——
-

) =a kD PRI
. iy = /*((W% N
e sy Lo ; \\* &N | AR |

¥ é

Nl il

- - A * '\’-n-
—e ,. - o ., R W 5 e ) W

R 7S I




The “Nightmare Scenario”



The “Nightmare Scenario”

What if experiments just keep confirming the Standard Model?



The “Nightmare Scenario”

What if experiments just keep confirming the Standard Model?

e Anomalies may eventually go away



The “Nightmare Scenario”

What if experiments just keep confirming the Standard Model?

e Anomalies may eventually go away

e No clear indication of where to look for new physics



The “Nightmare Scenario”

What if experiments just keep confirming the Standard Model?

e Anomalies may eventually go away
e No clear indication of where to look for new physics

e | ast significant discovery in 19987



The “Nightmare Scenario”

What if experiments just keep confirming the Standard Model?

e Anomalies may eventually go away
e No clear indication of where to look for new physics

e | ast significant discovery in 19987

laccelerating expansion of the universe]



Cosmology

The "Nightmare Scenario”

What if experiments just keep confirming the Standard Model?

e Anomalies may eventually go away
e No clear indication of where to look for new physics

e | ast significant discovery in 19987

laccelerating expansion of the universe]



What | Really Think



What | Really Think

e Particle Physics and Cosmology both have a Standard Model

with unprecedented predictive power



What | Really Think

e Particle Physics and Cosmology both have a Standard Model

with unprecedented predictive power

e Our task: leverage this success to extend our understanding
iInto regimes where the Standard Model Is untested



What | Really Think

e Particle Physics and Cosmology both have a Standard Model

with unprecedented predictive power

e Our task: leverage this success to extend our understanding
iInto regimes where the Standard Model Is untested

e Calculating in the SM at high energies is challenging



What | Really Think

e Particle Physics and Cosmology both have a Standard Model

with unprecedented predictive power

e Our task: leverage this success to extend our understanding
iInto regimes where the Standard Model Is untested

e Calculating in the SM at high energies is challenging

e The SM Is not boring



What | Really Think

e Particle Physics and Cosmology both have a Standard Model

with unprecedented predictive power

e Our task: leverage this success to extend our understanding
iInto regimes where the Standard Model Is untested

e Calculating in the SM at high energies is challenging

e The SM Is not boring



What Can We Calculate?



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam

# of observables oc e Of particles



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam

# of observables oc e Of particles

e [hisis a problem of separation of scales



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam

# of observables oc e Of particles

e [hisis a problem of separation of scales

High energy QCD: showering + hadronization



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam

# of observables oc e Of particles

e [hisis a problem of separation of scales

High energy QCD: showering + hadronization
High energy EW: showering



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam

# of observables oc e Of particles

e [hisis a problem of separation of scales

High energy QCD: showering + hadronization
High energy EW: showering

]



What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam

# of observables oc e Of particles

e [hisis a problem of separation of scales

High energy QCD: showering + hadronization
High energy EW: showering

]




What Can We Calculate?

e High energy collider experiments can measure far more than
we can compute

7 of particles < Epeam

# of observables oc e Of particles

e [hisis a problem of separation of scales

High energy QCD: showering + hadronization
High energy EW: showering

At PeV collider, expect ~ 10* W/Z/h in typical EW event
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QCD: Factorization

Standard approach: focus on partially inclusive quantities

0 — X
pp—> W+ X X = hadrons
pp — 00+ X

Factorization theorems:

1 1
o(pip2 — U+ X) ~ Z/ dl’l/ dza f1/a(21) f276(22)
a,b 0 0 A

J

-~

soft
x o(ab— 00 + X)

J/

hard
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Other Approaches

e Energy correlators

Basham, Brown, Ellis, Love (1978) ...
Hoffman, Maldacena (2008) ...

e Quantum simulation

Factorization approach is important even If it 1s not the only
game In town

e [ntuitive
e Wilsonian (compute ‘one scale at a time')

e + of possible observables scales with energy
,LL—l_,LL_ — WWy-- - W, + X
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EW Factorization?

