
Current and future FCC-ee vertex detector layouts and their performance FCC-ee vertex detector R&D workshop, INFN Pisa

Recipe for a vertex detector at FCC-ee

Goal: Supreme impact parameter resolution: $\sigma_{d_0} = a \oplus b/(p \sin^{3/2} \theta) = 3 \oplus 15/(p \sin^{3/2} \theta) \mu m$

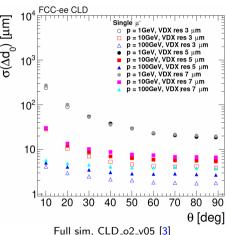
- Good single-hit resolution
- Material budget per layer of $\lesssim 0.3 \% X_0$
- → So far, only monolithic active pixel sensors (MAPS) are envisioned to deliver this

Layout

- Beam pipe as thin and light as possible
- ullet (Inner) vertex detector: \geq 3 hits per track, first layer as close as possible to IP
- Outer vertex in front of gas tracker: Up to \sim 35 cm in r (high hit rate, precise hit before tracker). Relaxed material budget and resolution requirements: How relaxed?
- Forward coverage constrained by lumical Is a light pixel layer before lumical possible?
- Redundancy in design, alignment, calibration... → More/double layers?


Collision environment at Z pole

- Radiation tolerant components (less than HL-LHC), high hit rate (see backup for past studies)
- Tracking efficiency under beam background: $\sigma_t < 20 \, \text{ns}$ for bunch resolution and integration time $\leq 1 \, \mu \text{s}$? Much better for beam background rejection?


Layout and performance of CLD detector concept

- $r_{\min} = 13 \, \text{mm}$
- Three double-layer barrel layers and disks, 0.6-0.7% X_0 per double layer
- No engineering studies since CLICDet developments → Simple DD4hep full sim. implementation
- No specific sensor chosen, assume $3 \, \mu \mathrm{m}$ single-point resolution

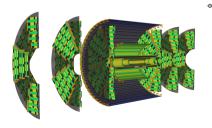
Full Sim, CLD_02_v05 [5]

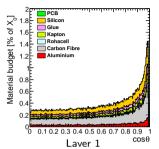
 $\rightarrow b \approx 18 \,\mu m \, \text{GeV}^{-1}$ 3 × 3 μm^2 single-hit resolution is ok

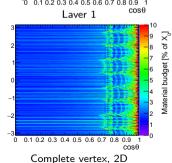
The IDEA/ALLEGRO vertex detector

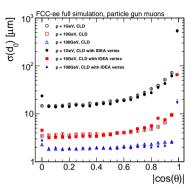

$\textbf{IDEA} \rightarrow \text{Original FCC-ee}$ vertex layout

- $r_{\min} = 13.7 \, \text{mm}$
- Three inner barrel single-layers (0.25% X_0), two outer barrel layers and three disks
- Engineered design (INFN-Pisa) integrated into machine-detector interface (INFN-LNF [4])
- IDEA baseline: ARCADIA [5] (inner barrel, $25 \times 25 \, \mu\text{m}^2$) and ATLASPix3 [6] (outer barrel and disks, $150 \times 50 \, \mu\text{m}^2$) sensors




• Assume $3\,\mu m$ / $14\times43\,\mu m$ resolution for performance studies


The IDEA/ALLEGRO vertex detector in full simulation



- Detailed description of support and on-detector readout structures
- Insensitive sensor peripheries described \rightarrow Check for hermeticity!

IDEA vertex inserted in CLD using conformal tracking, k4DetPerformance

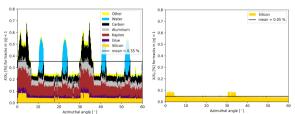
- $cos(\theta) = 0$: No hit in first layer (gap between sensors)
- $b \approx 14 \, \mathrm{um} \, \mathrm{GeV}^{-1}$

Towards ultra-light FCC-ee vertex detectors

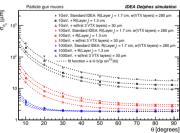
MAPS in 65 nm TPSCo process

- More logic per cm²
- ullet Lower power consumption o Air cooling
- Enables 12-inch wafers → Wafer-scale bent sensors!

