# Switzerland interests in FCC

- Detectors and systems:
  - Tracker, Vertex, TDAQ
- Groups interested in vertex detectors for FCC-ee:
  - Bern, ETH, PSI, UZH
- Funding in the past 5 years:
  - One SNF grant for a postdoc (UZH) and 2 PhD students (UZH/VUB)
- Funding 2025-2029:
  - CHEF: Swiss High Energy Physics for the FCC
  - Partly (1/2) supported by the Science, Education, Research, Innovation ministry (SERI)
  - Consortium of Institutions: Basel, Bern, ETHZ, EPFL, Geneva, PSI, Zurich
  - About 20 PhD students + 10 postdocs
    - Mostly for detectors
    - Computing, Theory, Physics studies also covered





Experiment HEP groups (Canelli and Kilminster)

- Groups currently consists of
  - 2.5 senior scientists
  - 7 postdocs
  - 13 PhD students (+3 PSI +1 CERN)
- Department funds our access to:
  - Well-equipped mechanics shop (9 staff & apprentices)
  - Electronics shop (4 engineers)





HEP group within laboratory of particle physics (LTP) at PSI

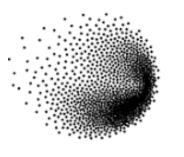
- Group currently consists of
  - 6 senior scientists
  - 5 postdocs
  - 4 PhD students (1 ETHZ + 3 UZH)
  - 3 technicians and engineers





- Main focus of these groups: CMS experiment
  - Physics analysis
  - Pixel detector operation and upgrade
- CH consortium (PSI, ETH, UZH) led design, construction, integration and commissioning of original and Phase-1 CMS barrel pixel detector
- UZH/PSI currently constructing TEPX Phase-2 upgrade







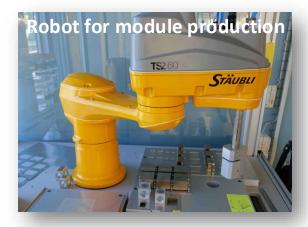


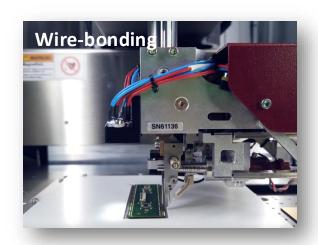

## **UZH**

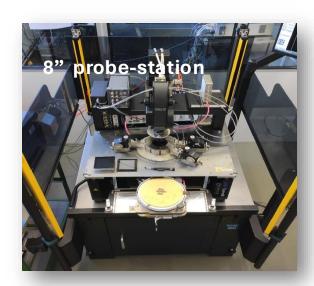
#### Competences & Infrastructrure









Key competences for pixel detector development at UZH and PSI

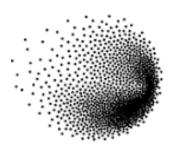

- Design of planar silicon sensors
- Hybrid pixel detector module design
- System conception of pixel detector control and readout
- Design and construction of lightweight mechanical structures
- Design of readout ASICs and planar silicon sensors (PSI)

#### Available infrastructure

- UZH DEMETER center for silicon detectors R&D
  - Clean room facility
  - 8" wafer probe-station
  - Semi-automatic wire bonder
  - Two Photon Absorption system to be acquired in 2026
  - MARTA and Lucasz CO2 cooling systems
- PSI
  - In-house bump-bonding and wire-bonding
  - Wafer-level testing of ASICs and sensors
  - Module assembly lines (manual and robotic)
  - Clean room facilities










## **UZH** - R&D for future detectors

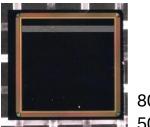
R&D in view of future upgrades of CMS and FCC-ee detectors:

- **Vertex and silicon wrapper simulation:** development of versatile tracking detector constructor algorithms in DD4hep, enabling detailed performance evaluation (slide 9 see A. Ilg's talk)
- OCTOPUS and its predecessors: characterization of APTS and CE-65 structures in 65 nm CMOS by doing calibrations with radioactive source and test beam studies (slide 10 – in IPHC's talk)
- Silicon Wrapper Timing Layer: Feasibility study of pixelated LGAD sensors for time-of-flight detectors, aiming at a spatial resolution of ≈10 µm and a timing resolution of ≈30 ps for use as a silicon wrapper and also study of possible alternative: monolithic CASSIA timing MAPs, also an option for the final vertex layer (slide 11)
- Quantum sensors: validation of superconducting nanowire particle detectors (SNSPDs) of different material and geometries for detecting charged particles (slide 12 – a different workshop)
- Wireless communication: prototyping implementation of wireless data transmission for vertex detector using 60 GHz transmission (slide 12 A. Macchiolo's talk)