Extending factorization to high energy EW processes iIs not
straightforward

initial state hadron > I

hadronic jet XN jet of W/Z/h

gauge Invariant non-invariant

e E\V gauge invariance broken in IR

e Unbroken EW gauge governs underlying hard process
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D
e wo
+
e+>w< t 1

~ log E/m,

Bloch, Nordsiek (1937!): QED amplitudes are finite if we sum
over soft photons in final state

zlﬁﬁvl . d®(y,)O(E,, < 6)

+

xoete” = ptp” +91- ) < 0

Physical idea: states with additional soft photons are
indistinguishable

But what about the initial state?
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QFT amplitudes are finite if we sum over initial or final states

within an energy range /
Frye, Hannesdottir, Paul, Schwartz, Yan (2018)

/dcpf@(\Ef _E|<8)o(i - f) <

/d@i@(\Ei _ Bl <) oli— ) < oo

In QCD we partially sum over both initial states (PDFs)
and final states (jets)
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Gauge Invariant States

How do we connect physical (gauge invariant) states to
gauge non-invariant ‘parton’ states in hard processes?

Do we even understand this in QED?

—

[? - B — eJO} \\I!>phys =0 Gauss law constraint

= |eTe™) without photons is not a gauge invariant state

Claim: BN exponentiation of final states soft photons
& adding classical soft radiation

Can we obtain a pricipled understanding of the relation between
‘parton’ states and initial /final states in experiments?
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The SM is not Boring

The SM has a great deal of arbitrariness, and is clearly
Incomplete

Dark matter, matter-antimatter asymmetry, inflation...

But completing it seems to break it

Flavor: SM has just the right amount of flavor breaking*

Nattratress  Calculability problem

*Except for the strong CP problem
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e Given SM parameters, we can make predictions
E.g. integrate out top quark

Ncyt2 2
Ton2 ™t T

mi; (= me) = my (p=m) +

J/

N 2
e Add a heavy particle ~ (100 GeV)

v

1672

/12

J/

> (100 GeV)?
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E 4
e Given SM parameters, we can make predictions ;
. BSM
E.g. integrate out top quark "H
myxy ——
N, y?
2 _ 20, €It 02 ...
N 2
e Add a heavy particle (100 GeV) Tt =
mpg
2
Yy
m(p=mx) =mif(p=mx) + 16§2m§( + -

> (100 GeV)?

Eg heavy v : ALpgy = y,,ZLHVR + My, VRVR

my, ~ 0.1 eV ng for my, ~ 10 GeV

2
Y2
sl / (100 GeV)? ~ 102 y*




IS |t a Problem??



IS |t a Problem??

e No problem If there are no physical scales above ~ TeV
...Including quantum gravity!



IS |t a Problem??

e No problem If there are no physical scales above ~ TeV
...Including quantum gravity!

e Otherwise, large hierarchy ‘explained’ by the fact that
the universe Is close to a second order phase transition



IS |t a Problem??

e No problem If there are no physical scales above ~ TeV
...Including quantum gravity!

e Otherwise, large hierarchy ‘explained’ by the fact that
the universe Is close to a second order phase transition




IS |t a Problem??

e No problem If there are no physical scales above ~ TeV
...Including quantum gravity!

e Otherwise, large hierarchy ‘explained’ by the fact that
the universe Is close to a second order phase transition

m?X 4 We live here




IS |t a Problem??

e No problem If there are no physical scales above ~ TeV
...Including quantum gravity!

e Otherwise, large hierarchy ‘explained’ by the fact that
the universe Is close to a second order phase transition

m?X 4 We live here

(100 GeV)? My



IS |t a Problem??

e No problem If there are no physical scales above ~ TeV
...Including quantum gravity!

e Otherwise, large hierarchy ‘explained’ by the fact that
the universe Is close to a second order phase transition

my 4 We live here I'm happy that

the universe 1sn't
a boring metal!

(100 GeV)? My
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_ y

| hope we keep exploring...



