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Disclaimer:
Today, assuming audience with not much background
Therefore, to some this may be rudimentary

But, it never hurts to spell it out= helps us discuss interesting stuff!
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Questions for each experiment

Galileo’s jovilabe Galileo’s calculation notes

CPU Storage

How many CPUs? How much storage?
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Questions for each experiment HF;
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Galileo’s jovilabe Gallleo S calculatlon notes

CPU Storage
How many CPUs? How much storage?
Today even more complicated: GPUs? FPGAs? NVMes?



Example answers to the questions clﬁ":;
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HS06 32bit vs HS23

2023-04-17 23:32

— 0.953 * x
A AMDHTOn
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AMD HT Off
Intel HT Off
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HS23 per physical core

All you have to remember is
that roughly 10 - 20 HS06-sec
= 1 second

30
HSO06 32bit per physical core




Conversion
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If there is only 1 CPU in the world, it will take 3 million years
if you have 3 million CPUs, it will take one year
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Actual model is quite complicated.

But in the following few slides | will motivate the
numbers in “back-of-the-envelope” style.

More details can be found here: (for CMS example)
https.//cds.cern.ch/record/2815292?In=en



https://cds.cern.ch/record/2815292?ln=en
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cross section tells us rates

b-jets

ET—Jet >
100 GeV

W/Z

~O(MHZz)

~O(kHz)

~O(100 Hz)

10T evts

10B evis

1B evts

107 seconds / year

(~230 days 12 hours operations)
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How many events can we save? clﬁ":;
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40 MHz 1 MHz 10 kHz

Collider Detector Computer

SW Trigger
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Hardware Software / CPU/
design CPU (GPU) Storage
limited limited Limited
/ / /
40 MHz 1 MHz 10 kHz
Collider Detector Computer

\Detector o V Trigger SW Trlgger
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Hardware Software / CPU/
design CPU (GPU) Storage
limited limited Limited
/ / /
40 MHz 1 MHz 10 kHz
Collider Detector Computer

- Detector {W Trigger | SW Trigger

Mostly computers
these days
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How many events can we save? Chang
Hardware Software / CPU/
design CPU (GPU) Storage
limited limited Limited
/ / /
40 MHz 1 MHz 10 kHz

Collider

Detector : Computer

SW Trigger

Mostly computers
these days

I

There are efforts to make all of this computing based

LHCb Run 3 pure software trigger: J. Phys.: Conf. Ser. 878 012012

14


https://iopscience.iop.org/article/10.1088/1742-6596/878/1/012012
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Hardware Software / CPU/
design CPU (GPU) Storage
limited limited Limited
/ / /
40 MHz 1 MHz 10 kHz

Collider L LTI Detector : Computer

| SW Trigger

Mostly computers
these days

I

There are efforts to make all of this computing based
LHCb Run 3 pure software trigger: J. Phys.: Conf. Ser. 878 012012

(10 kHz) x (107 seconds / year) = 100B events / year
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https://iopscience.iop.org/article/10.1088/1742-6596/878/1/012012

Events / 2 GeV

How much simulated events?

CMS 138 fb"' (13 TeV)
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Events / 2 GeV

How much simulated events? HF

FIorlda

138 (13 TeV)
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many simulated events

(Experiment dependent. Physics goal dependent)
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CMS 138 fb (13 TeV)
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fmc ~ 1.5 for LHC

per data event how
many simulated events

(Experiment dependent. Physics goal dependent)

= 250B events / year
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How much storage?

Raw data

(channel readout)

P—

Useful Analysis data

(physics objects)

' ['electron

0.004 MB - 2 MB
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How much storage?

Raw data

(channel readout)

\\\\\\

Useful Analysis data

(physics objects)

electron

0.004 MB - 2 MB

P—

250B events x 6 MB = 1.5 Exabyte (~ $35M disk)
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How much storage?

