Riunione Referee – 22 Iuglio 2025 R&D Muon Collider

Stato collaborazione internazionale IMCC attività INFN in corso e future - sinergie

Nadia Pastrone

MInternationa UON Collide Collaboration

Gruppi INFN in RD_MUCOL @ CSN1 134 persone/33.2 FTE RD_MUCOL @ CSN1 - ESPP_A_MUCOL @ GE - UE-MUCOL - SIC_4DGAIN BA BO FE GE MI MIB LNF LNL LNS PD PI PV RM1 RM3 TO TS Physics, Detector R&D, MDI, Crystals/Targets, Accelerator Activities

N.B. si chiudono nel 2025 sigle di progetti UE - importanti per fondi personale e di supporto ad attività di R&D di acceleratori e rivelatori

Motivation for a multi-TeV Muon Collider

Strong interest in high-energy, high-luminosity lepton collider

- combines precision physics and discovery reach
- application of hadron collider technology to a lepton collider

Muon collider promises sustainable approach to the energy frontier

limited power consumption, cost and land use
 site evaluation and reuse of existing tunnels

Technology and design advances since the past ESPPU

- reviews of the muon collider concept in Europe and US found **no insurmountable obstacle**
- **identified required R&D**, documented and reviewed within the LDG Accelerator R&D Roadmap
- co-funded mainly by CERN (MTP dedicated line since 2021) EU-MUCOL project (2023-2027)
- strong dedicated contribution from INFN management + CSN1

Aim at 10+ TeV and potential initial stage at 3 TeV Possible initial 10 TeV stage at reduced luminosity New design to reuse existing CERN tunnels: SPS & LHC → whole facility on CERN site Interim report <u>https://arxiv.org/abs/2407.12450</u>

Strong support by US <u>P5 Report</u> @ December 2023

Reflections on a multi-TeV Muon Collider

- A unique innovative and never attempted project capable to reach the energy frontier in a sustainable design:
 - \rightarrow no showstoppers identified so far
 - ➔ many crucial challenging R&D required
- Despite the fact that available resources were not sufficient to cover all the proposed and approved plan prepared by the Accelerator R&D Roadmap
 - ➔ priorities were identified
 - \rightarrow great progresses pave the baseline design completion
 - → 10 TeV lattice and MDI design allow to demonstrate with full simulation the huge physics potential
 - → remarkable synergies on R&D technologies both for science and society
 - ➔ review are encouraging
- To accomplish the required R&D plan
 - → the first set of prototyping and test must be accomplished
 - → the collaboration has to be strengthen to provide more resources

<u>184.</u> Sensitivity study on $H \rightarrow b\overline{b}$, $H \rightarrow WW^*$ and $H \rightarrow b\overline{b}b\overline{b}$ cross sections and trilinear Higgs self-coupling with the MUSIC detector in \sqrt{s} = 10 TeV muon collisions

251. Physics opportunities with high-brightness, high-intensity muon beams at CERN: a staged approach

National Academy of Science report - June 2025

Elementary Particle Physics: Progress and Promise

M. Spiropulu (*Co-Chair*), M. S. Turner (*Co-Chair*), N. Arkani-Hamed, B. C. Barish, J. F. Beacom, PH. H. Bucksbaum, M. Carena, B. Fleming, F. Gianotti, D. J. Gross, S. Habib, Y.-K. Kim, P. J. Oddone, J. R. Patterson, F. Pilat, C. Prescod-Weinstein, N. Roe, T. M.P. Tait *Staff:* T. Konchady, D. Nagasawa, L. Walker, D. Wise, C. N. Hartman, A. Mozhi

<text>

A collider with approximately **10 times the energy of the Large Hadron Collider (LHC) is crucial** for addressing the big questions of particle physics and making discoveries. A **10-TeV muon collider** on the Fermi National Accelerator Laboratory (Fermilab) site would have similar discovery reach as a 100-TeV proton collider. A muon collider combines the physics advantages of an electron-positron and a proton-proton collider,

with a much smaller size.

Electroweak Physics

- The **HL-LHC** will provide legacy measurements for top, ttH, λ_3 and rare decays until a top and high energy run
- Multiple energy points in e⁺e⁻ colliders are important to Higgs precision (i.e. width, HWW, λ₃)
- Tera-Z brings highest overall sensitivity to el.weak
- Significantly improved high-precision tests of the el.weak sector are vital to guide future direct searches of new physics
- Precision and energy are strongly complementary
- A focus on both precision (→ smaller effects) and breadth (→ characterization of any eventual signal) is important in the search of the unknown.
- Fundamental advancements in theory techniques and tools needed

Z pole physics

14

6

European Strategy for Particle Physics

OPEN SYMPOSIUM

Electroweak Physics

7

Searches for BSM Physics

- Need for a future collider programme that can fully leverage both precision and energy, covering the widest range of observables at different scales - below, at and above the weak scale -
- Sensitivity to new physics below the EW scale, typically feebly interacting particles, requires strong synergy with dedicated experiments and fixed target experiments to provide maximal coverage

DM

(WIMP)

2σ, Disappearing Track inematic Limit: 🗸

ESPP 2026: Preliminar

α Indirect Rea

To be updat

8

17

Collaboration

Physics and Detector Concepts

Challenges:

High-energy lepton detector requirements Background from muon decay and beam-beam effects (BiB) **MUSIC** (MUon System for Interesting Collisions)

