y_d^{ij} \, \overline{Q}_i d_{Rj} \, H - Y_u^{ij} \, \overline{Q}_i u_{Rj} \, \widetilde{H} - Y_\ell^{ij} \, \overline{L}_i e_{Rj} \, H + \text{h.c.}$$ ⇒ These (many) parameters exhibit a hierarchical structure which we do not understand. How to explain the observed patterns in terms of less and more fundamental parameters? Why is Flavour Physics important? SM flavour puzzle We need to find the scale of New Physics! - Why three families? - Why the hierarchies? - LHC found a SM-like Higgs - No sign of new phenomena - Why to go beyond the SM? # Why flavour? #### Do we really need New Physics? - Hierarchy Problem (?) - Dark Matter/Dark Energy - Inflation - Neutrino masses - Baryon asymmetry - Origin of flavour hierarchies • • • # Why flavour? #### Do we really need New Physics? - Hierarchy Problem (?) \rightarrow *TeV-scale New Physics?* - Dark Matter/Dark Energy - Inflation - Neutrino masses → see-saw? - Baryon asymmetry → *new sources of CPV? leptogenesis?* - Origin of flavour hierarchies \rightarrow *symmetries of flavour?* • • • Testable through hadronic/leptonic flavour/CP violation? #### Probing very high energies #### Sensitivity to new physics scale Physics Briefing Book ESPPU 2020 $$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_{a} C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_{a} C_a^{(6)} Q_a^{(6)} + \dots$$ #### Probing very high energies And a muon collider could play a complementary role, e.g. searching for: $$\mu^+\mu^- \to f_i \bar{f}_j$$ ESPPU Muon Collider Report 2025 Example: a (simple) way to address the flavour puzzle and how to test it #### Froggatt-Nielsen flavour models • SM fermions charged under a new horizontal symmetry G_F Froggatt Nielsen '79 Leurer Seiberg Nir '92, '93 - G_F forbids Yukawa couplings at the renormalisable level - G_F spontaneously broken by the vev(s) of one or more scalars (the "flavons") - Yukawas arise as higher dimensional operators $$-\mathcal{L} = a_{ij}^{u} \left(\frac{\phi}{\Lambda}\right)^{n_{ij}^{u}} \overline{Q}_{i} u_{j} \tilde{H} + a_{ij}^{d} \left(\frac{\phi}{\Lambda}\right)^{n_{ij}^{d}} \overline{Q}_{i} d_{j} H$$ $$flavour-anarchical \\ O(1) \text{ coefficients}$$ $$flavour-flavour-anarchical \\ O(1) \text{ coefficients}$$ $$\langle \phi \rangle < \Lambda$$ \Longrightarrow $\epsilon \equiv \langle \phi \rangle / \Lambda$ small expansion parameter (Λ =UV scale) n_{ij}^f dictated by the symmetry G_F could abelian or non-abelian, continuous or discrete, local or global #### The simplest option: Froggatt-Nielsen U(1) Quark sector (cf backup for leptons) FN charges $$Y_{ij}^{u} = a_{ij}^{u} \, \epsilon^{\mathcal{Q}_{Q_i} - \mathcal{Q}_{u_j}}$$ $$Y_{ij}^{d} = a_{ij}^{d} \, \epsilon^{\mathcal{Q}_{Q_i} - \mathcal{Q}_{d_j}}$$ $$Y_{ij}^d = a_{ij}^d \, \epsilon^{\mathcal{Q}_{Q_i} - \mathcal{Q}_{d_j}}$$ Rotation matrices $Y^f = V^f \hat{Y}^f W^f \implies V_{ij}^{u,d} \sim \epsilon^{|\mathcal{Q}_{Q_i} - \mathcal{Q}_{Q_j}|} W_{ij}^{u,d} \sim \epsilon^{|\mathcal{Q}_{u_i,d_i} - \mathcal{Q}_{u_j,d_j}|}$ Successful predictions for $V_{\text{CKM}} = V^u V^{d\dagger}$: $$V_{ud} \approx V_{cs} \approx V_{tb} \approx 1$$ $$V_{ud} \approx V_{cs} \approx V_{tb} \approx 1$$ $V_{ub} \approx V_{td} \approx V_{us} \times V_{cb}$ (independent of charge assignment) #### Example: $$(\mathcal{Q}_{Q_1}, \mathcal{Q}_{Q_2}, \mathcal{Q}_{Q_3}) = (3, 2, 0), (\mathcal{Q}_{u_1}, \mathcal{Q}_{u_2}, \mathcal{Q}_{u_3}) = (-4, -2, 0), (\mathcal{Q}_{d_1}, \mathcal{Q}_{d_2}, \mathcal{Q}_{d_3}) = (-4, -2, -2)$$ $$Y^{u} \sim \begin{pmatrix} \epsilon^{7} & \epsilon^{5} & \epsilon^{3} \\ \epsilon^{6} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{4} & \epsilon^{2} & 1 \end{pmatrix}, \quad Y^{d} \sim \begin{pmatrix} \epsilon^{7} & \epsilon^{5} & \epsilon^{5} \\ \epsilon^{6} & \epsilon^{4} & \epsilon^{4} \\ \epsilon^{4} & \epsilon^{2} & \epsilon^{2} \end{pmatrix} \quad V_{\text{CKM}} \sim \begin{pmatrix} 1 & \epsilon & \epsilon^{3} \\ \epsilon & 1 & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & 1 \end{pmatrix}$$ $\epsilon = \langle \phi \rangle / \Lambda \approx 0.2$ #### Flavour-violating FN Z' Flavour non-universal **local** U(1) symmetry generating the hierarchies of fermion masses and mixing through the Froggatt-Nielsen mechanism (anomalies cancelled by suitable UV completions Smolkovič Tammaro Zupan '19 , Bonnefov Dudas Pokorski '19 , Interactions of the new gauge boson Z' **flavour-violating** by construction: $$\mathcal{L} = g_F \, Z_\mu' \, \left[\overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^u \, P_L + C_{R\,\alpha\beta}^u \, P_R) u_\beta \, + \overline{d}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta \, + \right. \\ \text{new U(1) gauge coupling} \quad \overline{\ell}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^\ell \, P_L + C_{R\,\alpha\beta}^\ell \, P_R) \ell_\beta \, + \overline{\nu}_\alpha \gamma^\mu \, C_{L\,\alpha\beta}^\nu \, P_L \nu_\beta \right] \, , \\ \text{coupling} \quad C_{L\,\alpha\beta}^f \equiv V_{\alpha i}^f \mathcal{Q}_{f_{L i}} V_{\beta i}^{f*} \quad C_{R\,\alpha\beta}^f \equiv W_{\alpha i}^f \mathcal{Q}_{f_{R i}} W_{\beta i}^{f*} \quad C_{V,A}^f = \frac{C_R^f \pm C_L^f}{2} \\ \text{unitary rotations} \quad \text{matrices of U(1) charges}$$ \Rightarrow Z' mediates flavour-violating processes and, if light, mesons and leptons can decay into it, *e.g.