Raw data

(channel readout)

6 MB

P—

Useful Analysis data

(physics objects)

electron

0.004 MB - 2 MB

250B events x 6 MB = 1.5 Exabyte (~ $35M disk)

Disk random access possible
(i.e. “get me so and so event”)

Tape is order of mag cheaper
Tape cannot do random access
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Tape does
Increase by EB

Raw data are moved to tape, and smaller size
Analysis format data are saved on disk
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Raw data Useful Analysis data

(channel readout) L[ (physics objects)
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Monte Carlo S~—7

Simulation Reconstruction
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Each event takes how much CPU time? HF;
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[ [
| ' |
Raw data Useful Analysis data

(channel readout) L[ (physics objects)
| e ——_ | e

/
' /electron

/ 6 MB N 0.004 MB-2MB |-

Monte Carlo S——F

Simulation Reconstruction
CMS 200 PU
“Simulation”
(Gen + Sim) 111 sec t= ~7 min
“Reconstruction”
(Digi + PU mix + Reco) 300 Sec

CMS Phase-2 Computing Model Document (converting 17 HS06-sec as 1 sec) 22



(250B evts)

How many total CPUs?

X (7 core-min/evt) =

3M core-years

UF

Chang
Florida

23



How many total CPUs? clﬁ":;
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(250B evts) X (7 core-min/evt) 3M core-years
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G, U.S. DEPARTMENT OF Office of

L EN ERGY Science

Computing in the HL-LHC Era

. . o 'g 80}" L= 'r’ IM‘ .'.‘I' T " VRS T T I"‘:’;. ¢ T p
= Simple extrapolation leads to an unsustainable place 8 = 2620 Computng Mods! - crU ' E
* If the current software and computing approach is applied, costs can quickly S ook s o Fa E
: “ ” - E v Aggressive R&D — =
exceed the entire U.S. HEP budget (“$1B problem”) s - . o N
£ E (+10% +20% capacity/year) “' I 2" . E
= Our goal is to match demonstrable experiment needs with a realistic P dob-+ HeamRlwenao | E
. . . o - s ;- 3
funding profile — we want the science to succeed > 30- / =
(&) E g 3
* How do the software and computing models evolve? E A & E
< g - E
» much was developed beginning 15 years ago [ TP :
. they need to function 15 years from now OIL_OLZ_(I)_ ] é0122 ) 50122_1_26‘2_6_ - éOéé ] 2013_6_‘_2513é 5 50154
oleps Ye
* To what extent can we leverage HPC capabilities? o
* What is the optimum balance between CPU, disk, and networking? Detector design! Optimization of
* R&D investments: what activities are being done or planned to address the trigger rates¥etcy tools for analysis
- i ?
HL-LHC software and computing challenges? Sn—
* What is the optimum balance between people and hardware? paramenrs
* Goal: assess computing resources and needs early enough to help inform
experiments and funding agencies for successful operations during the HL-LHC era
* For efforts towards a strategic plan, HEP Software Foundation prepared
Community White Paper: https://arxiv.org/pdf/1712.06982.pdf (Dec. 2017) Architecture, memory,jetc’ gf)‘ggg?mmw
s . . . HEP SW Foundati B
* Additional documentation prepared by the LHC experiments during last few years ’ sl by optimization of
p (EP-SFT) :
CPU/disk/network

FY 2022 DOE Pl Meeting at Snowmass Seattle

https://indico.fnal.gov/event/22303/contributions/246857/attachments/157751/206557/FY2022-DOE-PI-Meeting-Snowmass-Energy-Frontier-Program-PATWA. . pdf
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Computing in the HL-LHC Era
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* If the current software and computing approach is applied, costs can quickly

exceed the entire U.S. HEP budget (“$1B problem”)

- HL-LHCsottware and computing challenges?

* What is the optimum balance between people and hardware?