## **PS** - R&D for future detectors

R&D in view of future upgrades of CMS, FCC-ee detectors, and low-energy experiments at PSI


#### Two main R&D lines:

1) Development of depleted monolithic active pixel sensors (DMAPS) with timing capabilities (currently targeting O(100ps)) (with ETHZ)

MOTIC (LF 110 ARCADIA, 2022)

A. Ebrahimi et al.

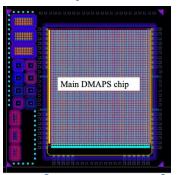
**Proceedings VERTEX2023** 



80x64 pixels 50x50μm²

**MAPSI (TSI 180nm, 2023)** 

T. Rohe et al.


43rd RD50 meeting

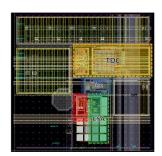


20x20 pixels 50x150μm²

#### **PANTHER (LF150, 2025)**

Currently under test




#### **PANTHERv2 (LF150, 2025)**

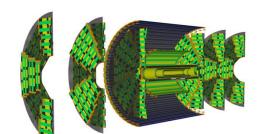
Submission early 2026 shared within DRD3

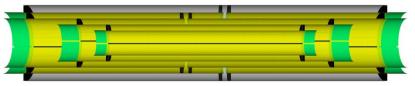
#### 2) Development of readout electronics for fast silicon timing detectors (with resolution <30ps) (with

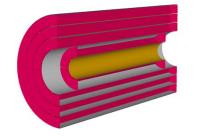
#### UZH)

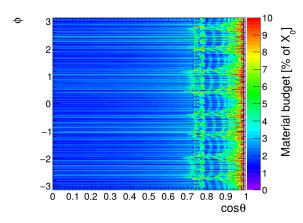
- Started from test structures of TDCs in 110nm to fit in pixels of  $100x100\mu m^2$
- Demonstrated that O(10ps) can be achieved
  M. Senger et al. <a href="https://arxiv.org/pdf/2302.06711">https://arxiv.org/pdf/2302.06711</a>

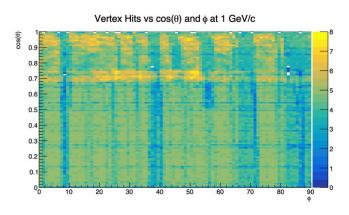


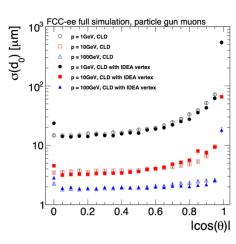

#### **LIGHT (28nm CMOS, 2025)**


- First small-scale chip
- 8x8 pixels of 100x100μm²
- For TI-LGAD sensors
  - submitted yesterday


## Backup


#### Vertex and silicon wrapper simulation


Development of versatile tracking detector constructor algorithms in DD4hep, enabling detailed performance evaluation











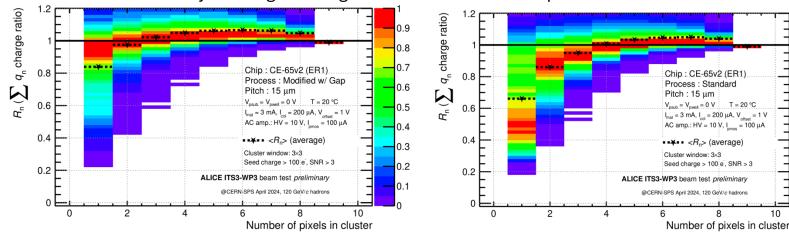


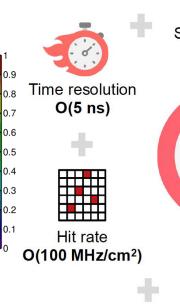

IDEA classic mat. Budget distribution

Number of hits in ultra-light concept

IDEA vertex detector perf.