*: Flavour processes set stringent **lower bounds** on the U(1) breaking scale $$K^{+} \to \pi^{+} Z' : v_{\phi} \gtrsim 8.3 \times 10^{10} \text{ GeV}, \qquad B^{+} \to K^{+} Z' : v_{\phi} \gtrsim 3.0 \times 10^{7} \text{ GeV}$$ $$\downarrow \mu \to e Z' : v_{\phi} \gtrsim 1.3 \times 10^{7} \text{ GeV}, \qquad \tau \to \ell Z' : v_{\phi} \gtrsim 7.6 \times 10^{5} \text{ GeV}$$ $$K - \bar{K} \text{ mix.} : v_{\phi} \gtrsim 6.5 \times 10^{5} \text{ GeV}$$ Blasi LC Mariotti Turbang '24 #### Flavour bounds vs Gravitational Waves A new promising direction: **gravitational waves** (GW) tests of new flavor dynamics Flavor non-universal *local* U(1) symmetry generating the hierarchies of fermion masses and mixing through the Froggatt-Nielsen mechanism high-energy U(1) breaking \rightarrow cosmic strings \rightarrow emission of a GW background Tera Z as a flavour factory #### CEPC flavour white paper #### Flavor Physics at CEPC: a General Perspective Xiaocong Ai¹, Wolfgang Altmannshofer², Peter Athron³, Xiaozhi Bai⁴, Lorenzo Calibbi^{5,*}, Lu Cao^{6,7}, Yuzhi Che^{8,9}, Chunhui Chen¹⁰, Ji-Yuan Chen³¹, Long Chen¹¹, Mingshui Chen 8,9,77 , Shanzhen Chen 8,9,77† , Xuan Chen 11 , Shan Cheng 12 , Cheng-Wei Chiang¹³, Andreas Crivellin^{14,15}, Hanhua Cui^{8,9}, Olivier Deschamps¹⁶, Sébastien Descotes-Genon¹⁷, Xiaokang Du¹⁸, Shuangshi Fang^{8,9}, Yu Gao^{8,9}, Li-Sheng Geng¹⁹, Pablo Goldenzweig 20 , Jiayin Gu 21,22,23 , Feng-Kun Guo 24,9,25,† , Yuchen Guo 26,27 . Zhi-Hui Guo 28,† , Tao Han 29 , Hong-Jian He 30,31 , Jibo He 9 , Miao He 8,9 , Yanping Huang^{8,9}, Gino Isidori¹⁵, Quan Ji^{8,9}, Jianfeng Jiang^{8,9}, Xu-Hui Jiang^{8,32,33}, Jernej F. Kamenik 34,35 , Tsz Hong Kwok 33,† , Gang Li 8,9 , Geng Li 36 , Haibo Li 8,9 , Haitao Li 11 , Hengne Li^{37} , Honglei Li^{38} , Liang $\mathrm{Li}^{30,31}$, Lingfeng $\mathrm{Li}^{39,33,*}$, Qiang Li^{40} , Shu $\mathrm{Li}^{30,31}$, Xiaomei Li⁴¹, Xin-Qiang Li^{42,†}, Yiming Li^{8,9}, Yubo Li⁴³, Yuji Li⁶, Zhao Li^{8,9}, Hao $Liang^{8,9}$, Zhijun $Liang^{8,9}$, Libo $Liao^{44}$, Zoltan $Ligeti^{45}$, Jia Liu^{46} , Jianbei $Liu^{75,76}$, Tao Liu^{33,*}, Yi Liu¹, Yong Liu^{8,9}, Zhen Liu⁴⁷, Xinchou Lou^{8,77,78}, Peng-Cheng Lu¹¹, Alberto Lusiani⁴⁸, Hong-Hao Ma⁴⁹, Kai Ma⁵⁰, Yaxian Mao⁴², David Marzocca⁵¹, Juan-Juan Niu⁴⁹, Soeren Prell¹⁰, Huirong Qi^{8,9}, Sen Qian^{8,9}, Zhuoni Qian⁵², Qin Qin^{53,†}, Ariel Rock³³, Jonathan L. Rosner^{54,55}, Manqi Ruan^{8,9,77,*}, Dingyu Shao⁶, Chengping Shen^{56,23}, Xiaoyan Shen^{8,9}, Haoyu Shi^{8,9}, Liaoshan Shi^{57,†}, Zong-Guo Si¹¹, Cristian Sierra³, Huayang Song²⁴, Shufang Su⁵⁸, Wei Su⁴⁴, Michele Tammaro⁵⁹, En Wang¹, Fei Wang¹, Hengyu Wang^{8,9}, Jian Wang¹¹, Jianchun Wang^{8,9}, Kun Wang⁷⁴, Lian-Tao Wang 54 , Wei Wang 31,60 , Xiaolong Wang 56 , Xiaoping Wang 19 , Yadi Wang 61 , Yifang Wang^{8,9,77}, Yuexin Wang^{8,62,†}, Xing-Gang Wu⁶³, Yongcheng Wu³, Rui-Qing $Xiao^{30,31,64}$, Ke-Pan Xie^{19} , Yuehong Xie^{42} , Zijun $Xu^{8,9}$, Haijun $Yang^{30,31,65,66}$, Hongtao Yang⁴, Lin Yang³⁰, Shuo Yang^{26,27}, Zhongbao Yin⁴², Fusheng Yu⁶⁷, Changzheng Yuan^{8,9}, Xing-Bo Yuan⁴², Xuhao Yuan^{8,9}, Chongxing Yue^{26,27}, Xi-Jie Zhan⁶⁸, Kaili Zhang^{8,62}, Liming Zhang⁶⁹, Xiaoming Zhang⁴², Yang Zhang¹, Yanxi Zhang⁴⁶, Yongchao Zhang⁷⁰, Yu Zhang⁷¹, Zhen-Hua Zhang⁷², Zhong Zhang⁵⁷, Mingrui Zhao⁴¹, Qiang Zhao^{8,9}, Xu-Chang Zheng⁶³, Yangheng Zheng⁹, Chen Zhou⁴⁶, Pengxuan Zhu²⁴, Yongfeng Zhu⁴⁶, Xunwu Zuo^{20,†}, Jure Zupan⁷³ You can find it here: arXiv:2412.19743 [hep-ex] 145 authors/endorsers ~80 institutions 69 pages (+biblio) ¹School of Physics, Zhengzhou University, Zhengzhou, 450001, China ²Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 95064, USA ³Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, 210023, China ^{*}Corresponding author. [†]Primary contributor. #### CEPC flavour white paper #### Flavor Physics at CEPC: a General Perspective Xiaocong Ai¹, Wolfgang Altmannshofer², Peter Athron³, Xiaozhi Bai⁴, Lorenzo Calibbi^{5,*}, Lu Cao^{6,7}, Yuzhi Che^{8,9}, Chunhui Chen¹⁰, Ji-Yuan Chen³¹, Long Chen¹¹ Mingshui Chen 8,9,77 , Shanzhen Chen 8,9,77† , Xuan Chen 11 , Shan Cheng 12 , Cheng-W Chiang¹³, Andreas Crivellin^{14,15}, Hanhua Cui^{8,9}, Olivier Deschamps¹⁶, Sébastien Descotes-Genon¹⁷, Xiaokang Du¹⁸, Shuangshi Fang^{8,9}, Yu Gao^{8,9}, Li-Sheng Geng¹ Pablo Goldenzweig 20 , Jiayin Gu 21,22,23 , Feng-Kun Guo 24,9,25,† , Yuchen Guo 26,27 , Zhi-Hui Guo 28,† , Tao Han 29 , Hong-Jian He 30,31 , Jibo He 9 , Miao He 8,9 , Yanping Huang^{8,9}, Gino Isidori¹⁵, Quan Ji^{8,9}, Jianfeng Jiang^{8,9}, Xu-Hui Jiang^{8,32,33}, Jernej Kamenik 34,35 , Tsz Hong Kwok 33,† , Gang Li 8,9 , Geng Li 36 , Haibo Li 8,9 , Haitao Li 11 , Hengne Li³⁷, Honglei Li³⁸, Liang Li^{30,31}, Lingfeng Li^{39,33,*}, Qiang Li⁴⁰, Shu Li^{30,31}, Xiaomei Li⁴¹, Xin-Qiang Li^{42,†}, Yiming Li^{8,9}, Yubo Li⁴³, Yuji Li⁶, Zhao Li^{8,9}, Hao Liang^{8,9}, Zhijun Liang^{8,9}, Libo Liao⁴⁴, Zoltan Ligeti⁴⁵, Jia Liu⁴⁶, Jianbei Liu^{75,76}, T Liu^{33,*}, Yi Liu¹, Yong Liu^{8,9}, Zhen Liu⁴⁷, Xinchou Lou^{8,77,78}, Peng-Cheng Lu¹¹, Alberto Lusiani⁴⁸, Hong-Hao Ma⁴⁹, Kai Ma⁵⁰, Yaxian Mao⁴², David Marzocca⁵¹, Juan-Juan Niu⁴⁹, Soeren Prell¹⁰, Huirong Qi^{8,9}, Sen Qian^{8,9}, Zhuoni Qian⁵², Qin Qin^{53,†}, Ariel Rock³³, Jonathan L. Rosner^{54,55}, Manqi Ruan^{8,9,77,*}, Dingyu Shao⁶, Chengping Shen^{56,23}, Xiaoyan Shen^{8,9}, Haoyu Shi^{8,9}, Liaoshan Shi^{57,†}, Zong-Guo S Cristian Sierra³, Huayang Song²⁴, Shufang Su⁵⁸, Wei Su⁴⁴, Michele Tammaro⁵⁹, E Wang¹, Fei Wang¹, Hengyu Wang^{8,9}, Jian Wang¹¹, Jianchun Wang^{8,9}, Kun Wang Lian-Tao Wang 54 , Wei Wang 31,60 , Xiaolong Wang 56 , Xiaoping Wang 19 , Yadi Wang Yifang Wang^{8,9,77}, Yuexin Wang^{8,62,†}, Xing-Gang Wu⁶³, Yongcheng Wu³, Rui-Qing $Xiao^{30,31,64}$, Ke-Pan Xie^{19} , Yuehong Xie^{42} , Zijun $Xu^{8,9}$, Haijun $Yang^{30,31,65,66}$, Hong Yang⁴, Lin Yang³⁰, Shuo Yang^{26,27}, Zhongbao Yin⁴², Fusheng Yu⁶⁷, Changzheng Yuan^{8,9}, Xing-Bo Yuan⁴², Xuhao Yuan^{8,9}, Chongxing Yue^{26,27}, Xi-Jie Zhan⁶⁸, Kaili Zhang^{8,62}, Liming Zhang⁶⁹, Xiaoming Zhang⁴², Yang Zhang¹, Yanxi Zhang⁴⁶, Yongchao Zhang⁷⁰, Yu Zhang⁷¹, Zhen-Hua Zhang⁷², Zhong Zhang⁵⁷, Mingrui Zha Qiang Zhao^{8,9}, Xu-Chang Zheng⁶³, Yangheng Zheng⁹, Chen Zhou⁴⁶, Pengxuan Zh Yongfeng Zhu⁴⁶, Xunwu Zuo^{20,†}, Jure Zupan⁷³ | 1 | Introduction | 2 | |----|------------------------------------------------------|----| | 2 | Description of CEPC Facility | 6 | | | 2.1 Key Collider Features for Flavor Physics | 6 | | | 2.2 Key Detector Features for Flavor Physics | 8 | | | 2.3 Simulation Method | 15 | | 3 | FCCC Semileptonic and Leptonic b -Hadron Decays | 16 | | | 3.1 Leptonic Modes | 18 | | | 3.2 Semileptonic Modes | 19 | | 4 | FCNC b -Hadron Decays | 22 | | | 4.1 Di-lepton Modes | 23 | | | 4.2 Neutrino Modes | 26 | | | 4.3 Radiative Modes | 28 | | | 4.4 Tests of SM Global Symmetries | 28 | | 5 | CP Violation in b -Hadron Decays | 30 | | 6 | Charm and Strange Physics | 34 | | 7 | au Physics | 36 | | | 7.1 LFV in τ Decays | 36 | | | 7.2 LFU of τ Decays | 38 | | | 7.3 Opportunities with Hadronic τ Decays | 40 | | 8 | Flavor Physics in Z Boson Decays | 42 | | | 8.1 LFV and LFU | 42 | | | 8.2 Factorization Theorem and Hadron Inner Structure | 45 | | 9 | Flavor Physics beyond Z Pole | 46 | | | 9.1 Flavor Physics and W Boson Decays | 47 | | | 9.2 Flavor-Violating Higgs Boson Decays | 48 | | | 9.3 FCNC Top Quark Physics | 50 | | 10 | Spectroscopy and Exotics | 53 | | 11 | Light BSM States from Heavy Flavors | 56 | | | 11.1 Lepton Sector | 57 | | | 11.2 Quark Sector | 58 | | 12 | Detector Performance Requirements | 59 | | 12 | Summary and Outlook | 62 | ¹School of Physics, Zhengzhou University, Zhengzhou, 450001, China ²Department of Physics and Santa Cruz Institute for Particle Physics, University of Califo Santa Cruz, 95064, USA ³Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nan 210023, China ^{*}Corresponding author. [†]Primary contributor. #### CEPC flavour white paper Contents 11.2 Quark Sector 13 Summary and Outlook 12 Detector Performance Requirements #### Flavor Physics at CEPC: a General Perspective Xiaocong Ai¹, Wolfgang Altmannshofer², Peter Athron³, Xiaozhi Bai⁴, Lorenzo Calibbi^{5,*}, Lu Cao^{6,7}, Yuzhi Che^{8,9}, Chunhui Chen¹⁰, Ji-Yuan Chen³¹, Long Chen¹¹ Mingshui Chen^{8,9,77}, Shanzhen Chen^{8,9,77†}, Xuan Chen¹¹, Shan Cheng¹², Cheng-W Chiang¹³, Andreas Crivellin^{14,15}, Hanhua Cui^{8,9}, Olivier Deschamps¹⁶, Sébastien Descotes-Genon¹⁷, Xiaokang Du¹⁸, Shuangshi Fang^{8,9}, Yu Gao^{8,9}, Li-Sheng Geng¹ Pablo Goldenzweig²⁰, Jiayin Gu^{21,22,23}, Feng-Kun Guo^{24,9,25,†}, Yuchen Guo^{26,27}, Zhi-Hui Guo^{28,†}, Tao Han²⁹, Hong-Jian He^{30,31}, Jibo He⁹, Miao He^{8,9}, Yanping Huang^{8,9}, Gino Isidori¹⁵, Quan Ji^{8,9}, Jianfeng Jiang^{8,9}, Xu-Hui Jiang^{8,32,33}, Jernej Kamenik^{34,35}, Tsz Hong Kwok^{33,†}, Gang Li^{8,9}, Geng Li³⁶, Haibo Li^{8,9}, Haitao Li¹¹, Hengne Li³⁷, Honglei Li³⁸, Liang Li^{30,31}, Lingfeng Li^{39,33,*}, Qiang Li⁴⁰, Shu Li^{30,31}, Xiaomei Li⁴¹, Xin-Qiang Li^{42,†}, Yiming Li^{8,9}, Yubo Li⁴³, Yuji Li⁶, Zhao Li^{8,9}, Hao Liang^{8,9}, Zhijun Liang^{8,9}, Libo Liao⁴⁴, Zoltan Ligeti⁴⁵ Lia Liada Liang^{8,9}, Yi Liu¹, Yong Liang Liang^{8,9}, Yi Liang Liang^{8,9}, Yi Liang Liang^{8,9}, Yi Liang Liang^{8,9}, Yi Liang^{8,9}, Yi Liang Liang^{8,} | 1 | Introduction | : | |---|---------------------------------------------------|---| | 2 | Description of CEPC Facility | | | | 2.1 Key Collider Features for Flavor Physics | | | | 2.2 Key Detector Features for Flavor Physics | | | | 2.3 Simulation Method | 1 | | 3 | FCCC Semileptonic and Leptonic b -Hadron Decays | 1 | | | 3.1 Leptonic Modes | 1 | | | 3.2 Semileptonic Modes | 1 | | 4 | FCNC b-Hadron Decays | 2 | | | 4.1 Di-lepton Modes | 2 | | | 4.2 Neutrino Modes | 2 | | | 4.3 Radiative Modes | 2 | | | 4.4 Tests of SM Global Symmetries | 2 | | | Hodron Decays | 3 | | | 1 | ą | A vast subject: today, I can only mention a few selected topics (guided by personal bias) Wang¹, Fei Wang¹, Hengyu Wang^{8,9}, Jian Wang¹¹, Jianchun Wang¹³, Kun Wang Lian-Tao Wang⁵⁴, Wei Wang^{31,60}, Xiaolong Wang⁵⁶, Xiaoping Wang¹⁹, Yadi Wang Yifang Wang^{8,9,77}, Yuexin Wang^{8,62,†}, Xing-Gang Wu⁶³, Yongcheng Wu³, Rui-Qing Xiao^{30,31,64}, Ke-Pan Xie¹⁹, Yuehong Xie⁴², Zijun Xu^{8,9}, Haijun Yang^{30,31,65,66}, Hong Yang⁴, Lin Yang³⁰, Shuo Yang^{26,27}, Zhongbao Yin⁴², Fusheng Yu⁶⁷, Changzheng Yuan^{8,9}, Xing-Bo Yuan⁴², Xuhao Yuan^{8,9}, Chongxing Yue^{26,27}, Xi-Jie Zhan⁶⁸, Kaili Zhang^{8,62}, Liming Zhang⁶⁹, Xiaoming Zhang⁴², Yang Zhang¹, Yanxi Zhang⁴⁶, Yongchao Zhang⁷⁰, Yu Zhang⁷¹, Zhen-Hua Zhang⁷², Zhong Zhang⁵⁷, Mingrui Zha Qiang Zhao^{8,9}, Xu-Chang Zheng⁶³, Yangheng Zheng⁹, Chen Zhou⁴⁶, Pengxuan Zh Yongfeng Zhu⁴⁶, Xunwu Zuo^{20,†}, Jure Zupan⁷³ Cristian Sierra³, Huayang | 8 Flavor Physics in Z Boson Decays | 42 | |------------------------------------------------------|----| | 8.1 LFV and LFU | 42 | | 8.2 Factorization Theorem and Hadron Inner Structure | 45 | | 9 Flavor Physics beyond Z Pole | 46 | | 9.1 Flavor Physics and W Boson Decays | 47 | | 9.2 