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The nuclear interaction problem

The problem of the nuclear interaction

I ’30: Yukawa identifies the pion-exchange mechanism

I ’50: meson field theories are mainly unsuccessful (lack chiral
symmetry)

I ’60: discovery of heavier mesons saves the situation. Meson exchange
models

I ’70: dispersion theory to model the two-pion exchange

I ’90: accurate phenomenological models (AV18, CDBonn) with
χ2/datum∼ 1

however these approach suffer deficiencies:

I difficult assessment of theoretical uncertainty

I no further insight into consistent three-nucleon interaction

I hard to implement chiral and gauge symmetry

I lack of a clear contact with QCD
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Effective theories Separation of scales

Effective theories and separation of scales

a probe of wavelength λ is insensible to details at short distances
−→ replace the true short distance structure with a tower of simpler terms
(cfr. multipole expansion)
Consider e.g.

V (r) = Vlong(r) + Vshort(r)

to build an EFT:

I introduce a cutoff Λ, and retain only states with k < Λ

I add local interaction terms which mimic the short-range physics

Veff = V Λ
long(r)+cδΛ(r) + d1∇2δΛ(r) + d2∇δΛ(r) ·∇ + ...

vshort(q
2) = v(0) + v ′(0)q2 + ...

c , d1,2 are LECs to be fixed from data
At a given order only a finite number of LECs =⇒ predictions
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Effective theories Predictive power

Predictive power and cutoff dependence

changing Λ amount to include/neglect states with k ∼ Λ

I to the extent that these states are highly virtual =⇒ local corrections

I all possible local operators (compatible with underlying symmetries)
are already present in the effective theory =⇒ shift of LECs

LECs become running coupling constants c(Λ) and predictions should be
independent of Λ

I Λ-dependence arises from stopping the low-energy expansion at some
order - smaller and smaller as the order increases =⇒ theoretical
uncertainty

I LECs proliferate, as the order is increased =⇒ less predictive power

I check convergence of the expansion

a good compromise can be found within the range of applicability of the
effective theory
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Chiral perturbation theory Chiral symmetry of QCD and its consequences

Chiral symmetry

the separation of scales for nuclear interactions is insured by QCD

I pions (whose mass is protected by chiral symmetry) mediate the
longest-range interaction

I heavier hadrons give rise to contact interactions

LQCD =
∑
i

ψ̄f (i /D −mf )ψf −
1

4
G a
µνG

µν
a

invariance under G =SUL(Nf )×SUR(Nf ) rotations of left and right quark
multiplet =⇒ Noether currents JµL/R(x) and conserved charges QL/R

Spontaneous symmetry breaking →SUV (Nf ) =⇒ a massless Goldstone
boson for each broken generator

〈0|Aαµ|πβ(p)〉 = iFπδ
αβpµ

Explicit chiral symmetry violation F 2
πM

2
π = (mu + md)〈0|ψ̄ψ|0〉 + ...
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Chiral perturbation theory Chiral symmetry of QCD and its consequences

Consequences

I chiral symmetry implies specific Ward identities among Green
functions (cfr. isospin relations, and more complicated ones in case of
non-linear realization)

I it can be shown that these can be implemented by using an effective
Lagrangian invariant under chiral symmetry

In our case the effective Lagrangian must involve pions and nucleons
through interpolating fields

U(x) = exp

(
i
πa(x)τ a

Fπ

)
≡ u2, U → U ′ = VRUV

†
L

N =

(
p
n

)
→ N ′ = K(VL,VR ,U)N, VRu = u′K

nucleons can couple to pions only derivatively, via:

I the chiral connection Γµ appearing in the covariant derivative DµN

I the ”building block” uµ = iu†∇µUu† → KuµK
†
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Chiral perturbation theory Chiral power counting

Chiral Lagrangians

A class of Lagrangians emerges, characterized by the number of derivatives
and/or quark mass matrix M∼ O(p2) ,

Lππ =
F 2
π

4

[
〈∇µU†∇µU〉+ 2B〈M†U + U†M〉

]
+ ...

