

Detector R&D: 4D tracking - LGAD (DRD3)

Marco Ferrero INFN Torino

Tracker design sensors requirements – Space-Time tracking

Sensor requirements for spatial and temporal tracking in a 10 TeV Detector

	Vertex Detector	Inner Tracker	Outer Tracker
Sensor type	pixels	macro-pixels	macro-pixels
Barrel Layers	4	3	3
Endcap Layers (per side)	4	7	4
Cell Size	$25\mu\mathrm{m} imes25\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes10\mathrm{mm}$
Cell Size Sensor Thickness	$25\mu\mathrm{m} imes25\mu\mathrm{m}$ $50\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$ $100\mu\mathrm{m}$	$\begin{array}{c} 50\mu\mathrm{m}\times10\mathrm{mm}\\ 100\mu\mathrm{m} \end{array}$
Cell Size Sensor Thickness Time Resolution	$25\mu\mathrm{m} imes25\mu\mathrm{m}$ $50\mu\mathrm{m}$ $30\mathrm{ps}$	$\begin{array}{c} 50\mu\mathrm{m}\times1\mathrm{mm}\\ 100\mu\mathrm{m}\\ 60\mathrm{ps} \end{array}$	$\begin{array}{c} 50\mu\mathrm{m}\times10\mathrm{mm}\\ 100\mu\mathrm{m}\\ 60\mathrm{ps} \end{array}$

MuCol annual meeting 2025

Occupancy plots in tracking detectors

MAIA tracking Detector

Occupancy in the tracking system is partially reduced by timing requirements (30 ps and 60 ps time resolutions are assumed in Vertex

and IT+OT respectively)

Tracker design sensors requirements – Radiation Damage

Sensor requirements for spatial and temporal tracking in a 10 TeV Detector

	Vertex Detector	Inner Tracker	Outer Tracker
Sensor type	pixels	macro-pixels	macro-pixels
Barrel Layers	4	3	3
Endcap Layers (per side)	4	7	4
Cell Size	$25\mu{ m m} imes25\mu{ m m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes10\mathrm{mm}$
Cell Size Sensor Thickness	$25\mu\mathrm{m} imes25\mu\mathrm{m}$ $50\mu\mathrm{m}$	$\begin{array}{c} 50\mu\mathrm{m}\times1\mathrm{mm}\\ 100\mu\mathrm{m} \end{array}$	$\begin{array}{c} 50\mu\mathrm{m}\times10\mathrm{mm}\\ 100\mu\mathrm{m} \end{array}$
Cell Size Sensor Thickness Time Resolution	$25\mu\mathrm{m} imes25\mu\mathrm{m}$ $50\mu\mathrm{m}$ $30\mathrm{ps}$	$\begin{array}{c} 50\mu\mathrm{m}\times1\mathrm{mm}\\ 100\mu\mathrm{m}\\ 60\mathrm{ps} \end{array}$	$\begin{array}{c} 50\mu\mathrm{m}\times10\mathrm{mm}\\ 100\mu\mathrm{m}\\ 60\mathrm{ps} \end{array}$

MuCol annual meeting 2025

Radiation hardness requirements @ 10 TeV comparable to HL-LHC level

MuCol annual meeting 2025

Low Gain Avalanche Diode (LGAD) developments -Contributions on Turin

Resistive silicon detector (AC- or DC-RSD)

One of the candidate technology for the major part of the tracker The operation principle is based on signal sharing between read-

out electrodes, through a resistive read-out

- Fill factor close to 100%
- Space resolution: ~ 3-5% of the pitch
- Timing resolution of 30-40 ps

RSD is a technology suitable for:

- Iow density, low power read-out architectures (approximately x100 fewer channels than standard pixel sensors)
- Environment with low-medium event rate

Trench-isolated LGADs (TI-LGADs)

The traditional JTE and p-stop are replaced by trench etched into the silicon sensor

- \blacktriangleright Smaller dead area: trench width ~1µm
- > Small pixels (down to 50 μ m) with high fill factor

R&D ongoing in DRD3 collaboration

22/07/2025

Pixel 2

Pixel 1

1 Trench TI-LGAD

Radiation hardness and Extreme fluence

Compensated-LGAD

Improvement of the multiplication layer design to cope with fluences exceeding $10^{16} n_{eq}/cm^2$