Towards ultra-light FCC-ee vertex detectors



MAPS in 65 nm TPSCo process


- More logic per cm²
- ullet Lower power consumption o Air cooling
- Enables 12-inch wafers → Wafer-scale bent sensors!

Layer assembly concept for ALICE ITS3

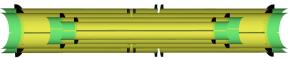
Material budget in ALICE ITS2 (left, [7]) and silicon only (M. Mager)

Fast simulation study of reduced-material vertex detector variants [8]

Ultra-light inner vertex concept for FCC-ee

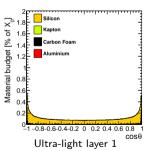
Laver 1 and 2: $r = 13.7, 20.35 \,\mathrm{mm}$

- 10 and 13 repeated sensor units long $\rightarrow |\cos(\theta)| < 0.992/0.99$
- Peripheries, gap between half-barrels \rightarrow Rotation in ϕ to fill gaps
- Readout and power from both sides


Laver 3 and 4: $r = 27, 33.65 \,\mathrm{mm}$

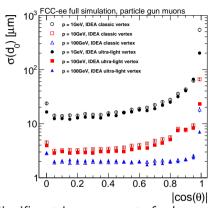
- Two sensors per side, readout only on sides, power on sides and centre (power wire)
- 8 (10) RSUs on +z (-z) side for layer 3, inverted for layer 4 $\rightarrow |\cos(\theta)| < 0.991/0.986$

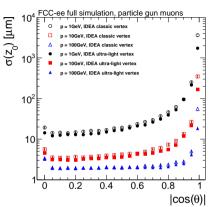
Assume 50 μ m of Si + 16 μ m of Si-equivalent (metal layer along sensor)


Layer 1+2 front

Longitudinal cross section of all four layers

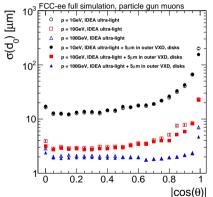
Layer 1 layout

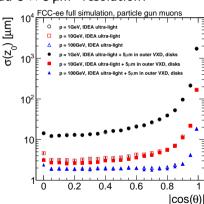



 $0.075\% X_0 \text{ at } \cos(\theta) = 0$

3 improvement!

Ultra-light vertex detector performance

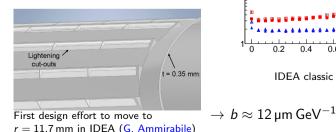


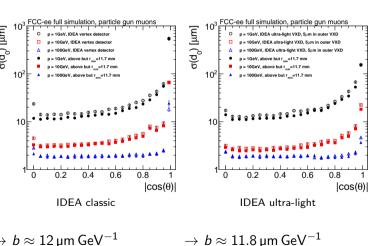

- → Significant improvements for low-momenta particles
 - Even though there's no first layer hit in $\approx 10\%$ of the cases ($|\cos \theta| = 0$: 100%)
 - $b \approx 12.5 \, \mu \mathrm{m \, GeV}^{-1}$
 - Reason for $\sigma(d_0)$ deterioration at 100 GeV unclear

Impact of improved disks

IDEA middle ($r = 13 \,\mathrm{cm}$) and outer barrel ($r = 31.5 \,\mathrm{cm}$) and disks currently foresee ATLASPix3 sensors, with resolution of $43 \times 14 \, \mu\text{m}^2$ (pitch/ $\sqrt{12}$) \rightarrow How good would IDEA vertex be if we had instead $5 \times 5 \, \mu\text{m}^2$ resolution?

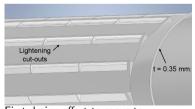
Improvement for 10, 100 GeV muons, deteriorated σ_{d_0} at 1 GeV (not yet understood)

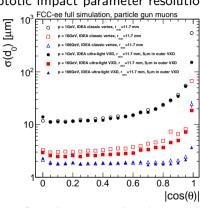

Full track reco in IDEA/ALLEGRO → Check impact on momentum resolution as well


Importance of first layer radius

The first layer radius is important for the asymptotic impact parameter resolution (a) Idea to put staves of sensors directly onto beam pipe

- Cooled through beam pipe cooling (paraffin) \rightarrow Less air cooling needed
- Electrical insulation with kapton layer below sensor