* Goal: assess computing resources and needs early enough to help inform
experiments and funding agencies for successful operations during the HL-LHC era

* For efforts towards a strategic plan, HEP Software Foundation prepared

Community White Paper: https://arxiv.org/pdf/1712.06982.pdf (Dec. 2017) Architecture, memory fetcy ";’;zg;’d/ o
* Additional documentation prepared by the LHC experiments during last few years - 7;’;;‘:;’?%‘?‘;?;3" &ptlmlzatlon of
CPU/disk/network

FY 2022 DOE PI Meeting at Snowmass Seattle

https://indico.fnal.gov/event/22303/contributions/246857/attachments/157751/206557/FY2022-DOE-PI-Meeting-Snowmass-Energy-Frontier-Program-PATWA . pdf




Estimating per year

(1 + fme) (“Rate” x 107 sec)
1.5 10kHz
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(1 + fme) (“Rate” x 107 sec)
1.5 10kHz

Nevi X “Raw data size”
250B 6MB / evt
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Estimating per year Chang
Nevt = (1 + fme) (“Rate” x 107 sec)
250B 1.5  10kHz
Dsize — Nevti X “Raw data size”
1.5 EB 250B 6MB / evt
Ccore — Nevt X “PrOCGSSing time”

3.3M core-year 2508 7 min / evt
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Estimating per year Chang
Nevt = (1 + fme) (“Rate” x 107 sec)
250B 1.5 10kHz
Dsize = Nevt X “Raw data size”
1.5 EB 2508 6MB / evt
Ccore — Nevt X “PrOCGSSing time”
3.3M core-year 2508 7 min / evt

In the future... GPU, FPGA...
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CMS current resources

Currently we pledge to deliver 4.1M HS06 (~ 250k cores)
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CMS current resources

Currently we pledge to deliver 4.1M HS06 (~ 250k cores)

| estimate 250 FTEs supporting computing and R&D (for CMS)

(Not counting staff support activity from data center)
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CMS current resources c!h":;
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Currently we pledge to deliver 4.1M HS06 (~ 250k cores)

| estimate 250 FTEs supporting computing and R&D (for CMS)

(Not counting staff support activity from data center)

We will have to increase to 22M HS06 (or more)
= What is the impact on FTE?

IIIIIIIIIIIIIIIIII
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CMS Public
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0 20% annual resource increase

40000 |-m~ NoR&D improvements
=@~ Weighted probabl

1
©
()
—

Total CPU[kHS06-years]
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Year
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What about future colliders?
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Future Colliders (per year) Chang
N.B. Not official numbers (take this with many grains of salt...)
fMC Rate Time  Size Nevt ~ Ddisk  Ccpu
HL-LHC 1.5 10kHz | 7min | 6 MB | 250B |[1.5 EB| 3.3M
FCC-ee 4 |200kHz[0.1 min| 1 MB | 10T |10EB| 2M
FCC-hh 2 | 10kHz |20 min| 50 MB | 300B | 15EB | 11M
puC (10km) | 4 | 1kHz |[20min| 50MB | 50B | 5EB | 1.9M

Caveats: These are “back-of-the-envelope” numbers which is approximately
correct with their CDR or supporting documents. For more detail please consult

the documents.
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Future Colliders (per year) Chang
N.B. Not official numbers (take this with many grains of salt...)
fMC Rate Time  Size Nevt ~ Ddisk  Ccpu
HL-LHC 1.5 10kHz | 7min | 6 MB | 250B |1.5 EB| 3.3M
FCC-ee 4 |200kHz[0.1 min| 1 MB | 10T |10EB| 2M
FCC-hh 2 | 10kHz {20 min| 50 MB | 300B | 15EB | 11M
uC (10km) | 4 | 1kHz |[20min| 50MB | 50B | 5EB | 1.9M

Caveats: These are “back-of-the-envelope” numbers which is approximately
correct with their CDR or supporting documents. For more detail please consult

the documents.
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Future Colliders (per year) Chang
N.B. Not official numbers (take this with many grains of salt...)
fMC Rate Time  Size Nevt  Daisk  Ccru
HL-LHC 1.5| 10kHz | 7min | 6 MB | 250B |1.5 EB| 3.3M
FCC-ee 4 |200kHz[0.1 min| 1 MB | 10T |10EB| 2M
FCC-hh 2 | 10kHz {20 min| 50 MB | 300B | 15EB | 11M
uC (10km) | 4 | 1kHz |[20min| 50MB | 50B | 5EB | 1.9M