LπN = N̄(i /D −M +
1

2
gA/uγ5 + ...)N

LNN =
CS

2
N̄NN̄N − CT

2
N̄γµγ5NN̄γµγ5N + ...

It is convenient to introduce the index ∆

∆ = d +
n

2
− 2

depending on the number of derivatives d and of the nucleon fields n.
Due to the derivative nature of coupling to pions (in turn implied by chiral
symmetry) we have ∆ ≥ 0.
The above Lagrangians represents all the contributions with ∆ = 0

L. Girlanda (Univ. Salento) Teoria moderna delle forze nucleari 9
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Chiral perturbation theory Chiral power counting

Disposing of large time-derivatives

the heavy nucleon mass M introduces a complication, since the time
derivative of nucleon fields are no longer suppressed in the chiral counting
this can be overcome in two ways:

I heavy baryon formalism: integrate out the small field components
pµ = Mvµ + kµ, with v2 = 1 and k · v � M

N = e−iMv ·x(Hv + hv ), /vH = H, /vh = −h

I remove time derivatives from the Lagrangian using nucleon equations
of motions (this amounts to redefine the interpolating fields). The
lost Lorentz covariance of the ensuing Hamiltonian can be recovered
at the end by imposing the Poincaré commutation relation, order by
order in the chiral expansion
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Chiral perturbation theory Chiral power counting

Chiral (power) counting
Count the power ν of low momenta in a generic Feynman diagram

I pion propagator 1/p2 −m2
π ∼ O(p−2)

I nucleon propagator 1//p −M ∼ O(p−1)
I loop integrations d4k ∼ O(p4)
I vertex involving d derivatives ∼ O(pd)

therefore
ν = 4L− 2Iπ − IN +

∑
i

Vidi

From the topological identities

L = Iπ + IN −
∑
i

Vi + 1, 2IN + EN =
∑
i

Vini

one obtains the Weinberg counting

ν = 2 + 2L− EN

2
+
∑
i

Vi

(
di +

ni
2
− 2
)

the chiral expansion is a loop expansion, since ∆i ≥ 0
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Chiral perturbation theory Chiral power counting

NN amplitude

I at leading order ν = 0 we have tree diagrams from
leading Lagrangians ∆ = 0

I at the order ν = 1 we have tree diagrams with one
vertex from ∆ = 1 Lagrangian. Their contribu-
tions vanish

I at the order ν = 2 we have 1-loop diagrams and
tree with subleading vertices (∆ = 1, 2)

I at the order ν = 3 we have 1-loop diagrams with
subleading vertices

I at the order ν = 4 (N3LO) we start to have 2-loop
diagrams and ∆ = 4 contact terms (crucial for the
D − waves)

L. Girlanda (Univ. Salento) Teoria moderna delle forze nucleari 12



Chiral perturbation theory Chiral power counting

NN amplitude

I at leading order ν = 0 we have tree diagrams from
leading Lagrangians ∆ = 0

I at the order ν = 1 we have tree diagrams with one
vertex from ∆ = 1 Lagrangian. Their contribu-
tions vanish

I at the order ν = 2 we have 1-loop diagrams and
tree with subleading vertices (∆ = 1, 2)

I at the order ν = 3 we have 1-loop diagrams with
subleading vertices

I at the order ν = 4 (N3LO) we start to have 2-loop
diagrams and ∆ = 4 contact terms (crucial for the
D − waves)
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Chiral perturbation theory Chiral power counting

Nuclear (shallow) bound states

if mπ were the only relevant scale, we would expect the above loop
expansion to work
The very existence of bound states signals the failure of the loop expansion
The problem arises because the interaction between nucleons is not
suppressed in the chiral limit

For some kinematical configuration the
nucleon propagator is O(p−2) instead of O(p−1)

∼
∫

d4q
1

q0 + iε

1

q0 − iε

P(q)

(q2 −M2
π + iε)2

‘‘Pinch singularities”

This diagram is O(p0) instead of O(p2)
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Chiral perturbation theory Chiral power counting

Weinberg proposal
The origin of the problem is more manifest in time-ordered perturbation
theory

The enhancement factor comes from purely nucleonic intermediate states,
since EN ∼ O(p2), while Eπ ∼ O(p)

I Define an “effective potential” to consist of 2-particle-irreducible
diagrams of old-fashioned perturbation theory

I Resum the iterations by solving a Lipmann-Schwinger equation

with no purely nucleonic intermediate states in the blob
I Apply the chiral counting only to the effective potential so as to avoid

the pinch singularities
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Chiral forces NN potential

Accuracy of chiral potentials

Tables of χ2/datum [Machleidt-Entem, Phys. Rep. 503 (2011) 1]

Up to N3LO there are 24 free LECs from contact operators, comparable
with the number of parameters of phenomenological realistic potentials
(35-40)
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Chiral forces Multi-nucleon forces

Three and more nucleons
Disconnected diagrams give the main contribution to the effective potential

where

Each disconnected piece is enhanced by an additional 4-momentum
conserving δ-function

In an A-nucleon diagram, with C separately
disconnected pieces

ν =
C∑
i=1

[2 + 2Li − Ai + (
∑

∆)i ]− 4(C − 1) = 4− A−2C + 2L +
∑
i

∆i

each participating nucleon decreases C by 1 and increases ν by 2
=⇒ hierarchy of nuclear forces