Achievements

Two detector concepts are being developed Performance studies with GEANT Detailed design and simulations of MDI and background suppression

D. Schulte, Muon Collider, ESPPU Open symposium, venice, june 2023

MAIA

(Muon Accelerator Instrumented Aperatus)

Key conclusions:

Full simulations show good physics performance with near-term technology in spite of BiB

But important improvements are possible

Need strong R&D for **optimization** and **integration**

Proper investment crucial to enable exploitation of full muon collider potential in available time using new technologies, AI, and ML

Detector R&D - next presentations

SEDE	RICHIESTA [keu]	Attività	commento
BA	64.5	HCAL (MPGD-RPC)	sinergia DRD1/DRD6
LNF	54	CRILIN	sinergia DRD6
PD	10	Infrastruttura Si pixel	Cofinanziamento FCC/PD
PD	6	Test beam setup	laboratorio
PV	10	picosec	sinergia DRD1
то	5	LGAD	laboratorio
BA	24	ТРС	sinergia DRD1
МІ	325	Cavo HTS - attrezzatura RF	Sinergia ESPP_A_MUCOL

Muon demonstrator

Cooling cell test set up

Accelerator R&D - next presentation

Key Target Parameters

Param.	Unit	Site inde	ependent	CERN 2	tunnels	CERN 1 tunnel		
Sqrt(s)	TeV	3	10	3.2	7.6	3.2	7.6	
L/IP	10 ³⁴ cm ⁻² s ⁻¹	1.8	17.5	2	10	0.9	7.9	
Int L	ab-1	1	10	1	10	1	10	
Accumulation time	years	2+2.8	2+2.9	2+2.5	2+5	2+5.6	2+6.3	
С	km	4.5	11.4	4.8	8.7	11	11	
B _{dipole}	т	11	14	11	14	4.8	11	
Collider dipole	technology	Nb3Sn	HTS	Nb3Sn	HTS	NbTi	Nb3Sn or HTS	

Accumulation time: Time to obtain the integrated luminosity with two IPs. Ramp-up over the first three years 5%, 25%, 70% of nominal.

Accelerator R&D Roadmap

Bright Muon Beams and Muon Colliders

Panel members: D. Schulte, (Chair), M. Palmer (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto Associated members: A. Grudiev, R. Losito, D. Lucchesi

Technically limited timeline

presented to CERN Council in December 2021 published https://arxiv.org/abs/2201.07895 now under implementation by LDG + Council...

Roadmap Plan

[FTEy]

13.5

0

15

7.5

22

3.5

18.2

6.5

29

22.5

7.6

0

4.9

3.8

13

193

[kCHF]

300

0

0

520

0

0

0

100

250

25

1250

2445

R&D Plan Reviews

LDG Mid-term Review

Reviewers: Norbert Holtkamp (chair), Mei Bai, Frederick Bordry, Nuria Catalan-Lasheras, Barbara Dalena, Massimo Ferrario, Andreas Jankowiak, Robert Rimmer, Herman ten Kate, Peter Williams

Found good progress for Roadmap implementation

• "75% of Roadmap goals have been achieved"

Recommendations:

- Develop a Start-to-End Performance Simulator:
 - This is (one of) the most urgent and crucial parts of the R&D plan
- Define and fund a High-Field HTS and RF Development Strategy:
 - This is an important part of the R&D plan
 - New funding needed
- Conduct an Independent Review of Scope, Schedule, and Costs:
 - Initial review by our International Advisory Committee (IAC)

MuCol mid-term review by EU Very good technical progress

IAC review:

Permanent members: Ursula Bassler (chair), Mauro Mezetto, Hongwei Zhao, Akira Yamamoto, Maurizio Vretenar, Stewart Boogert, Sarah, Demers, Giorgio Apollinari Additional experts confirmed: Pierre Vedrine, Stephen Gourlay, Lyn Evans, Alessandro Gallo, Barbara Dalena, Pantaleo Raimondi

"During its current IMCC review, the IAC was highly impressed by the significant progress and the marked improvement in the robustness and quality of the studies. The muon collider presents an extraordinary technical opportunity, and encouragingly, all major technical challenges are being actively tackled. In particular, launching and supporting a cooling demonstrator and test stands as soon as possible will be crucial to sustaining this strong momentum."

Site Specific Designs

Started studies for concrete site at CERN and Fermilab, looks very promising

CERN:

One RCS in SPS and two in LHC Construct facility on CERN land

- Natural energy stages: 3.2 and 7.6 TeV
- 10 TeV maybe possible with better technology

Fermilab:

One RCS in Tevatron tunnel, Three RCSs in one site-filler tunnel

D. Schulte, Muon Collider, ESPPU Open Symposium, Venice, June 2025

Timeline and R&D Programme Proposal

https://indico.cern.ch/event/1439855/contributions/6542430/

IMCC Organization after the Roadmap

- Study Leader Daniel Schulte
 - Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers Collaboration Board (ICB)

CERN is host organisation, can be transferred to other partner on request of CERN and with approval of ICB Will review governance in 2024, US could join at that time

MoC signed by CERN CEA INFN STFC-RAL ESS IHEP and different universities in EU, US, China

19 countries: CERN, IT, US, UK, FR, DE, CH, ES.....

