ASTROFISICA NUCLEARE

Oscar Straniero INAF Catania 12-14 Novembre 2012

Summary

- State of the art & outlooks (in Italy).
- Some experimental results and astrophysical feedback

Astrophysical Context

- Energy generation in stellar interiors.
- Nucleosynthesis and chemical evolution.

Stellar structure: basic equations (1d hydrostatic model)

$\frac{dP}{dM_r}$	_	$-\frac{GM_r}{4\pi r^4}$	Hydrostatic	equilibrium
$\frac{dr}{dM_r}$	—	$\frac{1}{4\pi r^2\rho}$	Mass co	ntinuity
$\frac{dT}{dM_r}$	—	$-\nabla \frac{GM_{r}T}{4\pi r^{4}H}$	- Ene >	ergy transport
$\frac{dL_r}{dM_r}$	—	$\epsilon_{grav} + \epsilon_n$	$_{ucl}+\epsilon_{ u}$	Energy conservation

Stellar structure: chemical evolution

Y_i=fraction by number

$$\frac{dY_i}{dt} = \left(\frac{dY_i}{dt}\right)_{nuc} + \left(\frac{dY_i}{dt}\right)_{mix} \qquad i = 1, \dots, N$$

$$\left(\frac{dY_i}{dt}\right)_{nuc} = \sum_j c_i(j)\lambda_j Y_i + \sum_{j,k} c_i(j,k)\rho N_A < \sigma v >_{j,k} Y_j Y_k + \sum_{j,k,l} c_i(j,k,l)\rho^2 N_A^2 < \sigma v >_{j,k,l} Y_j Y_k Y_l$$
 nuclear

$$\left(\frac{dY_i}{dt}\right)_{mix} = D\frac{\partial^2 Y_i}{\partial r^2} - v\frac{\partial Y_i}{\partial r}$$

Mixing: dynamical or secular instabilities

Stellar structure: physical quantities

$$P = f(\rho, T, Y_{i})$$

$$\kappa = g(\rho, T, Y_{i})$$

$$\varepsilon_{v} = h(\rho, T, Y_{i})$$

$$\varepsilon_{g} = -T \frac{dS}{dt} = -\frac{dE}{dt} + \frac{P}{\rho^{2}} \frac{d\rho}{dt}$$

$$\varepsilon_{n} = \sum_{k} Y_{i} Y_{j} \rho N_{A} \langle \sigma \mathbf{v} \rangle_{k} Q_{k}$$

Equation of state

radiative opacity

Energy sources or sinks:

Neutrinos, Gravitational, Nuclear

$$R_{jk} = n_j n_k \int_0^\infty \sigma(E) \left(\frac{2E}{\mu}\right)^{\frac{1}{2}} f(E) dE = n_j n_k < \sigma v >_{jk}$$
$$= \frac{Y_j Y_k}{\delta_{jk}} N_A \rho < \sigma v >_{jk}$$
$$f(E) = \frac{2}{\sqrt{\pi}} \frac{E^{\frac{1}{2}}}{\left(KT\right)^{\frac{3}{2}}} \exp\left(-\frac{E}{KT}\right)$$

$$\sigma(E) = \frac{1}{E} S(E) \exp(-31.29 \frac{Z_j Z_k \mu^{1/2}}{E^{1/2}})$$

$$v = |v_j - v_k|;$$
 $\mu = \frac{A_j A_k}{A_j + A_k};$ $E = \frac{1}{2} \mu v^2$

The Gamow Peak MAXWELL - BOLTZMANN DISTRIBUTION $\propto \exp(-E/kT)$ GAMOW PEAK RELATIVE PROBABILITY TUNNELING THROUGH COULOMB BARRIER $\propto \exp(-\sqrt{E_G/E})$ ΔÉ kТ E_o ENERGY

$$E_{\max} = \left[\left(\frac{\mu}{2}\right)^{1/2} \frac{Z_j Z_k e^2 KT}{4\varepsilon_0 \hbar} \right]^{2/3}$$

T = 16 MK (Sun)

p+p	5 KeV
3He+3He	20 KeV
3He+4He	21 KeV
14N+p	25 KeV
T = 70 MK	(RGB)
14N+p	65 KeV
T = 200 Mk	K (He-burning)
12C+α	300 KeV
T = 500 M	K (C-burning)
12C+12C	1.5 MeV

Low-Energy Lab Measure: density & background

In the Sun: $R_{Sun} \sim 10^{38} \, {
m s}^{-1}$ In the Lab: $1 \, {
m month}^{-1} < R_{Lab} < 1 \, {
m day}^{-1}$

In the Lab: background sources Cosmic, Natural radioactivity, target/beam Impurities

Theory and its observational counterpart: the HR-Diagram

$$^{7}Be+e^{-} --> ^{7}Li+v$$

 $^{7}Li+p --> ^{4}He+^{4}He$

 $^{3}\text{He} + ^{3}\text{He} - - > ^{4}\text{He} + 2p$

 $^{7}Be+p --> {}^{8}B+\gamma$ $^{8}B --> {}^{8}Be+e^{+}+\nu$

4 protons \rightarrow ⁴He + 25 MeV (γ) + 2 v

CNO

Turn off luminosity & Age

Fitting Cluster Turn-Off

13.00 ± 0.5 Gyr (Straniero et al. 2001)