Importance of first layer radius

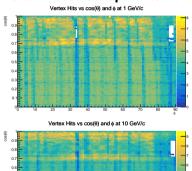

The first layer radius is important for the asymptotic impact parameter resolution (a)

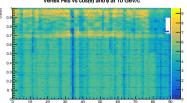
Idea to put staves of sensors directly onto beam pipe

- Cooled through beam pipe cooling (paraffin) \rightarrow Less air cooling needed
- Electrical insulation with kapton layer below sensor

First design effort to move to $r = 11.7 \,\mathrm{mm}$ in IDEA (G. Ammirabile)

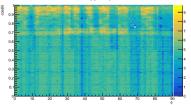
- ightarrow $p=10\, {
 m GeV}$: Significant benefit of low- $X_0\, {
 m VXD}$
- ightarrow $p=1\,{
 m GeV}$: Lower $r_{
 m min}$ ightarrow Less travel distance for particles after scattering off beam pipe material ightarrow Better σ_{do}


Ultra-light vertex detector – the issue of hermeticity

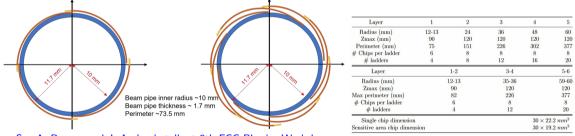


Work with UZH summer student Mohamed Ahmed

Gaps between the half-layers and peripheries within the the stitched sensor \rightarrow Implemented exactly as in ITS3 TDR (93 % sensitive only, +2.5% without auxiliary pads)


Before rotation optimisation

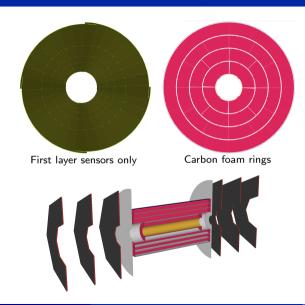
After rotation optimisation



FCC-SEED: Concept

Snail-shape vErtEx Detector (FCC-SEED) proposal by French institutes, also submitted as FCC Detector R&D Fol

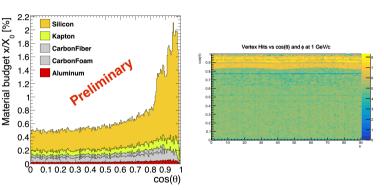
- ullet Stitching only along z, overlap between curved sensors o Full detector coverage
- More flexible in sensor size and detector layout
- So far looked at option on the left

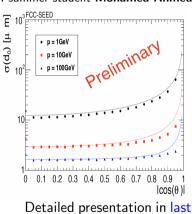


See A. Besson and J. Andrea's talk at 8th FCC Physics Workshop

 \rightarrow Implemented FCC-SEED in DD4hep and tested it within CLD detector concept (vertex disks unchanged currently).

FCC-SEED: Preliminary full simulation layout


Work with UZH summer student Mohamed Ahmed


- First layer at r_{min} of 11.8 mm, after 100 μm of Kapton
- Carbon foam longerons and rings, similar to ultra-light VXD design
- Thin layer of carbon fibre between sensors, flex (same as in IDEA inner vertex) on top of periphery
- Outer carbon fibre shell (same as in IDEA inner vertex)
- No off-detector services or supports or "end-of-stave" structures yet

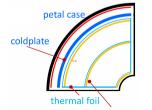
FCC-SEED: Preliminary performance

Work with UZH summer student Mohamed Ahmed

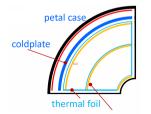
detector concept meeting

- 0.5 % X_0 in five layers \rightarrow 0.1 % X_0 per layer
- $\rightarrow b \approx 11.1 \, \mu \text{m GeV}^{-1} \text{ for } r_{\text{min}} = 11.8 \, \text{mm}$

Next steps: MR to k4geo, revisit stitching gaps, replace CLD disks, optimise (reduce) support material, add cables/fibres and end-of-ladder structure



ALICE ITS3 is cool. But what about ALICE3?