80 institutes

- - Flected chair : Nadia Pastrone
 - Steering Board (SB)
 - Chair Steinar Stapnes,
 - CERN members: Mike Lamont, Gianluigi Arduini,

Dave Newbold (STFC), Pierre Vedrine (CEA),

Beate Heinemann (DESY)

ICB chair and SL and deputies

- International Advisory Committee (IAC) •
 - Chair Ursula Bassler (IN2P3)

Coordination Committee

IMCC Countries and Institutes

Signed MoC (61) or *requested MoC* contributor

Microsoft Navinfo On Places, OpenStreetMap, Overture Maps Fundation, TomTom, Zenrin

ASIA

China

Project Organization

19

Design Study activities: EU project

Total EU budget: 3 Meu start March 1 2023 – 4 years18(+14) beneficiaries (associated)END 28 FEB 2027

INFN 510 keu UniMI 300 keu UniPD 100 keu + associate partners: UniBO, UniPV INCLUSO OVERHEAD

MuCol study will produce a coherent description of a novel particle accelerator complex that will collide muons of opposite charge at the energy frontier. The study will target a centre-of-	INFN – BUDGET
mass energy (ECIVI) of 10 lev with 3 lev envisagea as a first stage.	Total: 408 keu
 The main outcome of MuCol will be a report documenting the facility design that should demonstrate that: the physics case of the muon collider is sound and detector systems can yield sufficient resolution and rejection of backgrounds; there are no principle technology showstoppers that will prevent the achievement of a satisfactory performance from the accelerator or from the detectors side; 	AdR: 362 keu Altro: 46 keu
 the muon collider provides a highly sustainable energy frontier facility as compared to other equivalent colliders; exploiting synergies with other scientific and industrial R&D projects, a valuable platform to provide Europe a leading edge not only in terms of discovery potential, but also for the development of associated technologies. 	GE: 10 keu missioni MI: 8 keu missioni
The final report will include a thorough assessment of benefits and risks of the accelerator and	MI: 16 keu consumo
detector complex, including an evaluation of the scientific, industrial and societal return beyond high-energy physics, the cost scale and sustainability of the complex and the impact arising from an implementation on the CERN site	TO: 4 keu progetto

MuCol MuCol Mucol

HORIZON-INFRA-2022-DEV-01-01: Research infrastructure concept development

Cost and Power Scale

Design of collider and components advanced enough to estimate cost and power

Cost and power estimates based on conceptual designs and scaling from know components, e.g.

- Conceptual design and simulations of fastramping magnets and power converter
- Detailed scaling from ILC cryostats and cavities to RCS
- Beam loss studies for cryogenics power
- •

...

More work to be done

- Will perform overall optimization
- Further R&D will reduce cost uncertainty (e.g. HTS solenoids)

	Unit	3.2 TeV	7.6 TeV
Operation power	MW	117	182
Energy consumption	TWh	0.53	0.82
Stand-by power	MW	73	111
Energy consumption	TWh	0.09	0.14
Off state power	MW	58	69
Energy consumption	TWh	0.17	0.21
Yearly energy consumption	TWh	0.8	1.2

R&D Programme

Accelerator design

• Complete start-to-end design to validate and optimize performance, cost, power and risk

Muon cooling technology

- Implementation in steps important for timeline
- Need hardware, in particular RF test stands
- New detector technologies useful for instrumentation
- Cooling RF requires urgent test infrastructure

Detector

• Strong potential for further improve physics potential with technologies, AI and ML

Magnet programme

- Have conceptual designs, need hardware
- HTS solenoids have important synergy with society (also power converter)
 - Industry is ready to invest
 - Must not miss the opportunity

D. Schulte, Muon Collider, ESPPU Open Symposium, Venice, June 2025

Detailed R&D programme proposal with deliverables defined

Year	Ι	II	Ш	IV	V	VI	VII	VIII	IX	X
Accelerator Desig	n and Te	echnolog	gies							
Material (MCHF)	1.6	3.2	4.8	6.4	9.6	10.8	12.0	12.0	12.0	12.0
FTE	47.1	60.6	75.0	85.0	100.0	120.0	150.0	174.6	177.2	185.1
Demonstrator										
Material (MCHF)	0.6	2.2	3.9	5.4	7.8	15.1	25.9	32.4	31.8	12.6
FTE	9.5	11.0	12.5	29.2	29.7	30.5	25.5	27.7	26.7	25.5
Detector										
Material (MCHF)	0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1
FTE	23.4	46.5	70.0	93.0	93.0	93.0	93.0	116.4	139.5	139.5
Magnets										
Material (MCHF)	3.0	4.9	10.1	10.0	11.0	13.4	11.7	7.2	6.6	4.7
FTE	23.3	28.4	36.4	40.9	44.3	47.1	46.2	37.7	36.1	29.4
TOTALS										
Material (MCHF)	5.7	11.4	20.3	23.9	30.6	41.4	51.7	54.2	53.5	32.4
FTE	103.3	146.5	194.0	248.1	267.0	290.6	314.8	356.3	379.4	379.6

Key conclusions:

- Need the budget
- Start in Europe using exiting momentum
- Ramp up in the US and other regions

Muon Cooling Demonstrator

D. Schulte, Muon Collider, ESPPU Open Symposium, Venice, June 2025

Launch RF test stands and first module (700 MHz test stand) right away

Important decision in 2028 on sharing of effort and demonstrator location

Two promising demonstrator site studies at at CERN Budget for site Fermilab study approved