Flavor-Violating Higgs Boson Decays | 48 | | 9.3 FCNC Top Quark Physics | 50 | | 10 Spectroscopy and Exotics | 53 | | 11 Light BSM States from Heavy Flavors | 56 | | 11.1 Lepton Sector | 57 | **36** 36 38 **59** **62** ¹School of Physics, Zhengzhou University, Zhengzhou, 450001, China ²Department of Physics and Santa Cruz Institute for Particle Physics, University of Califo Santa Cruz, 95064, USA ³Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nan 210023, China ^{*}Corresponding author. [†]Primary contributor. # CEPC as a Tera Z factory Nominal operation scheme (50 MW) as in the CEPC Accelerator TDR: | Operation mode | Z factory | WW threshold | Higgs factory | $t ar{t}$ | |-----------------------------------------------------------------------------------|----------------------------|-------------------|-------------------|-------------------| | $\sqrt{s} \; (\mathrm{GeV})$ | 91.2 | 160 | 240 | 360 | | Run time (year) | 2 | 1 | 10 | 5 | | Instantaneous luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1}, \text{ per IP})$ | 191.7 | 26.7 | 8.3 | 0.83 | | Integrated luminosity $(ab^{-1}, 2 \text{ IPs})$ | 100 | 6.9 | 21.6 | 1 | | Event yields | $\boxed{4.1\times10^{12}}$ | 2.1×10^8 | 4.3×10^6 | 0.6×10^6 | The Z-peak run is expected to deliver a few $\times 10^{12}$ visible Z decays #### Tera Z as a Flavour Factory $$BR(Z \to b\bar{b}) \approx 15\%$$, $BR(Z \to c\bar{c}) \approx 12\%$, $BR(Z \to \tau^+\tau^-) \approx 3\%$ Plenty of flavour physics opportunities from $Z \rightarrow bb$, $Z \rightarrow cc$, $Z \rightarrow \tau\tau$ | Particle | BESIII | Belle II (50 ab ⁻¹ on $\Upsilon(4S)$) | LHCb (300 fb^{-1}) | CEPC $(4 \times \text{Tera-}Z)$ | |-------------------------------|---------------------|-------------------------------------------------------------------|------------------------------|---------------------------------| | B^0, \bar{B}^0 | - | 5.4×10^{10} | 3×10^{13} | 4.8×10^{11} | | B^\pm | - | 5.7×10^{10} | 3×10^{13} | 4.8×10^{11} | | $B_s^0,ar{B}_s^0$ | - | $6.0 \times 10^8 \ (5 \ {\rm ab^{-1}} \ {\rm on} \ \Upsilon(5S))$ | 1×10^{13} | 1.2×10^{11} | | B_c^{\pm} | - | - | 1×10^{11} | 7.2×10^{8} | | $\Lambda_b^0,ar{\Lambda}_b^0$ | - | _ | 2×10^{13} | 1×10^{11} | | D^0, \bar{D}^0 | 1.2×10^8 | 4.8×10^{10} | 1.4×10^{15} | 8.3×10^{11} | | D^{\pm} | 1.2×10^{8} | 4.8×10^{10} | 6×10^{14} | 4.9×10^{11} | | D_s^{\pm} | 1×10^7 | 1.6×10^{10} | 2×10^{14} | 1.8×10^{11} | | Λ_c^\pm | 0.3×10^7 | 1.6×10^{10} | 2×10^{14} | 6.2×10^{10} | | $ au^+ au^-$ | 3.6×10^8 | 4.5×10^{10} | | 1.2×10^{11} | # Tera Z as a Flavour Factory Advantages of a high-energy e^+e^- collider as flavour factory: # Luminosity $\mathcal{L}=100/ab$, O(10¹²) Z decays \Rightarrow O(10¹¹) bb, cc, and $\tau\tau$ pairs # Energy besides producing states unaccessible, *e.g.*, at Belle II $M_Z \gg 2m_b$, $2m_\tau$, $2m_c \Rightarrow$ surplus energy, boosted decay products (better tracking and tagging, lower vertex uncertainty etc.) #### Cleanliness as for any leptonic machine, full knowledge of the initial state (e.g. Z mass constraint on invariant masses more powerful) ⇒ it enables searches involving neutral/invisible particles flavour-violating Z decays precise measurements [CKM UT angles, CPV...] forbidden processes [lepton flavour (universality) violation, lepton/baryon number violation...] rare decays [(semi-)leptonic B decays...] charm physics exotic hadrons spectroscopy tau physics ... in one word (almost) everything $$b \to s \tau \tau$$ - Unobserved, weakly constrained (~10⁻⁴-10⁻³ by Belle, Belle II can provide an O(10) increased sensitivity) - They can have huge new-physics enhancement (especially in theories preferably coupling to third generation fermions) updated from Li Lingfeng and Liu Tao '20 $$\mathsf{BR}(B_{s} \to \tau \tau)_{\mathsf{SM}} = (7.7 \pm 0.5) \times 10^{-7}$$ (Bobeth et al. 1311.0903) $${\sf BR}(B \to K au au)_{\sf SM} = (1.2 \pm 0.1) imes 10^{-7}$$ (Du et al. 1510.02349) CEPC bounds on new physics contributions: $$\mathcal{H}_{b\to s}^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \sum_{j} (C_j O_j + C_j' O_j') + (C_L O_L + C_R O_R) + \text{h.c.},$$ → sensitivity to new physics scales up to ~ 10 TeV $B_s^0 \rightarrow \phi \tau^+ \tau^- \qquad B^+ \rightarrow K^+ \tau^+ \tau^-$ updated from Li Lingfeng and Liu Tao '20 | | Current Limit | Detector | SM Prediction | |---------------------------------------------------|--------------------------------|------------------------|--------------------------------------| | $BR(B^0 \to K^0 \nu \bar{\nu})$ | $< 2.6 \times 10^{-5} [3]$ | BELLE | $(3.69 \pm 0.44) \times 10^{-6}$ [1] | | ${\rm BR}(B^0 o K^{*0} u \bar{ u})$ | $< 1.8 \times 10^{-5} [3]$ | ${f BELLE}$ | $(9.19 \pm 0.99) \times 10^{-6} [1]$ | | $\mathrm{BR}(B^\pm \to K^\pm \nu \bar{\nu})$ | $(2.7 \pm 0.7) \times 10^{-5}$ | Belle II '23 | $(3.98 \pm 0.47) \times 10^{-6} [1]$ | | $\mathrm{BR}(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$ | $< 4.0 \times 10^{-5}$ [5] | BELLE | $(9.83 \pm 1.06) \times 10^{-6}$ [1] | | $BR(B_s \to \phi \nu \bar{\nu})$ | $< 5.4 \times 10^{-3} $ [6] | DELPHI | $(9.93 \pm 0.72) \times 10^{-6}$ | - Also these modes can be greatly enhanced by new physics e.g. LC Crivellin Ota '15 - A Tera Z can measure $B_s \to \phi \nu \nu$ with a percent level precision: Li et al. '22 • Similar precision is expected for the other $b \to s\nu\nu$ modes Ahmis et al. (FCC-ee) '23 $$B_c \to \tau \nu$$ - Key observable to test the LFU anomalies in