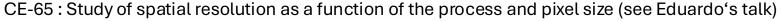


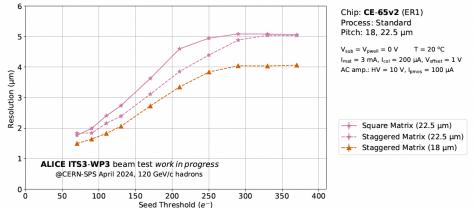


- Plans for the future:
  - Optimise VXD layouts in DD4hep
  - Compare IPC hit rates in different sensor designs technologies (high vs. low charge sharing)
  - Reassess vertexing performance using track reconstruction chain of VTXD + gas tracker + SiWr
  - $B^0 \rightarrow K^{*0}\tau^+\tau^-$  full simulation study

## OCTOPUS and its predecessors

- In-depth characterization of APTS and CE-65 structures in 65 nm CMOS
  - Calibrations with radioactive source and test beam studies

CE-65: Study of charge sharing in the Modiofied with Gap and Standard Proces








Radiation tolerance O(10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>)

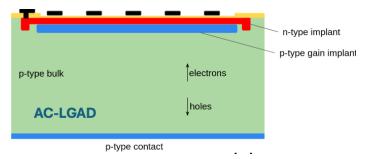




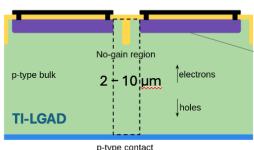
- Plans for the future:
  - Participate to the characterization of the SPARC prototype chip and of Wolfi
  - Simulation of the detector response: digitization
  - Development of DAQ SW for the Caribou board

## 4D Tracking for the Silicon Wrapper



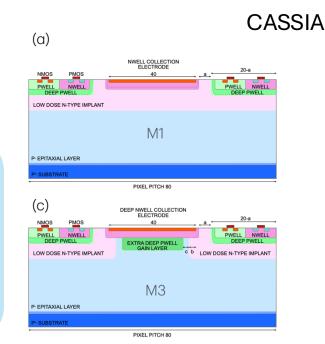

#### LGADs for 4D tracking and ToF within DRD3 WG2

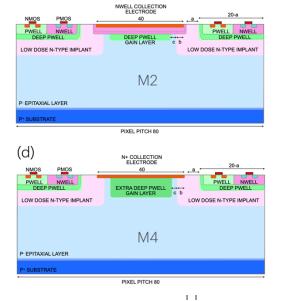
| WG2 research goals <2027 |                                                               |
|--------------------------|---------------------------------------------------------------|
|                          | Description                                                   |
| RG 2.3                   | LGAD for 4D tracking $<$ 10 $\mu m, <$ 30 ps, wafer 6" and 8" |
| RG 2.4                   | LGAD for ToF (Large area, $< 30 \mu m$ , $< 30 ps$ )          |


- Goal: demonstration of the feasibility of producing pixelated LGAD sensors to achieve a position resolution around 10  $\mu$ m, with a timing resolution of the order of 30 ps before irradiation.
- Plans: characterize full modules (PSI chip LIGHT, INFN IGNITE in 28 nm CMOS) and study system aspect (power dissipation and cooling)
- CASSIA timing MAPs within DRD3 WG1

#### Goal:

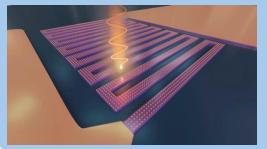
- Validation of the technology
- Study the feasibility and the physics case of implementing monolithic timing sensors as last Vertex layer before the drift chamber

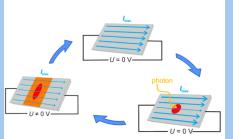




Collaboration with BNL/Brown



UZH coordination of DRD3 project

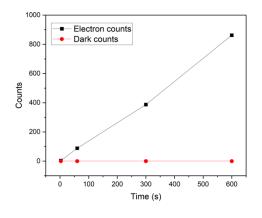

= overlap of electrode and low-dose n-type impla





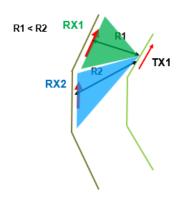

### Quantum sensors and wireless communication

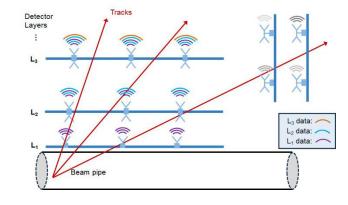
- NSSPD: validation of superconducting nanowires SPDs of different material and geometries for detecting charged particles
  - Study of hit efficiency and timing properties in comparison to silicon sensors
  - Investigation of the feasibility of applying the technology to FCC luminometers
    - Understanding MDI constraints for detector concept & providing cryogenics
    - Study possible improvements in the determination of the fiducial region thanks to 100 nm wire size and in the background rejection by using correlated timing measurements












- Wireless communication: prototype implementation of wireless channels using commercial 60 GHz integrated circuits
- Antenna design and link optimization
- Study interference between links in the FCC environment topology, test in a mock-up
- Study interlayer intelligence for a fast-track trigger