Muon Cooling Demonstrator

Challenge:

Demonstrate muon cooling technology in stages Critical for timeline

Achieved:

- Defined the scope and concept, made initial cost estimate, investigated three promising locations at CERN
- Staged timeline to implement demonstrator
- SLAC is moving forward building a 3/1.3 GHz test stand

RF Test stands, to develop novel RF and magnet technologies

One-cell module to test RF in operational magnetic environment

Five-cell module to demonstrate integration of absorber, RF and magnets

Demonstration of cooling module to show operation with beam

demonstrate beam physics performance

Key conclusions:

Demonstration of cooling to

- Installation of demonstrator at CERN appears possible with limited cost
- Fermilab has approved a study
- RF test stands are critical and urgent
- Consistent with implementation timeline

Demonstrator Workshop @ Milano November 5-7, 2025

Way Forward

Implement the proposed R&D plan, with deliverables and resources estimates for the next 10 years

- Prepare sharing of work between partners
- Central funding through CERN and other partners is instrumental
- Identify additional funding sources
- Need strong support of ESPPU

Started a task force to prepare the implementation

Exploit synergy with other particle physics and accelerators

• Muons, neutrinos, ...

Strong synergy with societal applications exist

- HTS magnets for fusion reactors, wind power generators, motors, material science, health applications
- Power converter

Design of 10 MW HTS wind generator

G

Collaboration on target solenoid/fusion with F4P,

ERUOFusion, GaussFusion, ENI is key example

- Have agreements that will lead to resources
- An opportunity for particle physics to make an important impact on society

Early career experts are very motivated by the required and possible innovations

Attività R&D Acceleratori simulazioni – prototipi – misure di laboratorio

MI, GE, LNL, LNS, NA, <mark>PD, TO, TS</mark> (FE, RM1, RM3)

- Magneti (MI-LASA, GE) → progetto ESPP, EU-MuCol (WP7)
- Radiofrequenze SC (SC-RF) (MI-LASA) → progetto ESPP , EU-MuCol (WP6)
- Radiofrequenze NC-RF (MI-LASA,LNL,LNS,NA) → progetto ESPP , EU-MuCol (WP6)
- Integrazione cooling cell (MI-LASA,LNL,LNS,NA,TO) → EU-MuCol (WP8)
- Machine Detector Interface
 progetto ESPP (personale), EU-MuCol (WP2-WP5)

CRUCIALE PER STUDI DI FISICA E DETECTOR – PERFORMANCE MACCHINA

• Cristalli per i fasci, misure di laboratorio per finestre sottili in fase di definizione

Attività INFN – FTE progetti in sinergia da cambiare

Progetti con % SINERGICHE: UE-MUCOL: GE, LNS, PD, RM1, TO, TS + MI Univ e PD Univ PRIN_20229TBY8B:in chiusura SIC_4DGAIN nuova sigla CSN5

SEDE		FTE TOTALE	MuCol	ALTRO			ATTIVITA'			
		*100			FISICA/SIMULAZIONI	R&D DETECTOR	ACCELERATORI	COMMENTO	PRIN	DRD
BA		550			х	х		Fisica HCAL HPTPC	calo	х
во	DTZ	80			x		x	Fisica teo e Fast ramping Magnets		
FE	DTZ	100				x	х	Cristalli		х
FI	DTZ	130			x	х		Fisica Detector		
GE		280	120			х	x	Magneti		
LNF		280				х		CRILIN	calo	х
LNL	DTZ	10					x	RF +(bersagni sottili)		
LNS	DTZ	15	15				x	RF		
MI		370	65				x	Magneti e RF		
MIB	DTZ	10					x	Test facility-dimostratore		
PI	DTZ	50			x	х		Fisica Detector		
PD		550	20		x	х	x	Fisica Detector Calcolo MDI Dimostratore		х
PV		285			x	х		Fisica e picosec+ generatori teo	gas - no FTE	х
RM1		165	20		x		x	MDI fisica e bersagli/materiali		х
RM3	DTZ	20			x			fisica		
то		420	25	120	x	х	x	fisica R&D detector MDI e accel	gas - no FTE	x
TS	DTZ	30	20		x			fisica e ricostruzione		х

		RD_MUCOL	MuCol
TOT FTE	33,2	27,75	4,2

CSN5/altro in preparazione 1,2

Always investigating synergies on physics and technologies Grazie! domande?

uon4Future_

Venezia

26-30 May 2025

High-priority future initiatives [..]

In addition to the high field magnets the **accelerator R&D roadmap** could contain:

[..] an **international design study** for a **muon collider**, as it represents

a **unique opportunity** to achieve a *multi-TeV energy domain* beyond the reach of $e^+e^-colliders$, and potentially within a *more compact circular tunnel* than for a hadron collider. The **biggest challenge** remains to produce an intense beam of cooled muons, but *novel ideas are being explored*.

extras

International Muon Collider Collaboration @ CERN

After the ESPPU recommendation in June 2020:

Laboratory Directors' Group (LDG) initiated the Muon Collider Collaboration July 2, 2020

Objective:

Project Leader: Daniel Schulte

In time for the next European Strategy for Particle Physics Update, the Design Study based at CERN since 2020 aims to

establish whether the investment into a full CDR and a **demonstrator** is scientifically justified.