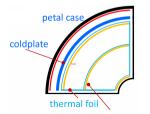

ALICE3 IRIS

- $r_{\min} = 5 \, \text{mm}$, retractable
- 3 curved layers of sensors, 4 secondary vacuua
- Retractable to increase $r_{\min} \rightarrow \text{During LHC filling}$
- Liquid CO2 cooling $(T_{\rm sensor} \sim -25\,^{\circ}{\rm C})$
- Secondary beam pipe of only 300 µm Be thickness (FCC-ee: 700 µm of AlBeMet $167 + 1 \, \text{mm}$ of paraffin)

ALICE3 IRIS

- $r_{\min} = 5 \, \text{mm}$, retractable
- 3 curved layers of sensors,4 secondary vacuua
- Retractable to increase $r_{\sf min} o {\sf During LHC filling}$
- Liquid CO2 cooling $(T_{\rm sensor} \sim -25\,^{\circ}\text{C})$
- Secondary beam pipe of only 300 µm Be thickness (FCC-ee: 700 µm of AlBeMet167 + 1 mm of paraffin)

Considerations for FCC-ee


- r_{\min} not below 10 mm
- Maybe 4 layers, and 1–2 sec. vacuua?
- Retractability prob. not useful (top-up injection)
- \bullet T_{room} ok for sensors
- Beam power @ ALICE3: $\sim 30\,\mathrm{W\,m^{-1}}$ (FCC-ee: $\sim 300\,\mathrm{W\,m^{-1}}$)
- IPC hit rate tolerable?

Armin Ilg (UZH)

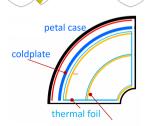
ALICE3 IRIS

- $r_{\min} = 5 \, \text{mm}$, retractable
- 3 curved layers of sensors,4 secondary vacuua
- Retractable to increase $r_{\sf min} o {\sf During LHC filling}$
- Liquid CO2 cooling $(T_{\rm sensor} \sim -25\,^{\circ}\text{C})$
- Secondary beam pipe of only 300 µm Be thickness (FCC-ee: 700 µm of AlBeMet167 + 1 mm of paraffin)

Considerations for FCC-ee

- r_{\min} not below 10 mm
- Maybe 4 layers, and 1–2 sec. vacuua?
- Retractability prob. not useful (top-up injection)
- \bullet T_{room} ok for sensors
- Beam power @ ALICE3: $\sim 30\,\mathrm{W\,m^{-1}}$ (FCC-ee: $\sim 300\,\mathrm{W\,m^{-1}}$)
- IPC hit rate tolerable?
- Clearly whole MDI region would need to be redesigned from scratch...

Armin Ilg (UZH)

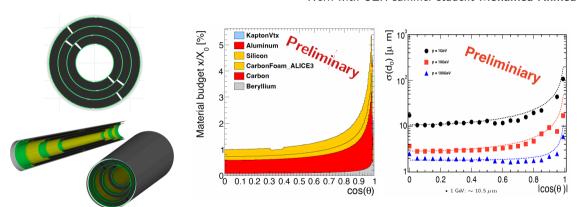


ALICE3 IRIS

- $r_{\min} = 5 \, \text{mm}$, retractable
- 3 curved layers of sensors,4 secondary vacuua
- Retractable to increase $r_{min} \rightarrow During LHC filling$

Considerations for FCC-ee

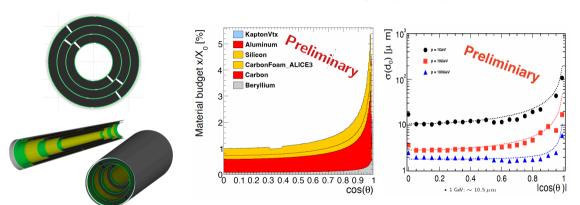
- r_{\min} not below 10 mm
- Maybe 4 layers, and 1–2 sec. vacuua?
- Retractability prob. not
- Kinda crazy at the moment... But just for fun... Let's see what we could do with this!



 Secondary beam pipe of only 300 µm Be thickness (FCC-ee: 700 µm of AlBeMet167 + 1 mm of paraffin)

- ho Beam power @ ALICE3: $\sim 30\,\mathrm{W\,m^{-1}}$ (FCC-ee: $\sim 300\,\mathrm{W\,m^{-1}}$)
- IPC hit rate tolerable?
- Clearly whole MDI region would need to be redesigned from scratch...