L. Girlanda (Univ. Salento) Teoria moderna delle forze nucleari 16
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Chiral forces Multi-nucleon forces

Three-nucleon interaction
I in principle it starts to contribute at relative order O(p2) compared to

the leading NN interaction, but this contribution vanishes

I

I the first non-vanishing contribution is therefore at δν = 3, or N2LO

I

I loops start at order N3LO, including pion rings (no free parameters)
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Chiral forces Multi-nucleon forces

Accuracy of three-nucleon interaction

I the status is much worse than in the NN sector, and the same is true
for phenomenological models

I AV18+UIX, AV18+TM’, N3LO+N2LO fail to simultaneously describe
A = 3, 4 binding energies and 2and [Kievsky et al. PRC81 (2010) 044003]

I χ2/datum for N − d scattering observables is as large as several
hundreds. Problems most severe at very low energy (e.g. Ay )
[Marcucci et al. PRC80 (2009) 034003]

I this is not really surprising, given the small number of adjustable
parameters: chiral TNI has just 2 free parameters up to N3LO

I since discrepancies arise at low energies, where interactions reduce to
contact terms we have investigated the subleading 3N contact
interaction [Girlanda et al. PRC84 (2011) 014001]
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Chiral forces Multi-nucleon forces

Imposing parity and time reversal we get a list of 146 operators

←→
∇ 1 ·

←→
∇ 2[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 · −→σ 3

−→
∇2 · −→σ 2[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 2 · −→σ 2[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 ·

−→
∇2
−→σ 2 · −→σ 3[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 2

←→
∇ 2 · −→σ 1[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 ×

−→
∇2 · −→σ 1[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ·

←→
∇ 2
−→σ 1 · −→σ 2[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 ×

−→
∇2 · −→σ 2[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3] i

←→
∇ 1 ×

−→
∇2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 3

←→
∇ 2 · −→σ 1[1, τ1 · τ2, τ1 · τ3, τ2 · τ3] i

←→
∇ 1 ·

−→
∇2
−→σ 1 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ·

←→
∇ 2
−→σ 1 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3] i

←→
∇ 1 · −→σ 1

−→
∇2 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ×

←→
∇ 2 · −→σ 1[τ1 × τ2 · τ3] i

←→
∇ 1 · −→σ 2

−→
∇2 ×−→σ 1 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ×

←→
∇ 2 · −→σ 3[τ1 × τ2 · τ3] i

←→
∇ 1 · −→σ 3

−→
∇2 ×−→σ 1 · −→σ 2[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ·

←→
∇ 2
−→σ 1 ×−→σ 2 · −→σ 3[τ1 × τ2 · τ3] i

←→
∇ 1 ×−→σ 2 · −→σ 3

−→
∇2 · −→σ 1[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 1

−→σ 2 ×−→σ 3 ·
←→
∇ 2[τ1 × τ2 · τ3] i

←→
∇ 1 ×−→σ 1 · −→σ 3

−→
∇2 · −→σ 2[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 2

−→σ 1 ×−→σ 3 ·
←→
∇ 2[τ1 × τ2 · τ3] i

←→
∇ 1 ×−→σ 1 · −→σ 2

−→
∇2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 3

−→σ 1 ×−→σ 2 ·
←→
∇ 2[τ1 × τ2 · τ3] i

←→
∇ 1 ×

−→
∇2 · −→σ 1

−→σ 2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]
←→
∇ 1 ×

←→
∇ 2 · −→σ 1

−→σ 2 · −→σ 3[τ1 × τ2 · τ3] i
←→
∇ 1 ×

−→
∇2 · −→σ 2

−→σ 1 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]
←→
∇ 1 ×

←→
∇ 2 · −→σ 3

−→σ 1 · −→σ 2[τ1 × τ2 · τ3] i
←→
∇ 1 ×

−→
∇2 · −→σ 3

−→σ 1 · −→σ 2[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

same as before with
←→
∇ →

−→
∇

←→
∇ 1 ·

←→
∇ 1[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 ·

−→
∇2[τ1 × τ2 · τ3]

←→
∇ 1 ·

←→
∇ 1
−→σ 1 · −→σ 2[1, τ1 · τ2, τ2 · τ3, τ1 · τ3]

i
←→
∇ 1 · −→σ 1

−→
∇2 · −→σ 2[τ1 × τ2 · τ3]

←→
∇ 1 ·

←→
∇ 1
−→σ 2 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 2

−→
∇2 · −→σ 1[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 1 · −→σ 2[1, τ1 · τ2, τ2 · τ3, τ1 · τ3]

i
←→
∇ 1 ·

−→
∇2
−→σ 1 · −→σ 2[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 2

←→
∇ 1 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 1

−→
∇2 · −→σ 3[τ1 × τ2 · τ3]