It will **provide a baseline concept**, well-supported performance expectations and assess the associated key

risks as well as cost and power consumption drivers.

It will also identify an R&D path to demonstrate the feasibility of the collider.

Scope:

- Focus on the high-energy frontier and two energy ranges:
- **3** TeV if possible with technology ready for construction in 10-20 years
- 10+ TeV with more advanced technology, the reason to choose muon colliders
- Explore synergies with other options (neutrino/higgs factory)
- Define **R&D path**

Do not yet have the resources of the reduced scenario Priorities with available expertise and resources Are approaching O(40 FTE) Efforts to increase resources

Energy efficiency of present and future colliders

Thomas Roser et al., Report of the Snowmass 2021 Collider Implementation Task Force, Aug 2022

consumption uncertainty for the different collider concepts.

The effective energy reach of hadron colliders (LHC, HE-LHC and FCC-hh) is approximately a factor of seven lower than

that of a lepton collider operating at the same energy per beam

Long Term R&D

- With the aim to begin Civil Construction in 2040.
- Site specific technical designs, site preparation, an environmental impact study and all the corresponding procedures in preparation for construction need to be conducted.
- As well as the preparation for civil engineering construction works, obtaining all required permits, preparation of technical documentation, tenders and commercial documents.

RF and High-Field HTS Development Strategy

For the RF development:

The key challenge is the normal conducting RF in the muon cooling section

- Attempt to remain within state of the art for the other parts
- This might change once the commitment to a muon collider becomes stronger This is therefore a part of the muon cooling technology development

Had good discussions with the LDG RF panel SLAC is investing into an RF test stand

• Also efforts at INFN and in the UK

A clear Roadmap for the development of HTS magnets exists and funding needs to be secured

• The LDG should play an important role

The HTS solenoid technology is of high importance for societal applications

- We can profit from developments driven by society
- We can contribute to society
- We see that this is leading to additional support for R&D

The power converter for the fast-ramping magnets are of high relevance for society

Demonstrator Facility: a crucial step forward!

Planning **demonstrator** facility with muon production target and cooling stations

Suitable site exists on CERN land and can use PS proton beam

• could combine with **NuStorm** or other option

Possibility around TT10

@ CERN

@ FNAL

International Muon Collider Collaboration: Demonstrator Workshop

@ FNAL October 30 – November 1, 2024

Time-critical Developments

Identified three main technologies that can limit the timeline

Muon cooling technology

- **RF test stand** to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator
 - Muon beam production and cooling in several cells

Magnet technology

- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Important Developments

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Machine Detector Interface - beam-induced background

Background is a significant driver for MDI design - background sources:

- Muon decay
- Beam halo losses and Beam-beam (mainly incoherent e-/e+ pair production)

International

Proton Complex

Challenge:

- 2 MW, 5 GeV, 5 Hz,
- 5 x 10¹⁴ protons/pulse
- Proton pulse accumulator and compressor rings

Achieved:

- Accumulator and combiner ring lattices
- First collective effects studies show stable beam
- Optimise between one or two bunches in compressor

Fig. 5.1.8: Simulation of the full compression for one bunch at 5 GeV. Since this requires a 2 bunch solution scheme, this bunch has half of the full intensity shown in Table 5.1.1. Notice that at the end of the compression there is still some emittance blow up that need still to be addressed.

Key conclusions:

- Can compress 2 MW, 5 GeV proton beam to two 2 ns bunches, then merge them
 - Optimisation in compressor ring for collective effects ongoing
- For 4 MW need 10 GeV beam
- Cool beamline to avoid ion loss from black body radiation

Target

Challenges:

- 2 MW, 5 Hz, 400 MJ/pulse target
- Can we replace mercury with graphite?

Achieved:

- Initial 2 MW graphite target conceptual design, pion yield optimised
- HTS solenoid and shielding concept developed
- Study of proton removal ongoing

Fig. 6.5.1: 2D map of the displacement per atom (DPA) in the superconducting magnets of the target area (left) and the peak DPA in the coils most exposed to radiation (right).

Target roo

Target support structure

Target beam pipe

Key conclusions:

- Yield, magnet shielding, target stress, cooling, radiation are OK
- Components survive 2 MW beam
- Higher power alternatives to study:
 - Graphite
 - Liquid metal

Need magnet hardware

Muon Cooling Lattice Design

D. Schulte, Muon Collider, ESPPU Open Symposium, Venice, June 2025

• Study of collective effects important

Muon Cooling Technology

Challenges:

- NC RF cavities in magnetic field (30 MV/m)
- HTS magnets (up to 40 T in final cooling)
- Bright beam hard on absorbers and windows
 - Can evaporise liquid hydrogen

- **MuCool** demonstrated >50 MV/m in 5 T
- H2-filled copper
- Be end caps

Use of H2 gas in final absorbers

Absorber length s [cn

MAP proved gradient Initial RF designs

More RF design ongoing

D. Schulte, Muon Collider, ESPPU Open Symposium, Venice, June 2025

Key conclusions:

- Ready to ramp-up effort, in particular prototyping and experimental work, also beamdynamics
- **Need RF test stands** for experimental optimization
- SLAC is building one, INFN and UK are preparing
- Need test cell prototype

RCS Designs

Challenge:

- Uses fast-pulsed normal magnets
- 5 Hz pulses of O(1-10ms)
- 6-35 km circumference
- Cost
- Recover energy from magnetic field
- High bunch charge
- Maintain beam quality

Achieved:

- Lattices for all site independent RCSs
- Beam propagation through complex
- Conceptual design of magnets and power converters
- Optimised design together with RF

RCS	E [J/m]	Loss [%]	P [MW]
SPS 1	5447	1.1	1.9
LHC 1	5678	1.6	12.8
LHC 2	5752	6.3/2	26.6

Acceleration SC LINAC RLA 1,2 RCS 1,2,3 & 4

Key conclusions:

- 1.3 GHz TESLA-type cavities work
- Emittance transport is OK
- Cost and power is OK
- Need to connect to initial linacs
- Need to build prototypes

Collider Ring

Challenges:

500 W/m loss, magnet strength, lattice design with beta 1.5-5 mm, 0.1% beam energy spread

Achieved:

- Magnet shielding design
- Magnet performance model and conceptual designs
- Cryogenics conceptual design
- Lattice reaches target betafunctions but not yet full target energy acceptance
- First studies of mover system impact on beam
- Impedance is OK

Cryogenic loads at different temperatures shield) are assumed to be at 80 K. In the legend, "BIL" stands for "beam-induced losses".

Shielding (30-40 mm)

Key conclusions:

 β^* [mm]

Magnets, shielding, cooling concepts are OK Further improve energy acceptance, but OK with energy spread predicted in muon cooling Imperfection mitigation next Magnet model/prototypes

Placement Studies

Challenge:

Obtain negligible neutrino flux

Achieved:

3D 😂 🖬 🖗

- **Detailed modelling** ٠
- First good orientation found ٠
- Mover system concept ٠

Magnet R&D Impact

R&D Impact Examples

- Fusion for Energy (ITER EU Domestic Agency)
 - Framework agreement and first addendum in final negotiation
 - Contribution to the design of the HTS target solenoid, relevant to the central solenoid of DTT
- EUROFusion (next step European fusion reactor)
 - Framework agreement signed in 2023, first addendum signed in 2024
 - Contribution to the design of the HTS target solenoid, relevant to the magnets of a Volumetric Neutron Source proposed as next step in the European fusion strategy
- Gauss Fusion (one of the leading EU fusion start-ups)
 - Consultancy agreement signed in 2023
 - CERN contribution to the design of the LTS/HTS GIGA stellarator magnets, based on advances in the HTS target solenoid
- ENI (oil and gas energy giant)
 - Framework agreement and first addendum signed in 2024
 - Collaboration on the conceptual design and project proposal for the CERN construction of a large bore HTS solenoid (20@20 model coil) relevant to the muon collider and fusion
 - Infineon Technologies Bipolar (world leader bipolar high-power semiconductors, focus on green grid)
 - IFAST-2 proposal to INFRA-2025-TECH-01-02 (CERN, INFINEON, PSI)
 - Proposal of fast pulsed power cell + magnet system sent to IFAST-2 coordination for ranking at TIARA
 - Industrial interest in rapidly pulsed and large energy/power supplies

Note: Examples in Europe because we restarted here

Expect similar interest in all regions

en

Start-to-end Model

This is an important part of the proposed R&D plan

Due to resource limitations we had to set priorities in the LDG Roadmap:

- Design of the collider areas with lattice challenges and contained Critical Technology Elements
- Address the key challenges such as neutrino flux and beam-induced detector background
- Development of missing critical simulation tools
- Development of realistic performance targets for the components

Now available:

- Initial cost model
- Initial power consumption model

With increased resources can:

- Design missing connecting systems
- Further improve existing system designs
- Refine cost and power consumption model
- Optimise for risk and cost

Are introducing a **formalized configuration management** for the overall optimisation

Power Consumption Estimate

Power estimate is based on

- Conceptual designs, e.g. fast-ramping magnets and power converter
- Detailed estimates for RF systems
- Cryogenics power estimates include beam losses and shielding
 - More study for beam loss in RCS RF, maximum range (-4 to +9 MW for 3.2 TeV and -10 to 19 MW for 7.6 TeV)
- For cryostats detailed scaling (e.g. pulse length, rate, etc.) from known cryostats has been applied
- An overall estimate for general cooling and ventilation has been added

No overall optimization has been performed for the power consumption

	Unit	3.2 TeV	7.6 TeV
Operation power	MW	117	182
Energy consumption	TWh	0.53	0.82
Stand-by power	MW	73	111
Energy consumption	TWh	0.09	0.14
Off state power	MW	58	69
Energy consumption	TWh	0.17	0.21
Yearly energy consumption	TWh	0.8	1.2

RCS	E [J/m]	E _{iron} [J/m]	E _{copper} [J/m]	Loss [%]	P [MW]
SPS 1	5447	10	52	1.1	1.9
LHC 1	5678	9.2	80.6	1.6	12.8
LHC 2	5752	63.4	298	6.3/2	26.6

Energy in magnets, losses per cycle and total power at 5 Hz including cooling

Injector Complex

- The injector complex needs to undergo optimization before detailed design.
- Each component of the surface injector complex needs tailored civil engineering design based on • individual component requirements.
- Upon freezing the layout, detailed studies into the environment, topography and below ground services can be conducted.