ALICE3-like vertex detector idea – first performance evaluation


Work with UZH summer student Mohamed Ahmed

 $b \approx 10.5 \, \mu \mathrm{m \, GeV}^{-1}$ achieved, expected a bit better \rightarrow Under investigation

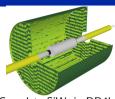
ALICE3-like vertex detector idea – first performance evaluation

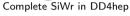
Work with UZH summer student Mohamed Ahmed

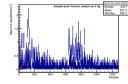
 $b \approx 10.5 \, \mu m \, \text{GeV}^{-1}$ achieved, expected a bit better \to Under investigation Would need many more studies to see if feasible/worth it at FCC-ee!

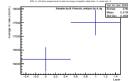
Silicon layer outside gaseous tracker

 $\mathcal{O}(10\,\mu\text{m})$ in r– ϕ for momentum resolution

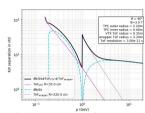

- Disk: Expand tracker coverage in forward region. $\mathcal{O}(10\,\mu\text{m})$ in θ for precise detector acceptance definition?
- Is resolution of $\mathcal{O}(100\,\mu\text{m})$ in z (barrel) enough? Benefit of $\mathcal{O}(10\,\mu\text{m})$?
- Potentially σ_t of $\mathcal{O}(\leq 100 \, \text{ps})$ for PID \rightarrow Silicon microstrip, LGADs, or MAPS?

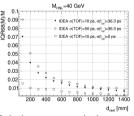

Implemented silicon wrapper in DD4hep


- Two barrel and disks, ≥ 2 hit down to $|\cos\theta| < 0.989$
- Tiles with large $(4 \times 4 \text{ cm}^2)$ sensors
- Next iteration: One layer, rings in disks


Questions:

- Inner timing layer as well?
- Same technology as outer vertex possible?





Hit rate in first SiWr disk (top) and barrel (bottom)

Outer + inner TOF at $3\,T$

Relative mass resolution on HNL as a function of its flight distance [9]

What does all of this teach us?

About vertex detector layouts:

- r_{min} crucial also for low-momentum tracks. First layer on beam pipe? Secondary vacuum?
 - ightarrow Limited by IPC hit rate and cooling ightarrow Also influences sensor choice (charge sharing)
- Non-hermetic layers don't prevent good IP resolutions, but advantages of hermetic design clearly visible (especially for first layer)
- Good spatial resolution in outer vertex desirable
 - → What material budget can we afford there? Liquid or air cooling?
 - → Inner T.O.F layer? Which technology?
- Benefit of close-to-IP disks? Potential benefits of pixel sensors in front of lumical?
- Redundancy in design: How many layers, double-sided?

About MAPS:

- Optimise power consumption (enabling air cooling)
- ullet Minimisation of periphery o Lower material budget (stave-like design) or better hermeticity (2D-stitched designs)
- Timing: $\sigma_t < 20 \, \text{ns}$ and $t_{\text{int}} \leq 1 \, \mu \text{s}$? Background rejection?

What should we now do? \rightarrow Check vertex Eol

2025 – 2027: Explore various kinds of vertex detector concepts and layouts, develop tools necessary to enable efficient comparison

Vertex detector concepts comparison

- Interfacing sensor simulation (from TCAD or AllPix2) with detector full simulation to realistically evaluate final tracking and vertexing performance
- Establishing figures of merits evaluation workflow (incl. case study designs)
- Establish workflow for machine background study
- ightarrow First rough exploration of vertex detector phase space

What should we now do? \rightarrow Check vertex Eol

2025 – 2027: Explore various kinds of vertex detector concepts and layouts, develop tools necessary to enable efficient comparison

Vertex detector concepts comparison

- Interfacing sensor simulation (from TCAD or AllPix2) with detector full simulation to realistically evaluate final tracking and vertexing performance
- Establishing figures of merits evaluation workflow (incl. case study designs)
- Establish workflow for machine background study
- → First rough exploration of vertex detector phase space

I think that's still what we should do to answer questions on previous slide. Progress on all points is ongoing.