←→
∇ 1 ·

←→
∇ 1
−→σ 1 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 3

−→
∇2 · −→σ 1[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 1 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 ·

−→
∇2
−→σ 1 · −→σ 3[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 2

←→
∇ 1 ×−→σ 1 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 2

−→
∇2 · −→σ 3[τ1 × τ2 · τ3]
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Chiral forces Multi-nucleon forces
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Chiral forces Multi-nucleon forces

Constraints from Pauli principle and relativity

The anticommuting nature of the nucleon fields implies relationship among
all possible operators.
In addition, we have to impose the requirements of Poincaré covariance
As a result, the subleading 3N effective Hamiltonian consists of

I fixed terms (relativistic corrections to the lower order terms)

I free terms, which have to commute with the lowest order boost
operator K0

with the choice N(x) =
∫ dp

(2π)3 bs(p)χs e−ip·x K0 acts as

[K0 , bs(p)] = −i m∇p bs(p)

and only 10 independent combinations of the 14 operators can be found
to commute with K0
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Chiral forces Multi-nucleon forces

Subleading contact potential

Choosing a momentum cutoff depending only on momentum transfers the
coordinate space potential can be given a local form

V =
∑
i 6=j 6=k

(E1 + E2τi · τj + E3σi · σj + E4τi · τjσi · σj )

[
Z ′′0 (rij ) + 2

Z ′0(rij )

rij

]
Z0(rik )

+(E5 + E6τi · τj )Sij
[
Z ′′0 (rij )−

Z ′0(rij )

rij

]
Z0(rik )

+(E7 + E8τi · τk )(L · S)ij
Z ′0(rij )

rij
Z0(rik )

+(E9 + E10τj · τk )σj · r̂ijσk · r̂ikZ ′0(rij )Z
′
0(rik )

Most terms are ordinary 2-body interactions between particles ij with a
further dependence on the coordinate of particle k
Spin-orbit terms suitable for the Ay puzzle [Kievsky PRC60 (1999) 034001]

I work is in progress to determine the 10 LECs from data
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The role of the ∆

Including the ∆

The proximity of the ∆ resonance challenges the convergence properties of
the effective theory

mπ
<∼ ∆M = M∆ −MN = 293 MeV

this reflects itself in unnatural values of some LECs
To improve the convergence one can include explicitly the ∆ and treat
∆M ∼ mπ ∼ O(p)

some contributions are promoted to lower orders and the LECs assume a
more natural value
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The role of the ∆

Integrating out the pion

Conversely, one can build the pionless theory, valid at k � mπ

Λ ∼ mπ

due to the large scattering lengths, the contact interactions have to be
resummed to all orders

A =
4π

M

1

1/a + ik

[
1 +

r0/2

1/a + ik
k2 +

(r0/2)2

(1/a + ik)2
+ ...

]
thus the expansion is in kr0 but not limited to ka << 1 anymore

In the three-body sector the theory is usually formulated in terms of
dimeron (auxiliary) fields
It encompasses universal phenomena, valid for systems with large
scattering lengths −→ Efimov physics, and allow to compute
systematically corrections to the unitary limit, with controlled uncertainty

L. Girlanda (Univ. Salento) Teoria moderna delle forze nucleari 23



External currents

External currents

Electroweak currents are naturally implemented in the formalism, since
they are the Noether currents of chiral symmetries [Park-Min-Rho, 1996]

∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ)

DµN = ∂µN + ΓµN

Γµ =
1

2
[u†, ∂µu]− i

2
u†(vµ + aµ)u − i

2
u(vµ − aµ)u†

The transition operator is computed in the low-energy expansion, and
maybe calculated inside realistic wave functions (hybrid approach)
With interactions and currents computed within the same scheme,
electroweak nuclear observables may be worked out consistently, with
controlled theoretical uncertainty This allows to construct currents
consistent with the interactions, with controlled theoretical uncertainty
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Conclusions and outlook

Conclusions and outlook

I The understanding of nuclear interaction, starting from Yukawa, has
now come back to pion exchange, but within a systematic EFT
framework constrained by chiral symmetry of QCD

I The EFT machinery can be viewed as a way to optimally implement
symmetry constraints from the underlying theory. The LECs
parametrize our ignorance on the dynamics

I This understanding is also quantitative: modern N3LO chiral
potentials provide a very accurate description of NN data, comparable
to ”realistic” models

I The frontier is now the 3NF, where the guidance of power counting
and symmetry is essential. We are confident to have identified the
needed component of 3NF to become ”realistic”

I Few-nucleon systems provide a unique laboratory to test and
constrain the interaction and nuclear electroweak transition operators
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