Collider Ring and Interaction Region

- A preliminary cross section of the Collider Ring has been established based on an LHC cross section.
- The Interaction Regions haven't yet been designed.
- An Interaction Region from the FCC housing a single detector has been used for the preliminary costing exercise as well as the affiliated shafts and surface sites.
- Therefore, specific designs tailored to the Muon Collider Ring need to be developed, specifically, cavern and shaft sizes for the Interaction Region as well as any further areas necessary to accommodate the required services.

Surface Structures

- Ensuring the surface structures are housed where possible on CERN owned land is of upmost importance.
- Geographical studies will confirm surface placement of the injector complex and particularly, the surface experimental sites if not to be housed on CERN land. Ensuring these surface sites are in turn located on feasible plots of land.
- The Neutrino Flux model, however, aims to find an optimal Collider Ring placement with the surface experimental sites housed on CERN land.

Magnets

Achieved:

- Systematic dipole/solenoid performance prediction (LTS and HTS)
 - Aperture, field, cost, stress, loadline, protection, ...
- HTS solenoid designs (6D cooling, final cooling, target)
- Normal-conducting fast-pulsed dipoles (HTS as alternative)
- Technically limited R&D timeline developed

First HTS winding tests

Key conclusions:

- Design work is basically done
- Opportunity to **ramp up** effort (engineering designs, building models, ...)
- With sufficient resources HTS solenoids and Nb₃Sn dipoles could be ready for decision in 10-15 years, consistent with implementation timeline
- HTS dipoles likely take longer

R&D Plan Deliverables and Resources

Technolo	ogies l	Deliv	erabl	es				Ke	y parai	neters	and go	als					
						Magn	ets										
Target so	lenoid I	Deve	lop co	nducto	r, windi	ing and	magne	t 1 m	1 inner	/ 2.3 m	outer o	diamete	rs , 1.4 m		Technologies	Deliverables	Key parameters and goals
	technology					len	gth, 20	T at 20	Κ				Target solenoid	Magnets Develop conductor, winding and magnet	1 m inner / 2.3 m outer diameters, 1.4 m		
Split 6D	plit 6D cooling Demonstration of solenoid with cell					510) mm b	ore, gap	200 m	m, 7 T	at 20 K		Split 6D cooling	Demonstration of solenoid with cell	510 mm bore, gap 200 mm, 7 T at 20 K		
solenoid	olenoid integration											Final cooling solenoid	Build and test HTS prototype	$50\mathrm{mm}$ bore, $15\mathrm{cm}$ length, $40\mathrm{T}$ at $4\mathrm{K}$			
Final coo	ling I	Build	l and t	est HTS	S protot	vne		50	mm bo	re. 15 ci	m lengt	h 40 T	at 4 K	L	Fast ramping magnet system	Prototype magnet string and power converter	20 mm x 100 mm, 1.8 T, 9.9 T/s
solenoid		Duna	· und t	0001111	proto	JPC		001		10, 100	in long.	, 10 I	ut III		LTS collider dipole	Demonstrate Nb ₃ Sn collider dipole	160 mm diameter, 11 T, 4.5 K, 5 m long
soleliolu															HTS collider dipole	Demonstrate HTS collider dipole	140 mm diameter, 14 T, 20 K, 1 m long
													-		HTS collider quadrupole	Demonstrate HTS IR quadrupole	140 mm diameter, 300T/m, 4.5K, 1m long
	Year		I	Π	III	IV	V	VI	VII	VIII	IX	X			<u> </u>	Radiofrequency	
	Accelerator De	esign	and Te	chnolog	ies										Muon cooling RF cavities	Design, build and test RF cavities	$352\mathrm{MHz}$ and $704\mathrm{MHz}$ in $10\mathrm{T}$ field
	Material (MCH	F)	1.6	3.2	4.8	6.4	9.6	10.8	12.0	12.0	12.0	12.0			Klystron prototype	Design/build with Industry 704 MHz (and later 352 MHz) klystron	$20\mathrm{MW}$ peak power, $704\mathrm{MHz}$ / $352\mathrm{MHz}$
	FTE		47.1	60.6	75.0	85.0	100.0	120.0	150.0	174.6	177.2	185.1			RF test stands	Assess cavity breakdown rate in magnetic field	$20\text{-}32\mathrm{MV/m},~704\mathrm{MHz}\text{-}3\mathrm{GHz}$ cavities in 7–10 T
	Demonstrator														SCRF cavities	Design SRF cavities, FPC and HOM couplers, fast tuners, cryomodules	352 MHz, 1056 MHz, 1.3 GHz, 1 MW peak power (FPC)
	Material (MCH	F)	0.6	2.2	3.9	5.4	7.8	15.1	25.9	32.4	31.8	12.6			First 6D cooling cell	Muon Cooling Build and test first cooling cell	
	FTE		9.5	11.0	12.5	29.2	29.7	30.5	25.5	27.7	26.7	25.5			5-cell module	Build and test first 5-cell cooling module	
	Detector														Cooling demonstrator	Design and build cooling demonstrator facility	Infrastructure to test cooling modules with muon beam
	Material (MCH	F)	0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1			Final cooling absorber	Experimental determination of final cooling absorber limit	3×10^{12} muons, 22.5 µm emittance, 40 T field
	FTE	í	23.4	46.5	70.0	93.0	93.0	93.0	93.0	116.4	139.5	139.5				Design & Other Technol	logies
	Magnets		2011	1010	7010	2010	2010	2010	2010	110.1	10710	10710			Neutrino flux mover system	Protoype components and tests as needed	Range to reach O(±1mradian)
	Material (MCH	E)	30	10	10.1	10.0	11.0	13.4	117	72	66	47			Beam Instrumentation	Instrumentation component designs	Protoype components and tests as needed
	FTF	- 1	23.3	7.7 28.4	36.4	40.0	44.3	47.1	46.2	377	36.1	294			Target Studies	Target design and test of relevant components	$0.4\mathrm{MJ/pulse},5\mathrm{Hz}$
			23.5	20.4	50.4	40.9	5	47.1	40.2	51.1	50.1	29.4			Start-to-End Facility Design	A start-to-end model of the machine consistent with realistic performance	Lattice designs of all beamlines, simu- lation codes with relevant beam physics.
	IUIALS			11.1			20.6		51 5	540		00.4				specifications	tuning and feedback procedures
	Material (MCH	F)	5.7	11.4	20.3	23.9	30.6	41.4	51.7	54.2	53.5	32.4					
	FTE	1	103.3	146.5	194.0	248.1	267.0	290.6	314.8	356.3	379.4	379.6					