Caveats: These are “back-of-the-envelope” numbers which is approximately
correct with their CDR or supporting documents. For more detail please consult

the documents.
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Future Colliders (per year) Chang
N.B. Not official numbers (take this with many grains of salt...)
fMC Rate Time  Size Nevt  Daisk  Ccru
HL-LHC 1.5| 10kHz | 7min | 6 MB | 250B |1.5 EB| 3.3M
FCC-ee 4 |200kHz[0.1 min| 1 MB | 10T |10EB| 2M
FCC-hh 2 | 10kHz {20 min| 50 MB | 300B | 15EB | 11M
HC (10km) | 4 | 1kHz |[20min| 50 MB | 50B | 5EB | 1.9M

Caveats: These are “back-of-the-envelope” numbers which is approximately
correct with their CDR or supporting documents. For more detail please consult

the documents.
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Muon Collider Rates

o from 2005.10289; 2103.09844; Z. Liu, X. Wang;
and MadGraph5_ aMCQ@QNLO

011 Collsion e (10 k) —| 30 kHz 10 TeV uC Collision rate
~10Hz jets (pr>5-7 GeV)

~1 Hz W/Z

~02Hz H

2x10% cm 2 s71) [Hy]

VBF Z L 100

10 TeV, L

S

VBF WW

Rate (at v

Single jet Pt > 20 GeV trigger rate
maybe 1 to 10 Hz

(Assuming BIB is dealt with)

al H-like WIMP

T11

5 106

The

1 Event/ Snowmrss Year —»

1
7
2 3 4 5 6 7 8910
Vs [TeV] L. Lee, T. Holmes 39
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Future Colliders (per year) Chang
N.B. Not official numbers (take this with many grains of salt...)
fMC Rate Time  Size Nevt — Ddisk  Ccpu
HL-LHC 1.5 10kHz | 7min | 6 MB | 250B |[1.5 EB| 3.3M
FCC-ee 4 1200kHz|0.1 min| 1 MB | 10T |10EB | 2M
FCC-hh 2 | 10kHz (20 min| 50 MB | 300B | 15EB | 11M
pC (10km) | 4 | 1kHz |20 min| 50MB | 50B | 5EB | 1.9M
pC (10km) | 4 | 10Hz |60 min| 50MB [ 100M | 1 EB | 11k

Caveats: These are “back-of-the-envelope” numbers which is approximately
correct with their CDR or supporting documents. For more detail please consult

the documents.
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Doing bare minimum = not extremely difficult
(However, FCC-hh is a bit hard but, | will likely never see it anyways.)

This is assuming HL-LHC works

= all the HL-LHC work = future collider work
(e.g. Key4dHEP, DD4Hep, ACTS, GPU, ML Reconstruction, ...)

41
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Doing bare minimum = not extremely difficult
(However, FCC-hh is a bit hard but, | will likely never see it anyways.)

This is assuming HL-LHC works

= all the HL-LHC work = future collider work
(e.g. Key4dHEP, DD4Hep, ACTS, GPU, ML Reconstruction, ...)

In computing for future colliders, we don’t just
prepare for what's coming, we invent what’s possible.

41



There are many things that we can do with computers
(Software tools, ML reconstruction, tracking, event generation, GPU computing ...)

But | want to focus on a couple of things

UF

Chang
Florida
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On-going HL-LHC R&D

Reference:

Created: 1st May 2020
Last modified: 2nd November 2020
Prepared by: The ATLAS Collaboration

© 2020 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 licens

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

CMS NOTE -2022/008

Available on CMS information server

The Compact Muon Solenoid Experiment

CMS Note )

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

07 July 2022

CMS Phase-2 Computing Model: Update
Document

CMS Offline Software and Computing

Abstract

‘The Phase-2 upgrade of CMS, coupled with the projected performance of the HL-LHC, shows
promise in terms of discovery potential. However, the increased granularity of the CMS d

and the higher complexity of the collision events generated by the accelerator pose challenges in the
areas of data acquisition, processing, simulation, and analysis. These challenges cannot be solved
solely by increments in the computing resources available to CMS, but must be accompanied by
‘major improvements of the computing model and computing software tools, as well as data processing
software and common software tools. In this document we present aspects of our roadmap for those
improvements, focusing on the plans to reduce storage and CPU needs as well as take advantage of
heterogeneous platforms, such as the ones equipped with GPUs, and High Performance Computing
Centers. We describe the most prominent research and development activities being carried out in
the experiment, demonstrating their potential effectiveness in either mitigating risks or quantitatively
reducing computing resource needs on the road to the HL-LHC.