Ne-Na & Mg-Al

He-burning

 $3\alpha --> {}^{12}C$ $^{12}C + \alpha - ^{16}O$

Core He-bur	NING M	ODELS: M	$M = 3 M_{\odot}$	z, $Z=0$.02
Label (1)	f ^a (2)	$\tau_{\rm He}{}^{\rm b}$ (3)	$X_{\rm C}^{\rm c}$ (4)	X ₀ ^c (5)	M_D^d (6)
BSM	1	88	0.42	0.56	
SM	1	145	0.19	0.79	0.31
PSM	1	134	0.40	0.58	0.27
НОМ	1	153	0.42	0.56	0.32
LOM	1	139	0.38	0.60	0.28
SM	0.4	135	0.52	0.46	0.29
SM	1.6	149	0.08	0.90	0.31
НОМ	0.4	142	0.66	0.32	0.31
НОМ	1.6	157	0.28	0.70	0.32

- a) Enhancement factor of the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction rate. f = 1 corresponds to the Kunz et al. (2002) rate.
- b) He-burning lifetime (Myr).
- c) Final central mass fractions of C and O.
- d) Location, in M_{\odot} , of the sharp discontinuity that marks the separation between the innermost low-C zone, corresponding to the maximum extension of the convective core, and the external layer built up by the shell-He burning occurred during the AGB phase.

C-burning, thermonuclear Sne & the mass limit for low-mass/massive stars

Varying ε_{v} or X(¹²C)

Equivalent to a variation of X(C) from 0.1 to 0.5, as implied by a $\pm 60\%$ variation of the ${}^{12}C+\alpha \rightarrow {}^{16}O$ rate (Straniero et al. 2003).

Varying the ¹²C+¹²C

A resonance near the Gamow peak (1.5 MeV) would significantly increase the rate, thus reducing the critical M_H and, in turn, M_{up} as well as M_{up}^* .

Varying the ${}^{12}C+{}^{12}C$

Massive stars: H, He, C, O, Ne, Si Fe core \rightarrow core collapse (SNE II, Ib, c)

?: H, He, C Super AGB \rightarrow O-Ne WD (SNE e-capture)

Low & intermediate mass: H, He, $AGB \rightarrow C-O WD$ (SNE Ia)

* Mu^{*}

Mup

LUNA MV - LNGS

SN1999el and SN2000E in NGC6951 as observed at the Campo Imperatore Observatory with the IR-camera@AZT24 telescope Supernovae Ia

Bright
Homogeneous
No evolutionary effects

$\frac{12}{C(\alpha,\gamma)^{16}O}$ and the final mass of $\frac{56}{Ni}$

TABLE 1 Properties of the Models							
Initial Composition (1)	Model (2)	$egin{array}{c} M_{ m MS} \ (M_{ m \odot}) \ (3) \end{array}$	$M_{\rm CO}^{\rm TP} \ (M_{\odot}) \ (4)$	C _{een} (5)	$egin{array}{c} M_{ m een} \ (M_{\odot}) \ (6) \end{array}$	C/O _{Meh} (7)	⁵⁶ Ni (M _☉) (8)
Z = 0.02	1p5z22	1.5	0.55	0.21	0.27	0.75	0.589
Y = 0.28	3p0z22	3.0	0.57	0.21	0.28	0.76	0.584
	5p0z22	5.0	0.87	0.29	0.46	0.72	0.561
	7p0z22	7.0	0.99	0.28	0.70	0.60	0.516
$Z = 10^{-3}$	1p5z13	1.5	0.59	0.24	0.31	0.76	0.587
Y = 0.23	3p0z13	3.0	0.77	0.26	0.39	0.74	0.567
	5p0z13	5.0	0.90	0.29	0.58	0.66	0.541
	6p0z13	6.0	0.98	0.29	0.71	0.60	0.522
	Low Rate 3p0z13LR	3.0	0.76	0.51	0.38	1.22	0.620
$Z = 10^{-4}$	3p0z14	3.0	0.80	0.27	0.41	0.73	0.568
Y = 0.23	5p0z14	5.0	0.90	0.29	0.58	0.65	0.541
	6p0z14	6.0	0.99	0.28	0.72	0.59	0.511
$Z = 10^{-10} \dots$	5p0z00	5.0	0.89	0.32	0.49	0.70	0.549
Y = 0.23	7p0z00	7.0	0.99	0.31	0.59	0.62	0.525

△M(⁵⁶Ni)=10%

Observed: 18±0.4 d

 High-z Team (Brian Schmidt & co)
 Supernova Cosmology Project (Saul Perlmutter & co.)

(0.25) mag fainter than for an EMPTY Universe

Fainter + Further

The Universe is Accelerating

neutron sources and the synthesis of heavy elements

 $^{13}C(\alpha,n)^{16}O$ $^{22}Ne(\alpha,n)^{25}Mg$

neutron captures (nTOF@CERN)