What should we now do? \rightarrow Check vertex Eol

2025 – 2027: Explore various kinds of vertex detector concepts and layouts, develop tools necessary to enable efficient comparison

Vertex detector concepts comparison

- Interfacing sensor simulation (from TCAD or AllPix2) with detector full simulation to real 2028 2030: Narrow down to just a couple of vertex detector concepts
- Esta as input to detector CDRs, and to be studied in more detail in the TDR phase
- Estabuon monthion for machine background seady
- ightarrow First rough exploration of vertex detector phase space

I think that's still what we should do to answer questions on previous slide. Progress on all points is ongoing.

Thanks!

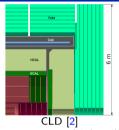
Funded by the Swiss National Science Foundation under Grant number 223515

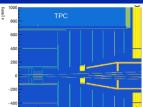
Ultra-light silicon sensors for the next generation of particle colliders

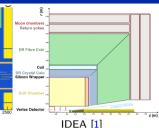
ZZ event at 240 GeV in IDEA detector concept [1]

References I

- [1] IDEA Study Group Collaboration, M. Abbrescia et al., The IDEA detector concept for FCC-ee, arXiv:2502.21223 [physics.ins-det].
- [2] N. Bacchetta, et al., CLD A Detector Concept for the FCC-ee, arXiv:1911.12230 [physics.ins-det].
- [3] G. Sadowski, J. Andrea, A. Besson, and Z. E. Bitar, Tracking Performance Studies for Future Circular Collider (FCCee) with CLD Detector, EPJ Web Conf. 315 (2024) 03003.
- [4] M. Boscolo, et al., Progress in the design of the future circular collider FCC-ee interaction region, JACoW IPAC 2024 (2024) TUPC67.
- [5] C. Neubüser, T. Corradino, G.-F. Dalla Betta, and L. Pancheri, ARCADIA FD-MAPS: Simulation, characterization and perspectives for high resolution timing applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1048 (2023) 167946.
- [6] I. Peric, et al., High-Voltage CMOS Active Pixel Sensor, IEEE Journal of Solid-State Circuits 56 (2021) 2488–2502.
- [7] F. Reidt, Upgrading the Inner Tracking System and the Time Projection Chamber of ALICE, Nuclear Physics A 1005 (2021) 121793.
- [8] L. Freitag, Benefits of Minimizing the Vertex Detector Material Budget at the FCC-ee, 2023. https://cds.cern.ch/record/2851362. Presented 01 Feb 2023.
- W. Bartmann, et al., Future Circular Collider Feasibility Study Report Volume 1: Physics and Experiments, 2025. http://cds.cern.ch/record/2928193.
- [10] ILD Collaboration, U. Einhaus, The International Large Detector (ILD) for a future electron-positron collider: Status and Plans, PoS EPS-HEP2023 (2024) 543, arXiv:2311.09181 [hep-ex].
- [11] M. Aleksa, et al., Calorimetry at FCC-ee, The European Physical Journal Plus 136 (2021) 1066.
- [12] X. Mo, G. Li, M.-Q. Ruan, and X.-C. Lou, Physics cross sections and event generation of e⁺e⁻ annihilations at the CEPC, Chinese Physics C 40 (2016) 033001, https://doi.org/10.1088/1674-1137/40/3/033001.


References II




- [13] A. Ciarma, M. Boscolo, G. Ganis, and E. Perez, Machine Induced Backgrounds in the FCC-ee MDI Region and Beamstrahlung Radiation, Proceedings of the 65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders eeFACT2022 (2022) Italy, https://jacow.org/eefact2022/doi/JACoW-eeFACT2022-TUZAT0203.html.
- [14] D. Garcia, B. Francois, M. Selvaggi, and A. De Vita, Geometric Graph Neural Network based track finding, https://repository.cern/doi/10.17181/pwrx1-wvn43.
- [15] E. Brondolin, et al., Conformal tracking for all-silicon trackers at future electron-positron colliders, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 956 (2020) 163304, http://dx.doi.org/10.1016/j.nima.2019.163304.