N.B. This document is based on the written response of the CMS experiment to the charge of the
LHCC Computing Model Review round in mber 2021 and has been minimally edited for content
and presentation.

https://cds.cern.ch/record/28152927In=en
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The U.S. CMS HL-LHC R&D Strategic Plan

Oliver Guische", Tulika Bose®, Margaret Votava", David Mason", Andrew Melo
Liu*, Dirk Hufnagel", Lindsey Gray", Mike Hildreth®, Burt Holzman"", Kevin Lannon’-,
Saba Sehrish"", David Sperka®, James Letts™, Lothar Bauerdick", and Kenneth Bloom®:

!Fermi National Accelerator Laboratory
2University of Wisconsin-Madison
3Vanderbilt University
“Purdue University
SNotre Dame University
Boston University
UC San Diego
Jniversity of Nebraska-Lincoln

Abstract. The HL-LHC run is anticipated to start at the end of this decade and
ignific e for the scale of the HEP software and com-
puting infrastructure. The mission of the U.S. CMS Software & Computi
Operations Program is to develop and operate the software and computing re-
s necessary o process CMS data expeditiously and to enable U.
o fully participate in the phy:
plan to prioritize R&D efforts to reach this
includes four grand challenges: modernizing p
algorithms, building infrastructure for exabyte-scale datasets, transforming the
ntific data analysis process and transitioning from R&D to operations. We
are involved in a variety of R&D projects that fall within these grand challenges.
In this talk, we will introduce our four grand challenges and outline the R&D
program of the U.S. CMS Software & Computing Operations Program.

1 Introduction

The Compact Muon Solenoid (CMS) [1] experiment at the Large Hadron Collider (LHC) [2]
has had a very successful physics program so far with over 1200 scientific papers submitted to
date [3]. The success of this physics program has been enabled by the availability of sufficient
computing resources to store, process and analyze the data in an efficient fashion. The CMS
experiment is designed, built, and operated by a collaboration of close to 200 institutions
across more than 50 countries, and comprises roughly 3,000 members, of which close to 2/3
are physicists with authorship privileges on all CMS physics papers [4].

The U.S. makes up about 30% of the authors across a total of ~50 institutions. Both the
U.S. Department of Energy (DOE) [5] and the U.S. National Science Foundation (NSF) [6]
The U.S. funding agencies centrally support
omponents, and the op-

eration and maintenance of these detector components and U.S. contributions to the softw

https://arxiv.org/pdf/2312.00772v2
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Muon Collider has relatively low rate

But large number of channels and hits
mean that event size are large

This limits how many events
we can read out

e /pBut BIBs are not
== ) real collisions
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—
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= One could be saving
entire experimental events

47



Future Colliders (per year)

UF

Flonas
N.B. Not official numbers (take this with many grains of salt...)

fMC Rate Time  Size Nevt — Ddisk  Ccpu
HL-LHC 1.5 10kHz | 7min | 6 MB | 250B | 1.5 EB| 3.3M
FCC-ee 4 1200kHz|0.1 min| 1 MB | 10T |10EB | 2M
FCC-hh 2 | 10kHz {20 min| 50 MB | 300B | 15EB | 11M
pC (10km) | 4 | 1kHz |[20min| 50MB | 50B | 5EB | 1.9M
puC (1I0km) | 4 | 10Hz |60 min| 50 MB | 100M | 1 EB | 11k
UG streaming | 9 | 30kHz (0.1 min| 1 MB 3T | 3EB | 0.6M

Caveats: These are “back-of-the-envelope” numbers which is approximately
correct with their CDR or supporting documents. For more detail please consult

the documents.
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- | presented “back-of-the-envelope” style of computing needs
- Various future colliders have its own challenges
- HL-LHC challenges that we are already working to solve are

directly applicable to future collider computing challenges

In computing for future colliders, we don’t just
prepare for what's coming, we invent what’s possible.