charged-current B decays Alonso et al. '16 - SM prediction for the BR ~ 2%, beyond the reach of LHCb - Tera Z could measure with percent level accuracy (thus providing also a percent level accurate measurement of V_{cb}) Zheng et al. '20 #### Lepton Flavour Violation in Z decays | Measurement | Current | HL-LHC | FCC | CEPC prelim. | M. Dam '18 | |------------------------------------------|-------------------------|----------------------|----------------------|--------------|------------| | $\overline{\mathrm{BR}(Z \to \tau \mu)}$ | $< 6.5 \times 10^{-6}$ | 1.4×10^{-6} | 10^{-9} | 10^{-9} | | | $BR(Z \to \tau e)$ | $<5.0\times10^{-6}$ | 1.1×10^{-6} | 10^{-9} | | | | $BR(Z \to \mu e)$ | $< 2.62 \times 10^{-7}$ | 5.7×10^{-8} | $10^{-8} - 10^{-10}$ | 10^{-9} | | - LHC searches limited by backgrounds (in particular $Z \rightarrow \tau\tau$): max ~10 improvement can be expected at HL-LHC (3000/fb) - A Tera Z can test LFV new physics searching for $Z \to \tau \ell$ at the level of what Belle II (50/ab) will do through LFV tau decays (or better) Flavour beyond the TeV scale Lorenzo Calibbi (Nankai) #### LFU tests in B decays Gauge interactions are flavour blind: the SM predicts Lepton Flavour Universality (LFU) EW interactions any deviation from LFU would be a clear indication of NP Example: LFU tests in semileptonic (charged-current) B decays $$R_{D^{(*)}} \equiv \frac{\text{BR}(B \to D^{(*)} \tau \nu)}{\text{BR}(B \to D^{(*)} \ell \nu)}, \ \ell = e, \mu$$ Current precision: ~5-10% World average still somewhat in tension with the SM prediction #### LFU tests in B decays Gauge interactions are flavour blind: the SM predicts Lepton Flavour Universality (LFU) EW interactions any deviation from LFU would be a clear indication of NP $P(\chi^2) = 35\%$ 0.4 0.5 R(D) Flavour beyond the TeV scale 0.2 0.3 Lorenzo Calibbi (Nankai) tension with the SM prediction #### Constraints on B LFU from tau LFU New physics inducing operators involving mainly 3rd family fermions Ops with only 3rd family: $$Q_{\ell q}^{(1)} = (\bar{L}_3 \gamma^{\mu} L_3)(\bar{Q}_3 \gamma_{\mu} Q_3) , \quad Q_{\ell q}^{(3)} = (\bar{L}_3 \gamma^{\mu} \tau_I L_3)(\bar{Q}_3 \gamma_{\mu} \tau^I Q_3)$$ Feruglio Paradisi Pattori '16, '17 #### LFU tests in tau decays $$\left(\frac{g_{\mu}}{g_{e}}\right)^{2} = \frac{\mathrm{BR}(\tau \to \mu \nu \bar{\nu})}{\mathrm{BR}(\tau \to e \nu \bar{\nu})} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \frac{R_{W}^{\tau e}}{R_{W}^{\tau \mu}}, \qquad \text{radiative corrections}$$ $$\left(\frac{g_{\tau}}{g_{\ell}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{\mathrm{BR}(\tau \to \ell \nu \bar{\nu})}{\mathrm{BR}(\mu \to e \nu \bar{\nu})} \frac{f(m_{e}^{2}/m_{\mu}^{2})}{f(m_{\ell}^{2}/m_{\tau}^{2})} \frac{R_{W}^{\mu e} R_{\gamma}^{\mu}}{R_{W}^{\tau \ell} R_{\gamma}^{\tau}}, \qquad (\ell = e, \mu)$$ Currently LFU tested with per mil level precision: $$\frac{g_{\mu}}{g_e} = 1.0002 \pm 0.0011 \,, \quad \frac{g_{\tau}}{g_e} = 1.0018 \pm 0.0014 \,, \quad \frac{g_{\tau}}{g_{\mu}} = 1.0016 \pm 0.0014 \,$$ [error budget: 1.1‰ from BRs, 0.9‰ from τ_{τ} , 0.2‰ from m_{τ}] LEP & Belle II Belle BESIII & Belle II #### LFU tests in tau decays Test of new physics! Example, 3rd generation lepton-Higgs operator: $$\frac{1}{\Lambda^2} i (\Phi^{\dagger} \tau^I \stackrel{\leftrightarrow}{D_{\mu}} \Phi) (\bar{L}_3 \tau^I \gamma^{\mu} L_3) \quad \Rightarrow \quad g_e = g_{\mu} = g, \quad g_{\tau} = g \left(1 + \frac{v^2}{\Lambda^2} \right)$$ Current LFU limits set a bound on the NP scale of $\Lambda > 8$ TeV #### LFU tests in tau decays Preliminary studies show that a 10-fold improvement of the systematics is possible: | Measurement | Current | Belle II | FCC | CEPC prelim. | |----------------------------------|--------------------------------|----------|-------------------------|-------------------------| | Lifetime [sec] | $(2903 \pm 5) \times 10^{-16}$ | | $\pm 6 \times 10^{-18}$ | $\pm 7 \times 10^{-18}$ | | $BR(\tau \to e \nu \bar{\nu})$ | $(17.82 \pm 0.04)\%$ | | $\pm~0.003\%$ | $\pm 0.003\%$ | | $BR(\tau \to \mu \nu \bar{\nu})$ | $(17.39 \pm 0.04)\%$ | | $\pm~0.003\%$ | $\pm 0.003\%$ | | m [MoV] | 1776.93 ± 0.09 | | \pm 0.0016 (stat.) | | | $m_{\tau} \; [\mathrm{MeV}]$ | 1770.95 ± 0.09 | | \pm 0.018 (syst.) | | Tera-Z factories could test tau LFU at the 0.1‰ level This translates to a sensitivity to LFU new-physics operators up to scales ~20 TeV # Light invisible boson in LFV tau decays Flavour beyond the TeV scale Lorenzo Calibbi (Nankai) # Summary: benchmark searches and measurements #### Summary: benchmark searches and measurements #### Final remarks Plenty of mystery (hence of opportunities to learn something) in the flavour sector of the Standard Model Through flavour observables, one can probe some of the highest energy scales accessible in laboratory experiments The Z-pole run of the CEPC would offer plenty of flavour physics opportunities, summarised in our white paper O(10¹²) Z decays would enable us to study many processes with a much higher precision than (or inaccessible to) other experiments Tera Z provides a unique opportunity to study rare B decays, Z LFV decays, tests of LFU in tau decays or B_c decays etc. #### Final remarks Plenty of mystery (hence of opportunities to learn something) in the flavour sector of the Standard Model Through flavour observables, one can probe some of the highest energy scales accessible in laboratory experiments Physics at the highest energies with