FCC-ee detector concepts (modulo some variations)

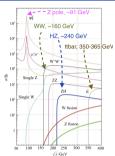
- D [2] ILD [10] IDEA [1] ALLEG
 Light silicon vertex detector using monolithic active pixel sensors (MAPS)
- Si tracker
- dE/dx + ARC (?)
- CALICE-like
 highly-granular ECAL/
 CALICE-like
 HCAL
 highly-granular
- Solenoid coil outside calorimeter system

- Si tracker + time projection chamber
- Si or ECAL with T.O.F• Si layer with T.O.F
- CALICE-like highly-granular ECAL/ HCAL
- Solenoid coil outside calorimeter system
- Dual-readout crystal ECAL
- Light solenoid up to 3 T
- DR fibre HCAL

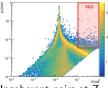
Ultra-light drift

 Noble liquid ECAL, Pb/W+LAr or W+LKr

DC/SciFi/Straw tubes


- Solenoid in same
 Γ cryostat as ECAL
- TileCal HCAL
- Muon system in return yoke, pretty much det. concept independent (e.g. μ -RWELL in IDEA)

chamber with $dN_{ion.}/dX_{\bullet}$ Si layer with T.O.F


Experimental environment at the FCC-ee (Z pole)

- \odot : e^+e^- collisions are *clean* there's no QCD in the initial state
- \odot : Very high inst. luminosity of $140 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$ thanks to 37 MHz bunch collision rate ($t_{BC} = 27 \, \text{ns}$ currently)
 - Very high rate of interesting events (60 kHz of Z, 18 kHz of $\gamma\gamma\to$ hadrons, 30 kHz of bhabha pairs) that need to be read out and saved (and simulated!)
 - ullet "Pile-up" Z bosons of $\sim 60\,\mathrm{kHz}/50\,\mathrm{MHz} = 0.00162$
 - → Integrate over of a couple of bunch crossings?
 - → But need to check impact on uncertainties
 - Considerable beam backgrounds, mainly from incoherent pairs
 - High hit rate innermost vertex layers, occupancy challenges in gaseous tracker and ECAL
 - ightarrow Challenge also for readout
 - \bullet Few $10^{13}~1\,\text{MeV}~\text{n}_{\text{eq}}\text{cm}^{-2}$ and few tens of kGy per year in vertex detector

 e^+e^- annihilation cross section [12]

Incoherent pairs at Z pole [13]

IPC hit rate methodology and previous results

Common assumptions so far:

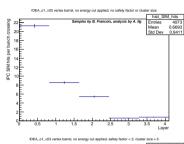
- Incoherent pair creation (IPC) dominant. Radiative Bhabha scattering, synchrotron radiation, beamstrahlung are much lower
 - IPC simulated in GuineaPig MC generator and interfaced with Key4hep
- SIM hit to REC hit: Cluster size of 5, safety factor of 3, $25 \times 25 \, \mu m^2$ pixels

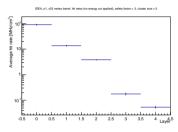
Occupancy and hit rates:

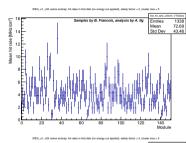
- 2022, old lattice with 30 ns bunch spacing, CLD vertex detector, 70×10^{-6} per BC $\stackrel{\circ}{=}$ 373 MHz cm⁻² [13]
- 2024, V23 lattice, IDEA vertex detector: 20×10^{-6} per BC $\stackrel{\triangle}{=} 170\,\mathrm{MHz\,cm^{-2}}$
- ullet 2024, V23 lattice, ultra-light vertex detector: $30 imes 10^{-6}$ per BC $\hat{=}$ 250 MHz cm $^{-2}$
- 2025, V23 lattice, IDEA vertex detector with CAD beam pipe, GuineaPig particles set to (0,0,0), SIM.filter.tracker = "edep0": 11×10^{-6} per BC $\stackrel{<}{=}$ 90 MHz cm⁻², but bug in CAD beampipe (Air inside), samples by B. Francois

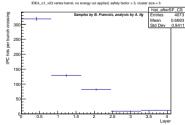
Expect further updates and changes!

