

SOME COMMENTS ABOUT THE DATA

17/07/25 P.Vitulo

7417×7 <u>table</u>

	Time	Point	CH4	TemperaturaMediaC
First date	05-Sep-2023 10:42:55 05-Sep-2023 10:44:17 05-Sep-2023 10:45:38 05-Sep-2023 10:47:01 05-Sep-2023 10:48:24	P1 P1 P1 P1 P1 P1	2.3611 2.4192 3.8303 4.8497 5.359	25.185 25.156 25.099 25.07 25.078
	: 17-Apr-2024 00:52:14	:	:	: NaN
Last date	17 Apr 2024 00:52:14 17-Apr-2024 00:53:35 17-Apr-2024 00:54:58	P5 P5 P5	6.518 7.0015	NaN NaN
	17-Apr-2024 00:56:20 17-Apr-2024 00:57:42	P5 P5	5.7064 7.9563	NaN NaN
	Display all 7417 rows.			

- Taken over 24 hours
- Data rate: about $1\frac{1}{2}$ minute (except when switching from P_i to $P_{i+1} \rightarrow$ about 3 min)
- Sequential P1 P2 P3 P4 P5
- 9 measurements/Point (repeated over the day) :

HOW THE DATA LOOK LIKE: <u>SUMMARY BY POINTS</u>

Point of measure	Total counts
P1	1478
P2	1477
P3	1494
P4	1484
P5	1482
P6	2
Total	7417

P6 REFERENCE (OUTSIDE ?)

HOW THE DATA LOOK LIKE: <u>SUMMARY BY MONTH</u>

Month	Total counts		
Jan	1010		
Feb	1693		
Mar	1355		
Apr	1080		
Sep	1316		
Oct	963		
Total	7417		

SINCE WE HAVE MEASUREMENTS EVERY MINUTE AND HALF, WE NEED TO DECIDE HOW MUCH TO AGGREGATE TO EVALUEATE SOME VARIABLES AND DEDUCE SOME INFORMATION. WE CHOSE TO AGGREGATE DATA HOURLY, BUT THIS CHOICE IS ONLY DICTATED BY THE NEED TO HAVE REASONABLE PLOTS AND STATISTICS.

HOW THE DATA LOOK LIKE: <u>NO BIAS IN THE HOURLY</u> <u>MEASUREMENTS</u> <u>AMONG POINTS OF</u> <u>MEASURE</u>

i.e. ALL THE HOURLY MEASUREMENTS HAVE ABOUT THE SAME DISTRIBUTION IN ALL THE POINTS.

- MEDIAN OF DIST. \rightarrow 12:00
- 50% OF THE DATA ARE WITHIN 5:00 AND 18:00

DISTRIBUTION OF THE HOURLY MEASUREMENTS AT THE POINTS OF MEASURE

...however the statistics of the counts in different hours is not uniform (but overall not less than 20 measurements in each bin). Obviously this conclusion depends on the preceding aggregation choice...

HOW THE DATA LOOK LIKE: SUMMARY BY TIME OF DAY VS

HOW THE DATA LOOK LIKE: SUMMARY BY TIME OF DAY VS POINTS

But...

The <u>logarithm of the concentration</u> is distributed as (about) a gaussian. This means that the raw concentration is distributed as (about) a log-Normal ...

A concentration log-normal of methane indicates that the underline physics variables are the result of multiplicative effects : emission x diffusion x ...

And not the results of a summation effect

To compare different measurements we need to standardize/normalize the values then aggregate data.

Take the <u>logarithm</u> of concentration *X* and standardize it:

$$Z = (\ln(X) - \mu) / \sigma$$

 μ and σ are <u>average</u> and <u>standard deviation</u> of the distribution of $\ln(X)$

From now on (unless otherwise specified) Z-score (or Robust Z-score) refers to that formula

From Z-score to ppm: $ppm = e^{\mu + Z\sigma}$ ($\mu = 2.1 \sigma = 0.6$)

(i.e.
$$Z = -1 \rightarrow ppm = e^{\mu + (-1)\sigma} = 4.5 \ ppm$$
)

Z-SCORE spectra in different Points (compared to total)

Point 6 **Fota** 10 2 Point 6 10¹ 10⁰ 10 ⁻¹ 3 -3 -2 -1 0 1 2 4 Robust Z-score

POINT 'S CONTRIBUTION TO Z-SCORE

The higher the score , the higher the concentration

HOW THE HOURLY CONCENTRATION VARIES DURING THE DAY IN THE DIFFERENT POINTS ?

TAKE THE Z-SCORE DISTRIBUTION AT EVERY POINT, MAKE A CUT AND SEE THE FINAL HOURLY DISTRIBUTION. i.e. take a minimum value of Z-score=0 (CH4 concentration about 7.8 ppm) and see each hour how its distribution varies...

Z-SCORE VS TIME OF DAY (FROM 3:00 TO 6:00) AND MONTH AT POINT 1

Only as an example

UP TO HERE WE WERE INTERESTED INTO THE RELATIONS AMONG THE POSITION MEASURE WITHIN THE BARN.

NOW LET'S COMPARE DIFFERENT MONTHS