▶ p-in-n LGAD

Study of donor removal mechanism. Propaedeutic for Compensated-LGADs

Projects

Projects oriented to improve the radiation hardness of LGAD technology

- > eXFlu-Innova (AIDAinnova project from 2022 to 2025) and ComonSens (PRIN2022 from 2023 to 2025):
 - → Funding *p-in-n* LGAD, propaedeutic to the design of compensated-LGAD
 - \rightarrow *p-in-n* LGAD is releasing in September
- **CompleX** (ERC from 2024 to 2029):
 - \rightarrow Funding of 3 productions of Compensated LGAD for extreme fluences
 - \rightarrow First batch of compensated LGAD will be released in 2026
- > Partial Activated Boron LGAD (PAB-LGAD) (RD50/DRD3 common project from 2024)
- SiC-4Gain (INFN CSN5 project 2026 to 2028): Silicon Carbide 4D-tracking detector

Projects involved RSD technology development:

- > 4D_Share (INFN CSN5 project 2023 to 2025) and 4D_Share (PRIN2022 from 2023 to February 2026):
 - \rightarrow Funding 2 productions of DC-RSD sensors
 - \rightarrow The second production of DC-RSD is scheduled for the end/beginning of 2025/2026
- **RadHard AC-LGAD** (RD50/DRD3 common project from 2024):

→ An AC-LGAD production with the purpose of investigating and extending the radiation hardness of the RSD technology

- **FAST3-Amplifier** (RD50/DRD3 common project from 2024):
 - → Development of a multichannel amplification boards based on FAST3 ASIC, optimized to readout multi-channel LGAD prototypes (suitable for sensor R&D in laboratory and test beam activities).

Beam test activities ad funding request

Beam tests activities are crucial in order to evaluate the performance of devices

Beam test on DC and AC-RSD

DESY beam line

FAST2

10

RSD2

DESY beam line

Funding request:

- ➢ Beam test: 10 k€
- Single channel Read-out board (optimal for timing): **5 k**€

Single channel Read-out board

State of the art of LGAD for space tracking LGAD based on resistive readout (DC-RSD)

Average signal amplitude seen by each electrode as a function of the (X,Y)_{TRACKER}

State of the art of LGAD for space tracking LGAD based on resistive readout (DC-RSD)

Position resolution (X, Y)_{DC-RSD} - (X, Y)_{Tracker}

> All sensors achieve a space resolution below 5% of the pitch

> Square pixels yield a slightly better spatial resolution

State of the art of LGAD for time tracking

with **20-35µm** thick LGAD UnIrradiated

Time resolution of **20 ps** achieved by **30 \mum**-thick LGAD irradiated up to **2.5**·10¹⁵ n_{eq}/cm^2

Matching LGAD capabilities to muColl request

			cell size	sensor thickness	time resolution	spatial resolution	LGAD technology	
Vertex Detector	VXD	в	$25 \ \mu m imes 25 \ \mu m$ pixels	50 µm	30 ps	5 µm × 5 µm	THIGAD	High occupancy and radiation level
		Е	$25 \ \mu m imes 25 \ \mu m$ pixels	50 µm	30 ps	$5\mu\text{m} imes 5\mu\text{m}$		 R&D in radiation hardness will cover the radiation requirements
n	п	в	50 μ m \times 1 mm macropixels	100 µm	60 ps	7 $\mu m imes$ 90 μm		
Inner tracker Detector		E	50 μ m $ imes$ 1 mm macropixels	100 µm	60 ps	7 $\mu m imes$ 90 μm	RSD	
Outer tracker Detector	от	в	50 μ m $ imes$ 10 mm microstrips	100 µm	60 ps	7 μm × 90 μm	PSD	 Low occupancy and radiation level Pixel size, spatial and temporal resolution
		E	50 µm × 10 mm microstrips	100 µm	60 ps	7 μm $ imes$ 90 μm		 are a perfect fit for present RSD technology RSD will strongly reduce the number of

RSD macro pads are probably better than strips in term of spatial and temporal

pixels

resolution

٠

Backup

A completely new tracker based on RSD (AC or DC couple)

One of the candidate technology for the major part of the tracker

The design of a tracker based on RSD is truly innovative:

- It delivers ~ 20 30 ps temporal resolution
- For the same spatial resolution, the number of pixel is reduced by 50-100
- The electronic circuitry can be easily accomodated
- The power consumption is much lower, it might even be air cooled (~ 0.1-0.2 W/cm²)
- ^{22/07}/²⁰/²⁵ sensors can be really thin

M. Ferrero - INFN Torino - MuColl

Occupancy

Low Occupancy must be ensured to avoid pile-up effects $50x50 \ \mu m$ pads would be sufficient for most of the VTX

Effective area for read out of a single hit is 3x3 pixels

Traditional trench-isolated LGADs could be more suitable mere suitable for VTX