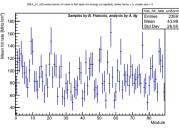
• Always highest at Z pole in innermost barrel and disk, rather flat along z and ϕ (see here)

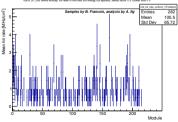

Vertex hit rate - more details

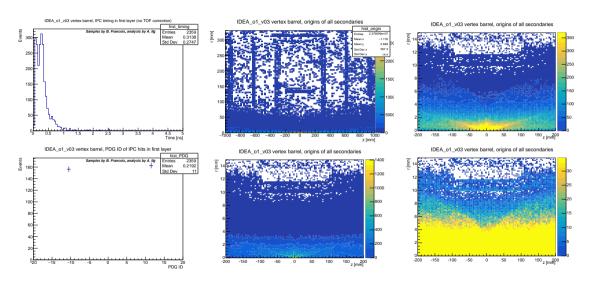


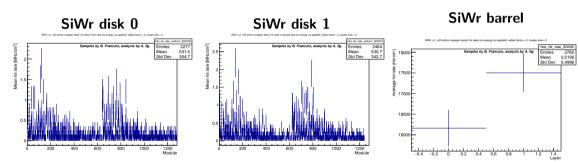



Vertex barrel hit rates

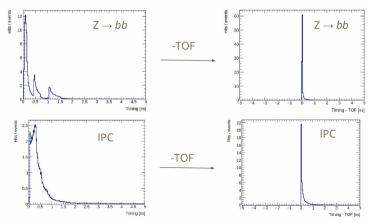







Vertex hit rate results – continued

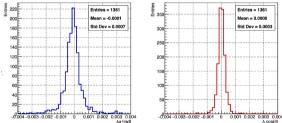
Silicon wrapper hit rate results


Disks: Assuming same tile size for all tiles (not true) \rightarrow Overestimating hit rate in outer tiles

Timing of IPC

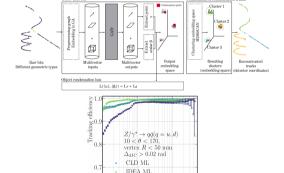
Timing of hits

N.B. timing of IPC may be misleading, we move all particles at the origin!


Work in progress, R. Simonielli, A. Koulouris, S. Franchellucci

Track reconstruction in IDEA full simulation

Algorithmic reconstruction using Genfit2


- Providing track representation, track-fitting algorithms and graphic visualization
- Relying on ground truth

Vertex + drift chamber reco, E = 5 GeV, θ between 15° and 80° , A. de Vita @ FCC Week 2025

ML-based track reconstruction

- GNN, detector agnostic
- Track refitting to be done still

Tracking efficiency [14]

CLD Conformal Tracking

pr [GeV

Track reconstruction using conformal tracking

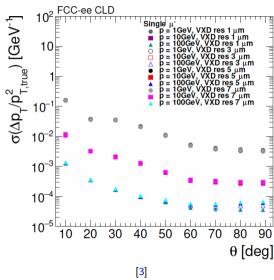
For CLD, simply use conformal tracking [15] (see talk by Leonhard) For IDEA, eventually use

- ullet ACTS tracking (talk by Samuel) o Not yet available for IDEA
- ullet Genfit2 tracking or ML tracking (talk by Andrea) o Track refitting not yet done

For the moment simply insert IDEA vertex detector into CLD $_{-}$ o2 $_{-}$ v05 and use conformal tracking!

Necessary changes

- Removing first Inner Tracker barrel layer (r = 127 mm)
- Removing first and second Inner Tracker disks (r = 79.5 and $123.5 \,\mathrm{mm}$)
- Unchanged conformal tracking max. distance (CT_MAX_DIST) and MinClustersOnTrack


Nota bene

- Tracking performance should be much better with drift chamber and silicon wrapper
- Assume spatial resolution of $3\,\mu\mathrm{m}$ for inner vertex barrel (same as CLD), and $14\,\mu\mathrm{m} \times 43\,\mu\mathrm{m}$ for outer barrel and disks (CLD: vertex endcap: $3\,\mu\mathrm{m}$, inner tracker endcap: $5\,\mu\mathrm{m}$ or $7\times90\,\mu\mathrm{m}$)

Not perfect, but works, reasonably meaningful for impact parameter resolution comparison

CLD study on resolution impact on momentum