R&D Plan Deliverables and Resources

Technologies Deliverables Key parameters and								and go	als				_			
						Magn	ets									
Target sol	enoid	Devel techn	lop co ology	nducto	r, windi	ng and	magnet	t 1 m leng	1 m inner / $2.3 m$ outer diameters, $1.4 mlength, 20 \text{ T} at 20 \text{ K}$					Technologies	Deliverables Magnets Develop conductor, winding and magnet	Key parameters and goals
Split 6D o solenoid	cooling	Demo integr	onstrat ration	tion of	solenoi	d with c	ell	510) mm b	ore, gap	2 00 m	m,7T;	at 20 K	Split 6D cooling solenoid Final cooling solenoid	technology Demonstration of solenoid with cell integration Build and test HTS prototype	length, 20 T at 20 K 510 mm bore, gap 200 mm, 7 T at 20 K 50 mm bore, 15 cm length, 40 T at 4 K
Final cooling Build and test HTS solenoid					<u>S protot</u> Total	S prototype 50 mm bore. 15 cm length. 40 T at 4 K Totals:								Fast ramping magnet system LTS collider dipole HTS collider dipole HTS collider dipole	Prototype magnet string and power converter Demonstrate Nb ₃ Sn collider dipole Demonstrate RCS HTS dipole Demonstrate HTS collider dipole Demonstrate HTS IR ouadrupole	<u>30 mm л 100 mm, 1.8 Т, 3.3 Т/с</u> <u>160 mm</u> diameter, 11 Т, 4.5 К, 5 m long 30 mm x 100 mm, 10 Т, 20 К, 1 m long 140 mm diameter, 14 Т, 20 К, 1 m long 140 mm diameter, 3007/m, 4.5 К. Im long
YearIIIAccelerator Design and Technolo						Juration 10 years									Radiofrequency Design, build and test RF cavities Design/build with Industry 704 MHz	352 MHz and 704 MHz in 10 T field 20 MW peak power, 704 MHz / 352 MHz
	FTE Demonstrator		47.1	60.6	Acce	lerat	or: 30	00 M	00 MCHF material, 1800 FTEy						(and later 352 MHz) klystron Assess cavity breakdown rate in magnetic field Design SRF cavities, FPC and HOM coupler feet tunge groupdular	20-32 MV/m, 704 MHz-3 GHz cavities in 7-10 T 352 MHz, 1056 MHz, 1.3 GHz, 1 MW
	Material (MCH FTE	IF)	0.6 9.5	2.2 11.0	Dete	ctor:	29.7	20 M	25.5	mate	erial,	900 25.5	FTEy	First 6D cooling cell 5-cell module	Muon Cooling Build and test first cooling cell Build and test first 5-cell cooling module	Jeak powei (FTC)
	Detector Material (MCH	IF)	0.5	1.1	1.6	2.1	2.1	2.1	2.1	2.6	3.1	3.1		Cooling demonstrator Final cooling absorber	Design and build cooling demonstrator facility Experimental determination of final cooling absorber limit Design & Other Technole	Infrastructure to test cooling modules with muon beam 3×10^{12} muons, 22.5 µm emittance, 40 T field
-	Magnets	·	23.4	40.5	70.0	95.0	95.0	95.0	95.0	110.4	159.5	139.5		Neutrino flux mover system	Protoype components and tests as needed	Range to reach O(±1mradian)
	Material (MCH FTE	IF)	3.0 23.3	4.9 28.4	10.1 36.4	10.0 40.9	11.0 44.3	13.4 47.1	11.7 46.2	7.2 37.7	6.6 36.1	4.7 29.4		Instrumentation Target Studies	Target design and test of relevant components	0.4 MJ/pulse, 5 Hz
	TOTALS													Design	consistent with realistic performance specifications	lation codes with relevant beam physics, tuning and feedback procedures
	Material (MCH FTE	IF) 1	5.7 103.3	11.4 146.5	20.3 194.0	23.9 248.1	30.6 267.0	41.4 290.6	51.7 314.8	54.2 356.3	53.5 379.4	32.4 379.6				