« End-to-end event reconstruction using machine learning
 Getting rid of data-tier structure and more flexibility
- Data compression on detector readout to allow “triggerless” approach

- Overcoming networking challenges via near-data compute
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Table 3: CMS preliminary resource request for 2026 in the default scenario where 2026 is a shutdown year and
the alternate scenario where 2026 is a data taking year. The percentage changes with respect to the approved 2025
request are shown, as well as the different between the alternate and default scenarios.

2026 Prelimin, Increase with respect to 2025
Approved Default Alternate Default = Alternate leference

0(0%) | 0(0%)
CPU i , , , 0(0%) | 100 (8%)
[KHS23] | Ti , : , 0(0%) | 100 (5%)
0(0%) | 200 (5%)
0(0%) | 3(@4%)
Disk i 8(5%) | 18 (13%)
[PB] i s s : 10 (6%) | 20 (11%)
18 (5%) | 41 (11%)
0(0%) | 20(5%)
7Q%) | 25(6%)
7%) | 45 (5%)
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Figure 9: Updated projections of needed CPU, disk and tape needs into HL-LHC. On each plot a gray band
represents the projected capacity of the resource within flat budget. Two lines are drawn, each corresponding to
one of the two scenarios considered, Baseline and Weighted Probable (dashed line). The latter incorporates the
improvements summarized in Table 16. The effect of GPUs is not represented in these plots. The tape projected
needs increases almost linearly driven by the RAW data stored. In the legends, the Baseline scenario is described
as “No R&D improvement” and the Weighted Probable scenario as “R&D most probable outcome”.
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1. Efficiently exploit specialized compute architectures and systems. To achieve
this will require the allocation of dedicated facilities to specific processing steps in the
HEP workflows, in particular for “analysis facilities” (Sections II and V); designing ef-
fective benchmarks to exploit Al hardware (Section I1I); improved network visibility and
interaction (Section VII); and enhancements to I/O libraries such as lossy compression
and custom delivery of data (Section IV).

. Invest in portable and reproducible software and computing solutions to allow
exploitation of diverse facilities. The need for portable software libraries, abstrac-
tions and programming models is recognized across all the topics discussed here, and is
especially called out in Processing (Section II), AT Hardware (Section IIT) and Storage
(Section IV). Software frameworks to enable reproducible HEP workflows are also greatly
needed (Sections V and VI).

. Embrace disaggregation of systems and facilities. The HEP community will need
to embrace heterogeneous resources on different nodes, systems and facilities and effec-
tively balance these accelerated resources to match workflows. To do so will require
software abstraction to integrate accelerators, such as those for AI (Section III); orches-

tration of network resources (VII); exploiting computational storage (Section IV); as

well as exploiting system rack-level dis-aggregation technology if adopted at computing
centers.

. Extend common interfaces to diverse facilities. In order to scalably exploit re-
sources wherever they are available, HEP must continue to encourage edge-service plat-
forms on dedicated facilities as well as Cloud and HPC (Section VI), develop portable
edge-services that are re-usable by other HEP projects, and exploit commonality within

COMMUNITY PLANNING EXERCISE: SNOWMASS 2021

HEP and other sciences (Section VI). These interfaces will also need to extend into all
aspects of HEP workflows, including data management and optimizing data movement
(Sections VII, II and IV), as well as the deployment of compute resources for analysis

facilities (Section V). 69
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% Quick program budget overview

+ Software and Computing is the single
largest area in the budget.
= ~Half of S&C is equipment and operation of Tier-1

and Tier-2 facilities.
+ Common Cost is set by our ~30% PhD
headcount in CMS.

+ Role of Risk Contingency and Management
Reserve to be discussed in later
presentations.

+ Personnel support is for engineers,
technical staff, computing professionals, not

scientists.

= We do provide travel/COLA support to scientists
who provide Operations Program deliverables.

2025 Budget Break-out

= Common Cost Common Operations
Detector Operations Software & Computing
US LHC Communicator = Risk Contingency

= Management Reserve

2% 2%

48%

26%




