





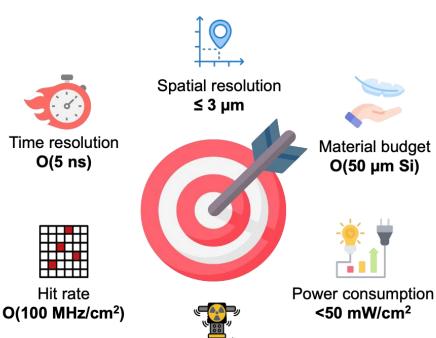







# **OCTOPUS:**

R&D program towards a vertex detector for the future e<sup>+</sup>e<sup>-</sup> collider


Serhiy Senyukov (IPHC-CNRS) on behalf of the OCTOPUS project

### **OCTOPUS:**

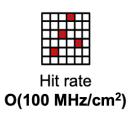


### Optimized CMOS Technology for Precision Ultra-thin Silicon

- Project: simulate, produce and test MAPS prototypes
- Target: reticle-size demonstrator sensor for future lepton collider vertex detectors
- Requirements: based on 2021 ECFA detector roadmap
- Performed in: DRD3 WG1
- **CMOS process:** TPSCo 65 nm via DRD7.6a
- https://octopus.web.cern.ch/



Radiation tolerance O(10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>)

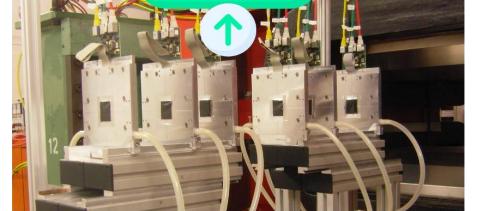

## Intermediate project target:




New sensor for beam telescopes













Power consumption
<50 mW/cm²
<500 mW/cm²

Radiation tolerance
O(10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>)
not explicitly required



## 14 member institutes

| Institute            | Main areas of contribution             |
|----------------------|----------------------------------------|
| APC Paris            | Simulations, testing                   |
| University of Bonn   | ASIC design, testing                   |
| CPPM Marseille       | ASIC design                            |
| NIKHEF               | Testing, DAQ                           |
| CERN                 | Testing, DAQ, ASIC design support      |
| DESY                 | ASIC design, testing, DAQ, simulations |
| ETH Zurich           | ASIC design, testing                   |
| CTU Prague           | ASIC design, DAQ, testing              |
| GSI Darmstadt        | Simulations, testing                   |
| MBI Vienna           | DAQ, testing, ASIC design              |
| IPHC Strasbourg      | ASIC design, testing                   |
| University of Oxford | Powering, integration, testing         |
| University of Zurich | Testing, DAQ, simulations              |



## 4 working groups



#### OCTOPUS project S. Spannagel, D. Dannheim

WP1: Simulations A. Ilg, A. Velyka WP2: A SIC design F. Guezzi, L. Huth, S. Senyukov WP3: Data Acquisition Y. Otarid WP4: Testing and characterization F. King, M. Franks

System Demonstator (DRD8)

Task 1: Sensor optimization / TCAD Task1: Sensor and pixel front-end design

Activity 1: Caribou 2 development

Task 1: Summary of current 65 nm demonstrator results

Activity 1: Concept, design of mechanics & cooling

Activity 1: Allpix<sup>2</sup> development Task 2: Matrix architecture & readout design

Task 1: Chipboard design for prototypes

Task 2: Lab characterization, FE optimization, calibration

Activity 2: Design & Construction of beam telescope

Task 2: Detecor performance / Allpix<sup>2</sup> Task 3: Periphery, DACs & slow control

Task 2: FW and SW integration of prototypes

Task 3: Testbeam caracterization, simulation comparison

Activity 3: Prototype construction

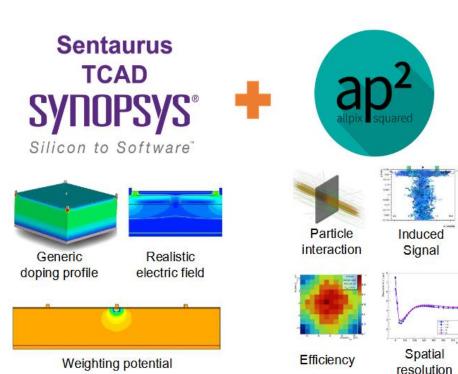
Activity 2: Physics performance / Geometry optimization

Task 3: Trancievers & readout design Task 3: Chip / board assembly, bonding & logistics

