Descrizione ab-initio di sistemi a pochi nucleoni

Laura E. Marcucci

University of Pisa

INFN-Pisa

November 12, 2012

Introduction: *ab-initio* ... ?

Observable X

Ab-initio method and Ab-initio results^[1]

- Ab-initio method → obtain X by solving the relevant quantum many-body equations, without any uncontrolled approximation
- <u>controlled</u> approximations are allowed (expansion on a certain basis)
 → converged results = <u>ab-initio</u> results
- comparison of *ab-initio* results obtained with different *ab-initio* methods → benchmark calculations
- comparison of *ab-initio* results with data \rightarrow test of *H*

^[1] W. Leidemann and G. Orlandini, Progr. Part. Nucl. Phys. in press

Few-nucleon systems

Few-nucleon observables (I)

Bound states: ³H, ³He, ⁴He

- Binding energy: $B = \sum_{i}^{A} m_{i} M$
- Mass/charge radius: $\langle r^2 \rangle = \frac{\int d\tau \langle \Psi | r^2 | \Psi \rangle}{\int d\tau \langle \Psi | \Psi \rangle}$
- Asymptotic normalization constants: $\Psi_A \longrightarrow [ANC] \times \{\Psi_{C_1} \Psi_{C_2} W(r)\}$
- Other quantities (unmeasurable): $< T > < V > P_{S,P,D,\dots}$

Elastic scattering: $A_1 + A_2 \rightarrow A_1 + A_2$, $A_1 + A_2 \leq 4$

- total/differential cross section: $\sigma/\frac{d\sigma}{d\Omega}$
- scattering length a: $a = -\lim_{k \to 0} \frac{\tan \delta_0(k)}{k} \leftrightarrow \lim_{k \to 0} \sigma = 4\pi a^2$

 $-\frac{\hbar^2}{2m}u''(r) = E u(r)$ $u(r) = A \sin(kr + \delta_0) \quad r > r_0$ $u(r_0) = 0 \Rightarrow \delta_0 = -k r_0 \Rightarrow a \equiv r_0$

 $a \leftrightarrow V \Rightarrow a$ is spin-dependent

Few-nucleon observables (II)

Polarized elastic scattering: $\vec{A_1} + A_2 \rightarrow A_1 + A_2$

• polarization observables: vector analyzing power A_y

Electro-weak observables: H + electro-weak nuclear current

- electron-scattering: magnetic moments, charge and magnetic radii, form factors
- reactions observables: reaction rates, cross sections, polarization observables

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Ab-initio methods

Bound-states

 $A \le 4$ "Faddeev" methods: F/FY - AGS Variational methods: GEM - SVM - RGM - Hyperspherical Harmonics (HH) Method "Effective interaction" methods: NCSM - EIHH - CC Monte Carlo methods: VMC - GFMC A > 4 NCSM, VMC/GFMC, CC, EIHH

Scattering-states: "direct calculation"

 $A \le 4$ F/FY, AGS, HH A > 4 NCSM/RGM, CC

.

Scattering-states: "bound-state formulation"

A = 3, 4, 6, 7 Lorentz Integral Transform (LIT)

The Hyperspherical Harmonics (HH) method

Bound states

$$\Psi^{JJ_z} = \sum_\mu oldsymbol{c}_\mu \Psi_\mu$$

• $\Psi_{\mu} \rightarrow$ known functions (spin-isospin HH functions)

• Rayleigh-Ritz var. principle: $\delta_c \langle \Psi^{JJ_z} | H - E | \Psi^{JJ_z} \rangle = 0$ \Rightarrow Solve for E and c_{μ}

Scattering states

$$\Psi_{LSJ} = \Psi_{core}^{LSJ} + \Psi_{asym}^{LSJ}$$

•
$$\Psi_{core}^{LSJ} = \sum_{\mu} c_{\mu} \Psi_{\mu}$$

• $\Psi_{asym}^{LSJ} \propto \Omega_{LS}^{R} + \sum_{L'S'} R_{LL',SS'} \Omega_{L'S'}^{I}$
• Kohn var. principle: $[R_{LL',SS'}] = R_{LL',SS'} - \langle \Psi_{L'S'J} | H - E | \Psi_{LSJ} \rangle$
 $\Rightarrow R_{LL',SS'} \rightarrow \text{phase-shifts and mixing angles} \rightarrow \text{scatt. length}$

7 / 24

Convergence of the method

 $B(^{3}H)$ with first 3 spin-isospin channel – N3LO

A = 3, 4 bound states

	³ H			³ He				
	В	rp	< V >	PD	В	rp	< V >	P_D
Potential	(MeV)	(fm)	(MeV)	(%)	(MeV)	(fm)	(MeV)	(%)
AV18	7.624	1.653	-54.351	8.510	6.925	1.872	-52.610	8.467
AV18/UIX	8.479	1.582	-59.754	9.301	7.750	1.771	-57.961	9.248
N3LO	7.854	1.655	-42.409	6.312	7.128	1.855	-40.917	6.313
N3LO/N2LO	8.474	1.611	-44.956	6.815	7.733	1.794	-43.478	6.818
Exp.	8.482	1.60	_	-	7.718	1.77	-	-

	⁴ He				
	В	rp	< V >	PD	D_2^{dd}
Potential	(MeV)	(fm)	(MeV)	(%)	(fm ²)
AV18	24.21	1.514	-122.05	13.74	-0.115
AV18/UIX	28.46	1.430	-141.76	16.03	-0.113
N3LO	25.38	1.518	-94.62	10.74	
N3LO/N2LO	28.36	1.476	-103.29	10.79	
Exp.	28.30	1.47	-	-	-0.3±0.1
					$-0.19{\pm}0.04$
					-0.20 ± 0.05