colliders? ⇒ Use colliders to do flavour physics! O(10¹²) Z decays would enable us to study many processes with a much higher precision than (or inaccessible to) other experiments Tera Z provides a unique opportunity to study rare B decays, Z LFV decays, tests of LFU in tau decays or B_c decays etc. ## Thanks! # Questions? ### Additional slides #### Lepton sector $$-\mathcal{L} \supset \left[a_{ij}^{\ell} \left(\frac{\langle \phi \rangle}{\Lambda_{\ell}} \right)^{\mathcal{Q}_{L_{i}} - \mathcal{Q}_{e_{j}}} \overline{L}_{i} e_{j} H + h.c. \right] + \kappa_{ij}^{\nu} \left(\frac{\langle \phi^{*} \rangle}{\Lambda_{\ell}} \right)^{\mathcal{Q}_{L_{i}} + \mathcal{Q}_{L_{j}}} \frac{(\overline{L}_{i}^{c} \tilde{H})(\tilde{H}^{T} L_{j})}{\Lambda_{N}}$$ $$\Longrightarrow Y^{\ell} = V^{\ell} \hat{Y}^{\ell} W^{\ell \dagger}, \qquad m^{\nu} = V^{\nu} \hat{m}^{\nu} V^{\nu T} \qquad V_{ij}^{\ell, \nu} \sim \epsilon_{\ell}^{\left| \mathcal{Q}_{L_{i}} - \mathcal{Q}_{L_{j}} \right|}, \qquad W_{ij}^{\ell} \sim \epsilon_{\ell}^{\left| \mathcal{Q}_{e_{i}} - \mathcal{Q}_{e_{j}} \right|}$$ $$\longrightarrow Y^{\ell} = V^{\ell} \hat{Y}^{\ell} W^{\ell \dagger}, \qquad m^{\nu} = V^{\nu} \hat{m}^{\nu} V^{\nu T} \qquad V^{\ell, \nu}_{ij} \sim \epsilon^{\left|\mathcal{Q}_{L_{i}} - \mathcal{Q}_{L_{j}}\right|}_{\ell}, \qquad W^{\ell}_{ij} \sim \epsilon^{\left|\mathcal{Q}_{e_{i}} - \mathcal{Q}_{e_{j}}\right|}_{\ell}$$ LH charges can chosen to give a (quasi-)anarchical $U_{\rm PMNS} = V^{\nu}V^{\ell\dagger}$ RH charges then responsible for charged leptons hierarchy Examples: Altarelli Feruglio Masina Merlo '12 - $(\mathcal{Q}_{L_1}, \mathcal{Q}_{L_2}, \mathcal{Q}_{L_3}) = (\mathcal{Q}_L, \mathcal{Q}_L, \mathcal{Q}_L)$ Anarchy - Mu-tau anarchy $(\mathcal{Q}_{L_1}, \mathcal{Q}_{L_2}, \mathcal{Q}_{L_3}) = (\mathcal{Q}_L + 1, \mathcal{Q}_L, \mathcal{Q}_L)$ - Hierarchy $(\mathcal{Q}_{L_1}, \mathcal{Q}_{L_2}, \mathcal{Q}_{L_3}) = (\mathcal{Q}_L + 2, \mathcal{Q}_L + 1, \mathcal{Q}_L)$ Charged lepton hierarchy, e.g.: $(Q_{e_1}, Q_{e_2}, Q_{e_3}) = (Q_L - 4, Q_L - 2, Q_L - 1)$ (with $\epsilon_{\ell} \approx \epsilon^2 \approx 0.04$) #### Local Froggatt-Nielsen U(1) Flavour non-universal **local** U(1) symmetry generating the hierarchies of fermion masses and mixing through the Froggatt-Nielsen mechanism (anomalies cancelled by suitable UV completions Smolkovič Tammaro Zupan '19 Bonnefoy Dudas Pokorski '19 Below the cutoff Λ , only **two** new particles: $$\phi = \frac{v_{\phi} + \varphi}{\sqrt{2}} e^{ia/v_{\phi}} \qquad \text{longitudinal component of}$$ #### Physical flavon U(1) gauge boson, Z' $$m_{\varphi}^{2} = \frac{1}{2} \lambda_{\phi} v_{\phi}^{2} \qquad m_{Z'} = \sqrt{2} g_{F} \langle \phi \rangle = g_{F} v_{\phi}$$ $$\mathcal{L} = n_{ij}^{f} \frac{m_{ij}^{f}}{v_{\phi}} \overline{f}_{i} P_{R} f_{j} \varphi \qquad \mathcal{L} \supset g_{F} \overline{f} \gamma^{\mu} (\mathcal{Q}_{f_{L}} P_{L} + \mathcal{Q}_{f_{R}} P_{R}) f Z_{\mu}'$$ - \rightarrow both fields decay into SM fermions and are produced in the early universe by thermal interactions (O(1) couplings with the fields at Λ) - \rightarrow we have to require their lifetime < 0.1 s in order not to affect **BBN** #### Flavour-violating FN Z' Flavour non-universal **local** U(1) symmetry generating the hierarchies of fermion masses and mixing through the Froggatt-Nielsen mechanism (anomalies cancelled by suitable UV completions Smolkovič Tammaro Zupan '19 Bonnefoy Dudas Pokorski '19 Interactions of the new gauge boson Z' **flavour-violating** by construction: $$\mathcal{L} = g_F \, Z_\mu' \, \left[\overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^u \, P_L + C_{R\,\alpha\beta}^u \, P_R) u_\beta + \overline{d}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta + \overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta + \overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta + \overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta + \overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta + \overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta + \overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d \, P_R) d_\beta + \overline{u}_\alpha \gamma^\mu (C_{L\,\alpha\beta}^d \, P_L + C_{R\,\alpha\beta}^d C_{R\,\alpha\beta}^d$$ to the fermion mass basis Z' mediates flavour-violating processes and, if light, mesons and leptons can decay into it, e.g.: $$BR(K^+ \to \pi^+ Z') = \frac{g_F^2}{16\pi \Gamma_K} \frac{m_K^3}{m_{Z'}^2} \left[\lambda \left(1, \frac{m_\pi^2}{m_K^2}, \frac{m_{Z'}^2}{m_K^2} \right) \right]^{\frac{3}{2}} [f_+(m_{Z'}^2)]^2 |C_{Vsd}^d|^2$$ $$BR(\ell_{\alpha} \to \ell_{\beta} Z') = \frac{g_F^2}{16\pi \Gamma_{\ell_{\alpha}}} \frac{m_{\ell_{\alpha}}^3}{m_{Z'}^2} \left(|C_{V \alpha\beta}^{\ell}|^2 + |C_{A \alpha\beta}^{\ell}|^2 \right) \left(1 + 2 \frac{m_{Z'}^2}{m_{\ell_{\alpha}}^2} \right) \left(1 - \frac{m_{Z'}^2}{m_{\ell_{\alpha}}^2} \right)^2$$ What if the U(1) breaking occurs at higher energies? A new promising direction: gravitational waves (GW) U(1) breaking \rightarrow cosmic strings \rightarrow emission of a GW background! Kibble '76 (for a review: Vilenkin Shellard '00) #### **Key assumptions:** - After inflation, the universe reheats with $T_{\rm RH} > \nu_{\phi}$ - \Longrightarrow FN U(1) unbroken in the early universe - At $T \sim v_{\phi}$ the universe undergoes a 2nd order phase transition - gauge strings form What if the U(1) breaking occurs at higher energies? A new promising direction: gravitational waves (GW) U(1) breaking \rightarrow cosmic strings \rightarrow emission of a GW background! Kibble '76 (for a review: Vilenkin Shellard '00) EoM: $$D_{\mu}D^{\mu}\phi + \frac{\lambda_{\phi}}{2}\phi\left(\phi\phi^* - \eta^2\right) = 0$$, $\partial_{\mu}F'^{\mu\nu} = 2g_F \operatorname{Im}\left(\phi^*D^{\nu}\phi\right)$ static, cylindrically symmetric solutions (strings): $$\phi_s(\mathbf{r}) = e^{in\theta} g(r), \qquad Z'_{s,\theta}(\mathbf{r}) = -\frac{n}{g_F r} \alpha(r)$$ 0.50 $r \cdot m_{\phi}$ 1 5 10 0.05 0.10 string width depends on $$eta \equiv rac{m_\phi^2}{m_{Z'}^2} = rac{\lambda_\phi}{2g_F^2}$$ flavon/Z' mass ratio squared Numerical solutions for the string **width** and **tension**: $$w = \frac{1}{m_{\phi}}W(\beta) \qquad G\mu = \frac{\pi v_{\phi}^2}{8\pi M_p^2}B(\beta)$$ Numerical solutions for the string width and tension: String tension (energy per unit length): $G\mu = \frac{\pi v_{\phi}^2}{8\pi M_p^2} B(\beta)$ it grows quadratically with the U(1) breaking scale String loops and string network collisions emit GWs stochastic GW background with frequency spectrum $$\Omega_{\text{GW}}(f) = \sum_{k=1}^{\infty} \Omega_{\text{GW}}^{(k)}(f) = \frac{8\pi}{3H_0^2} (G\mu)^2 f \sum_{k=1}^{\infty} C_k(f) P_k$$ Larger signal for larger tension (higher U(1) breaking scales) #### Illustrative GW spectra string loops lose energy mostly through particle (Z') emission below the critical size: $$\ell < \ell_c \sim \frac{w}{(\Gamma G\mu)^2}$$ Matsunami et al '19 #### Flavour limits vs future GW sensitivities GW and flavour exps. interplay can (almost) close the parameter space! #### Z LFV prospects A study in the context of the FCC-ee (5×10^{12} Zs): • $Z \rightarrow \mu e$: M. Dam @ Tau '18 & 1811.09408 In contrast to the LHC, no background from $Z \rightarrow \tau\tau$: Z mass constraint much more effective (collision energy is known) \rightarrow background rate < 10⁻¹¹ (with a 0.1% momentum resolution at ~45 GeV) Main issue: muons can release enough brems. energy in the ECAL to be misid as electrons. Mis-id probability measured by NA62 for a LKr ECAL: 4×10^{-6} (for $p_{\mu}\sim45$ GeV) Bg. from $Z \rightarrow \mu\mu$ + mis-id μ (3×10⁻⁷ of all Z decays) Sensitivity limited to: ${\rm BR}(Z\to\mu e)\sim 10^{-8}$ (Improved e/ μ separation? Down to 10^{-10}) #### Z LFV prospects A study in the context of the FCC-ee (5×10^{12} Zs): • $Z \rightarrow \ell \tau$: M. Dam @ Tau '18 & 1811.09408 To avoid mis-id, select one hadronic τ (≥ 3 prong, or reconstructed excl. mode) Main background from $Z \rightarrow \tau\tau$ (with one leptonic τ decay) Simulated signal & background: Sensitivity: $BR(Z \to \ell \tau) \sim 10^{-9}$ $\sim 10^{-3}$ momentum res. & $\sim 10^{-3}$ collision E spread #### Z LFV prospects - CEPC can improve on present LHC (future HL-LHC) bounds up to 4 (3) orders of magnitude, at least for the $Z \rightarrow \tau \ell$ modes - The question is: can CEPC searches find new physics with these modes? - It depends on the indirect constraints from other processes - In particular low-energy LFV processes are unavoidably induced Previous model-independent studies: Nussinov Peccei Zhang '00; Delepine Vissani '01; Gutsche et al. '11; Crivellin Najjari Rosiek '13; ... #### LFV in the SM effective field theory If NP scale $$\Lambda \gg m_{\rm W}$$: $\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \sum_a C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_a C_a^{(6)} Q_a^{(6)} + \dots$ #### Dimension-6 effective operators that can induce CLFV | 4-leptons operators | | Dipole operators | | |-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------| | | | | | | Q_{ee} | $(\bar{e}_R\gamma_\mu e_R)(\bar{e}_R\gamma^\mu e_R)$ | Q_{eB} | $(\bar{L}_L \sigma^{\mu\nu} e_R) \Phi B_{\mu\nu}$ | | $Q_{\ell e}$ | $(\bar{L}_L\gamma_\mu L_L)(\bar{e}_R\gamma^\mu e_R)$ | | | | | 2-lepton 2-qu | ark operators | | | $\overline{Q_{\ell q}^{(1)}}$ | $(\bar{L}_L \gamma_\mu L_L)(\bar{Q}_L \gamma^\mu Q_L)$ | $Q_{\ell u}$ | $(\bar{L}_L\gamma_\mu L_L)(\bar{u}_R\gamma^\mu u_R)$ | | $Q_{\ell q}^{(3)}$ | $(ar{L}_L\gamma_\mu au_IL_L)(ar{Q}_L\gamma^\mu au_IQ_L)$ | Q_{eu} | $(\bar{e}_R\gamma_\mu e_R)(\bar{u}_R\gamma^\mu u_R)$ | | Q_{eq} | $(\bar{e}_R\gamma^\mu e_R)(\bar{Q}_L\gamma_\mu Q_L)$ | $Q_{\ell edq}$ | $(ar{L}_L^a e_R)(ar{d}_R Q_L^a)$ | | $Q_{\ell d}$ | $(\bar{L}_L\gamma_\mu L_L)(\bar{d}_R\gamma^\mu d_R)$ | $Q_{\ell equ}^{(1)}$ | $(ar{L}_L^a e_R)\epsilon_{ab}(ar{Q}_L^b u_R)$ | | Q_{ed} | $(\bar{e}_R\gamma_\mu e_R)(\bar{d}_R\gamma^\mu d_R)$ | $Q_{\ell equ}^{(3)}$ | $(\bar{L}_i^a \sigma_{\mu\nu} e_R) \epsilon_{ab} (\bar{Q}_L^b \sigma^{\mu\nu} u_R)$ | | | Lepton-Hig | ggs operators | | | $Q_{\Phi\ell}^{(1)}$ | $(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{L}\gamma^{\mu}L_{L}) \ (\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R}\gamma^{\mu}e_{R})$ | $Q_{\Phi\ell}^{(3)}$ | $(\Phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{I} \Phi) (\bar{L}_{L} \tau_{I} \gamma^{\mu} L_{L})$ | | $Q_{\Phi e}$ | $(\Phi^\dagger i\stackrel{\leftrightarrow}{D}_\mu \Phi)(ar{e}_R \gamma^\mu e_R)$ | $Q_{e\Phi 3}$ | $(ar{L}_L e_R \Phi) (\Phi^\dagger \Phi)$ | Grzadkowski et al. '10; Crivellin Najjari Rosiek '13 #### Z LFV in the SM EFT The couplings of Z to leptons are protected by the SM gauge symmetry \rightarrow LFV effects must be proportional to the EW breaking: $$\mathrm{BR}(Z \to \ell \ell') \sim \mathrm{BR}(Z \to \ell \ell) \times C_{\mathrm{NP}}^2 \left(\frac{v}{\Lambda_{\mathrm{NP}}}\right)^4$$ In the SM EFT, only 5 operators contribute at the tree level: $$Q_{\Phi\ell}^{(1)} = (\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{\ell}_{L}\gamma^{\mu}\ell_{L}'), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}^{I}\Phi)(\bar{\ell}_{L}\tau_{I}\gamma^{\mu}\ell_{L}'), \qquad Q_{\Phi e} = (\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{\ell}_{R}\gamma^{\mu}\ell_{R}')$$ $$Q_{eW} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \tau_I \Phi W_{\mu\nu}^I, \qquad Q_{eB} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \Phi B_{\mu\nu}$$ $$\operatorname{Br}\left[Z^{0} \to \ell_{f}^{\pm} \ell_{i}^{\mp}\right] = \frac{m_{Z}}{24\pi\Gamma_{Z}} \left[\frac{m_{Z}^{2}}{2} \left(\left|C_{fi}^{ZR}\right|^{2} + \left|C_{fi}^{ZL}\right|^{2}\right) + \left|\Gamma_{fi}^{ZL}\right|^{2} + \left|\Gamma_{fi}^{ZR}\right|^{2}\right]$$ $$\Gamma_{fi}^{ZL} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} \left(C_{\varphi l}^{(1)fi} + C_{\varphi l}^{(3)fi} \right) + \left(1 - 2s_W^2 \right) \delta_{fi} \right) \quad \Gamma_{fi}^{ZR} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} C_{\varphi e}^{fi} - 2s_W^2 \delta_{fi} \right)$$ $$C_{fi}^{ZR} = C_{if}^{ZL\star} = -\frac{v}{\sqrt{2}\Lambda^2} = \left(s_W C_{eB}^{fi} + c_W C_{eW}^{fi} \right)$$ Crivellin Najjari Rosiek 1312.0634 T Dipole operators: Higgs-lepton operators: $$Q_{\Phi\ell}^{(1)} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{I} \Phi)(\bar{\ell}_{L} \tau_{I} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi e} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{R} \gamma^{\mu} \ell_{R}')$$ $$Q_{eW} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \tau_I \Phi W_{\mu\nu}^I, \qquad Q_{eB} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \Phi B_{\mu\nu}$$ If a single operator dominates, $Z \to \ell \ell'$ constrain NP scales up to $$C_a = 1: \quad \Lambda \gtrsim 5 \text{ TeV} \quad (Z \to \mu e), \quad \Lambda \gtrsim 3 \text{ TeV} \quad (Z \to \tau \ell)$$ $$\Gamma_{fi}^{ZL} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} \left(C_{\varphi l}^{(1)fi} + C_{\varphi l}^{(3)fi} \right) + \left(1 - 2s_W^2 \right) \delta_{fi} \right) \quad \Gamma_{fi}^{ZR} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} C_{\varphi e}^{fi} - 2s_W^2 \delta_{fi} \right)$$ $$C_{fi}^{ZR} = C_{if}^{ZL\star} = -\frac{v}{\sqrt{2}\Lambda^2} = \left(s_W C_{eB}^{fi} + c_W C_{eW}^{fi} \right)$$ Crivellin Najjari Rosiek 1312.0634 #### Model-independent indirect limits on Z LFV decays | Observable | Operator | Indirect Limit on LFVZD | Strongest constraint | |------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------|-----------------------------| | lepton-Higgs ops $\overline{ \text{BR}(Z \to \mu e)}$ dipole ops | $\int \left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\mu}$ | 3.7×10^{-13} | $\mu \to e$, Au | | $(RR(Z \rightarrow ue))$ | $Q_{arphi e}^{e\mu}$ | 9.4×10^{-15} | $\mu \to e$, Au | | dipole one | $\int Q_{eB}^{e\mu}$ | 1.4×10^{-23} | $\mu \to e \gamma$ | | | $Q_{eW}^{e\mu}$ | 1.6×10^{-22} | $\mu \to e \gamma$ | | | $\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\tau}$ | 6.3×10^{-8} | au ightarrow ho e | | (BR(Z o au e)) | $Q^{e au}_{arphi e}$ | 6.3×10^{-8} | au ightarrow ho e | | | $Q_{eB}^{e au}$ | 1.2×10^{-15} | $ au ightarrow e \gamma$ | | | $Q_{eW}^{e au}$ | 1.3×10^{-14} | $ au o e \gamma$ | | | $\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{\mu\tau}$ | 4.3×10^{-8} | $ au ightarrow ho \mu$ | | $(BR(Z o au \mu))$ | $Q^{\mu au}_{arphi e}$ | 4.3×10^{-8} | $ au ightarrow ho \mu$ | | $DR(Z / P \mu)$ | $Q_{eB}^{\mu au}$ | 1.5×10^{-15} | $ au ightarrow \mu \gamma$ | | | $Q_{eW}^{\mu au}$ | 1.7×10^{-14} | $ au o \mu \gamma$ | | | | | | LC Marcano Roy '21 #### Present/future limits on LFV tau decays #### LFU tests in Z decays Universality presently tested at the per-mil level LEP exps/SLD combination: hep-ex:0509008 $$\frac{BR(Z \to \mu^+ \mu^-)}{BR(Z \to e^+ e^-)} = 1.0009 \pm 0.0028, \quad \frac{BR(Z \to \tau^+ \tau^-)}{BR(Z \to e^+ e^-)} = 1.0019 \pm 0.0032$$ $(1.7 \times 10^7 \text{ Z decays at LEP} + 6 \times 10^5 \text{ Z decays with polarised beams at SLC})$ - Very important test in view of the LFU anomalies in B decays - At LEP statistical and systematic uncertainties of the same order - With 10¹² Z, CEPC has no problem of statistics - Can systematics be controlled e.g. at the 10⁻⁴ level? - This would test new physics coupling preferably to tau up to scales of the order of 10-20 TeV #### Present limits on $\tau \to e \ a$, $\tau \to \mu \ a$ (invisible a) A challenging search: tau momentum / rest frame cannot be exactly reconstructed BG: ordinary $au o \ell \nu \bar{\nu}$ $$m_a \approx 0$$: BR $(\tau \to \mu a) < 4.7 \times 10^{-4} (90\% \text{ CL}) \Rightarrow f_a/C_{\mu\tau}^{V,A} > 5.1 \times 10^6 \text{ GeV}$ BR $(\tau \to e a) < 7.6 \times 10^{-4} (90\% \text{ CL}) \Rightarrow f_a/C_{e\tau}^{V,A} > 4.0 \times 10^6 \text{ GeV}$ #### A challenging search:)27 $\begin{cases} l \\ \theta_{ns} \end{cases}$ • NEW! <u>Belle 2025</u> (800 fb⁻¹) $BR(\tau \to e \, a) < 7.6 \times 10^{-4} \, (90\% \, CL) \implies f_a/C_{e\tau}^{V,A} > 4.0 \times 10^6 \, GeV$ #### Summary of searches for light invisible LFV ALPs - Decays mediated by dimension-5 operators: much larger NP scales can be reached than with $\mu \to e \gamma$, $\mu \to eee$ etc. (from dim-6 operators) - Mu/tau/astro interplay: if $m_a > m_u$ constraints mainly come from τ decays