Activity 1: Sensor irradiation & testing

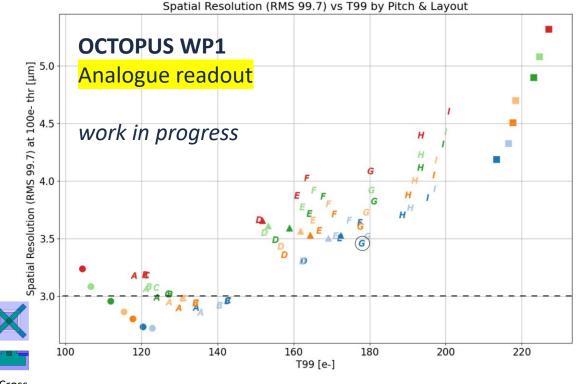
Activity 1: Submission coordination & DRD7 liason

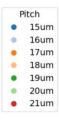
## WP1: Sensor optimization




#### **Tech-independent simulation framework:**

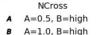
- TCAD sensor simulation
- Allpix squared particle interaction, signal propagation


#### Aim: 3 µm resolution with full efficiency


- Large parameter space:
  - Process variants
  - Pitch
- Trade-off between:
  - Charge sharing
  - Efficiency
  - Timing
- Existing TPSCo 65 test results used to benchmark simulations



## WP1: Novel layout - NCross


- Novel cross shaped **layout (Ncross)** provides 3 µm resolution at 18-20 µm pitch
- New layout may be implemented in the next TPSCo 65 nm submissions (2026-2027)











- A=1.5, B=high
- A=0.5, B=medium
- A=1.0, B=medium
- A=1.5, B=medium
- A=0.5, B=1.0
- A=1.0, B=1.0
- A=1.5, B=1.0

Standard

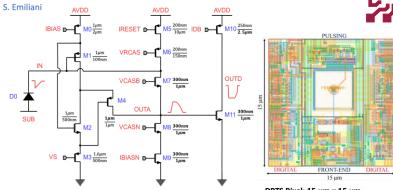













**NCross** 

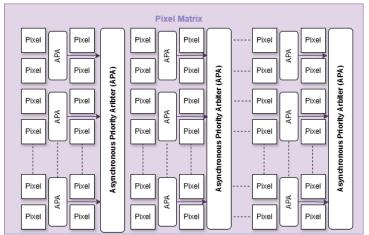
### WP2: Pixel front-end

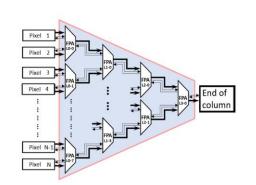
- MOSAIX (ALICE ITS3) frontend as a starting point of development
  - Previous versions proven in silicon (DPTS/MOSS)
  - Compact footprint
  - Significant time walk at low power
- Time stamp for rising and falling edge needed for:
  - Time walk correction
  - Charge interpolation for spatial resolution
- Alternative front-ends are under consideration (e.g. CSA from H2M)

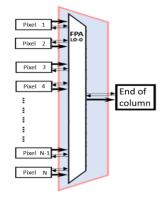




https://indico.cern.ch/event/1461789/


Charge over threshold (e - ) 0.05  $I_{bias} = 25 \text{ nA}$ RMS = 43.2 ns $I_{bias} = 50 \text{ nA}$ 0.04 RMS = 26.4 nscount per 2  $I_{bias} = 100 \text{ nA}$  $RMS = 16.8 \, ns$  $I_{bias} = 200 \text{ nA}$ RMS = 10.7 nsNormalized o  $I_{bias} = 300 \text{ nA}$  $RMS = 8.1 \, ns$ 50 100 150 200 250


### WP2: Matrix readout




### APA – Asynchronous Priority Arbiter

- Pixels are grouped in double columns
- Hits are propagated via APA tree to the periphery asynchronously (no clock)
- Time ordering of hits is preserved
- Expected time resolution: 5 ns
- Evaluating the best tree topology inbetween
  - Many 2:1 (better bandwidth)
  - One N:1 (Less area)
- SPARC chip (ER2) to be tested in 2026 to verify the performance of the architecture







# SPARC: first prototype of asynchronous

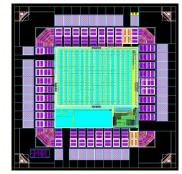
readout

• Pixel matrix:  $32 \times 28$ 

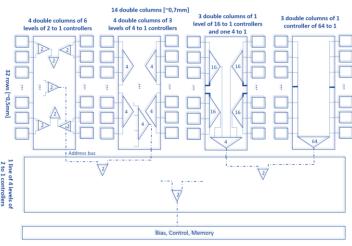
• Pixel pitch:  $24 \times 16 \ \mu m^2$ 

• Pixel front-end: DPTS-like (CERN)