A. Kievsky et al., J. Phys. G: Nucl. Part. Phys. 35, 063101 (2008)

M. Viviani et al., Phys. Rev. C 71, 024006 (2005)

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

	AV18	AV18/UIX	N3LO	N3LO/N2LO	Exp.
$^2a_{n-d}$ (fm)	1.248	0.590	1.100	0.675	0.645 ± 0.010
$^{4}a_{n-d}$ (fm)	6.346	6.343	6.342	6.342	$6.35 {\pm} 0.02$
$^{2}a_{p-d}$ (fm)	1.134	-0.089	0.876	0.072	_
$^4a_{p-d}$ (fm)	13.662	13.662	13.646	13.647	_
${}^{1}a_{n-3}_{\rm H}$ (fm)	4.29	4.10	4.20	3.99	4.98±0.29
					$4.45 {\pm} 0.10$
³ а _{п-3Н} (fm)	3.73	3.61	3.67	3.54	$3.13{\pm}0.11$
					$3.32{\pm}0.02$
$^{1}a_{p-^{3}\mathrm{He}}$ (fm)	12.9	11.5	11.5	11.0	$10.8{\pm}2.6$
$^{3}a_{p-^{3}\mathrm{He}}$ (fm)	10.0	9.1	9.2	8.6	$8.1{\pm}0.5$
-					$10.2{\pm}1.5$

A. Kievsky et al., J. Phys. G: Nucl. Part. Phys. 35, 063101 (2008)

Electro-weak observables \leftrightarrow electro-weak nuclear current

- Electromagnetic operators: $(
 ho^{\gamma}, \mathbf{j}^{\gamma})$
- Weak operators: $(\rho^{(V/A)}, \mathbf{j}^{(V/A)})$

•
$$\mathsf{CVC} \Rightarrow (\rho^V / \mathbf{j}^V \to \rho^\gamma / \mathbf{j}^\gamma) \Rightarrow$$
 4 operators

Current Conservation Relation (CCR) \longrightarrow $\mathbf{q} \cdot \mathbf{j}^{\gamma} \propto [\rho^{\gamma}, H]$

CCR satisfied with AV18/UIX (L.E. Marcucci et al., Phys. Rev. C 72, 014001 (2005))

Some **PRELIMINARY** results with χ EFT potential+current

A = 3 m.m.

Nucleus	χ EFT	phenom.	Exp.
³ Н	2.9472	2.9525	2.9790
³ He	-2.0952	-2.1299	-2.1276

 $e^- + \vec{d}$

A = 3 f.f.

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Inclusive and exclusive electron-scattering

Inclusive: $A(e, e') \Rightarrow$ only e' measured Exclusive: final-state partially measured, e.g. A(e, e'p)

Inclusive

- all final states to be included
- 2 Lorentz Integral Transform (LIT) method

$$\frac{d^2\sigma}{d\omega \, d\Omega_{e'}} = \alpha_{e'} \sum_{i=1}^{M} f_i(\omega, q, \theta_{e'}) \, R_i(\omega, q)$$

$$R_i(\omega, q) = \sum_f dE_f |\langle \Psi(E_f) | \Theta_i | \Psi(E_0) \rangle|^2 \, \delta(\omega + E_0 - E_f)$$

$$\mathrm{IT} \to \underline{L}_i(\sigma; q) = \int dE \, R_i(E, q) \, K(E, \sigma) \leftrightarrow \underline{L}_i(\sigma; q) = \langle \Psi(E_0) | K(H, \sigma) | \Psi(E_0) \rangle$$

Lorentz kernel $\mathcal{K}(E,\sigma) = \frac{1}{E - E_0 - \sigma_R - i\sigma_I} \frac{1}{E - E_0 - \sigma_R + i\sigma_I}$ $L_i(\sigma_R, \sigma_I; q) = \langle \tilde{\Psi}_i | \tilde{\Psi}_i \rangle \longrightarrow (H - E_0 - \sigma_R - i\sigma_I) \tilde{\Psi}_i = \Theta_i | \Psi(E_0) \rangle$ $\longrightarrow \text{bound-state-like equation}$

5

S. Della Monaca et al., Phys. Rev. C 77, 044007 (2008)

 R_L for ${}^{4}\text{He}(e, e')$

S. Bacca et al., Phys. Rev. C 80, 064001 (2009); ibid. Phys. Rev. Lett. 102, 162501 (2009)

INFN2012

 4 He (γ, p) 3 He

S. Quaglioni et al., Phys. Rev. C 69, 044002 (2004)

S. Bacca et al., Phys. Rev. C 69, 057001 (2004); ibid., Phys. Lett. B 603, 159 (2004)

Isoscalar monopole resonance of ⁴He

⁴He^{*}: O^+ narrow resonance ($E_R^{exp} = -8.20 \pm 0.05$ MeV) $F_M \equiv$ transition f.f. for ⁴He(e, e')⁴He^{*}

S. Bacca et al., arXiv:1210.7255

- *Ab-initio* methods: "exact" solution of the quantum many-body problem
- Few-nucleon systems \leftrightarrow *ab-initio* methods: $A \leq 12$
- Ideal "laboratory" for testing potential+current models
- Nuclear reactions of astrophysical interest

Conclusions: to test $H \cdots$

... o tanti ... ma sempre buoni!!