• FPA tree types: 2:1, 4:1, 16:1, 64:1


• Power dissipation: 5 mW/cm<sup>2</sup>

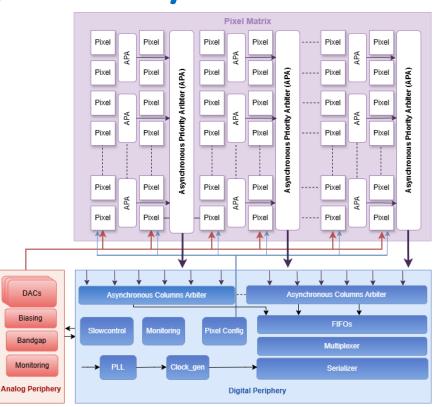
• Mean readout time: 6.3 ns


• Designed by: IPHC, IRFU

• Submission: summer 2025 (ER2)

Test system in preparation for 2026




1.5×1.5 mm<sup>2</sup>



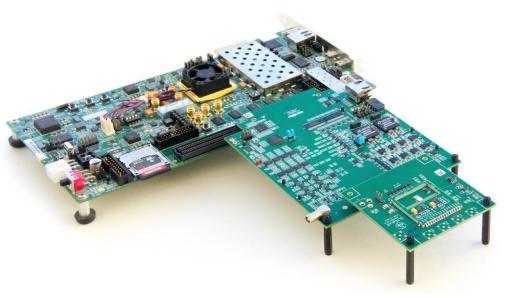
## WP2: Chip periphery and layout



- Time stamping for ToA and ToT via TDC in the end-of-column
- 4 level event buffer
- Various options for column merging are studied with simulations
- Serialization and data packaging by in-chip lpGBT logic
- Expected output data rate:
   10 Gb/s per cm<sup>2</sup>



## WP3: DAQ for OCTOPUS




 <u>Caribou</u> – open modular DAQ platform for testing silicon pixel detectors.
 Already used for various projects:

H2M, ATLASpix, APTS, DPTS, etc.

### Hardware components:

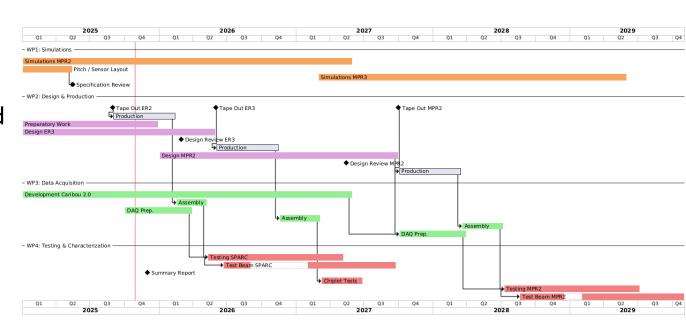
- SoC board (3000 €)
  - Embedded CPU runs DAQ
- CaR board (800 €)
  - Power supply
  - Data and control links
- Chip board (100 €)
- First use in OCTOPUS
  - Test of SPARC chip (from 2026)



### WP4: Test and characterization



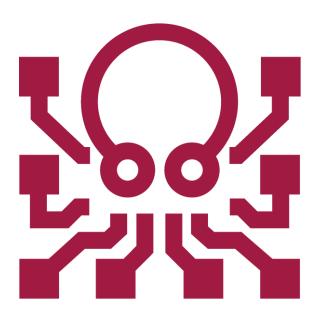
- 2025: Finalizing summary report of current results of TPSCo 65 nm prototypes. Publication submission by the end of the year
- 2026: SPARC characterization
  - Lab test in several institutes with Caribou DAQ
  - 2-3 weeks of the test beam in summer (CERN and DESY)
- >2026: Possible characterization of Ncross layout with APTS chips of ER2-respin or ER3.
  - Discussion ongoing with DRD7.6a on possible submissions


## Project timeline



Project schedule largely depends on the TPSCo 65 nm submissions organized by DRD 7.6a

#### **Current targets:**


- ER3 (2026) several "chiplets" (1.5×1.5 mm²) to test individual blocks
- MPR2 (2027) full column prototype (2 × 1 cm²)



## Summary and outlook



- OCTOPUS project aims to build a MAPS prototype for the vertex detector for future lepton collider
  - Spatial resolution: 3 μm
  - Time resolution: 5 ns
  - Power consumption: < 50 mW/cm<sup>2</sup>
  - Hit rate: 100 MHz/cm<sup>2</sup>
- Targeting ER3 and MPR2 submission in 2026/27 for the first prototypes in TPSCo 65 nm process
- Preparation for testing async readout using SPARC chip in 2026



Thank you!