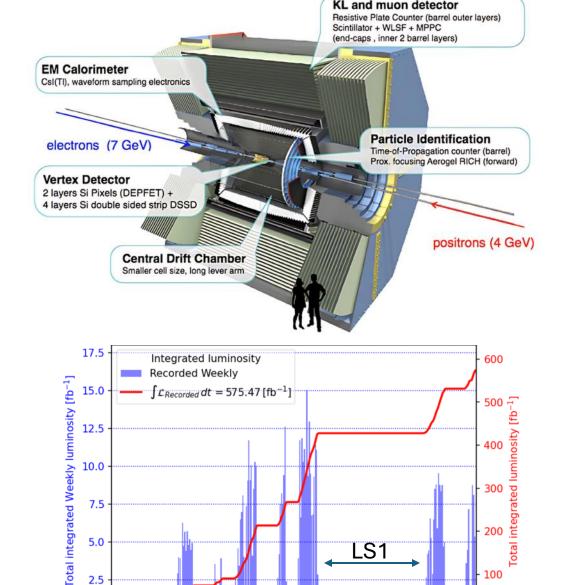


The Belle2-VXD Running Experience and the Mechanical Integration of the DMAPS VTX-Upgrade in the new I.R. Design

S. Bettarini

On behalf of PXD, SVD and VTX Collaborations


FCC-ee vertex detector R&D workshop

SuperKEKB & Belle II Interaction Belle II detector Region positron ring electron / positron linear injector positron damping ring

- SuperKEKB: e⁺e⁻ collider with asymmetric beam energies
- E_{cm} [Y(4S)] ~ 10.58 GeV (B-factory)
- Design integrated luminosity: 50 ab⁻¹
- Target peak luminosity $\mathcal{L}: 6\times10^{35}\,\text{cm}^{-2}\text{s}^{-1}$
- Start data-taking: April 2019-June 2022 (run1)
- Restart data-taking in 2024 (run2) after Long Shutdow 1
- NOW: restart data-taking (Nov. 2025)

Current integrated luminosity: 575 fb⁻¹ Peak luminosity world record: 5.1×10³⁴ cm⁻²s⁻¹

LS1

5.0

2.5

The Belle II Vertex Detector (VXD)

Vertex reconstruction is crucial for time-dependent CP violation and lifetime measurements, enabling precise decay-time resolution for B meson.

7 GeV e

VXD features:

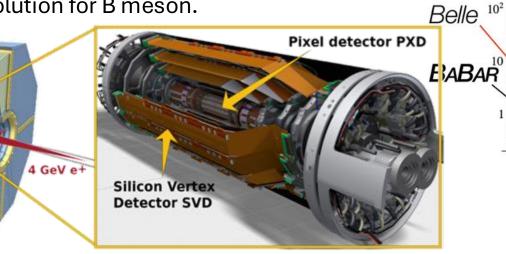
 Excellent Vertexing and Tracking down to low p_t (<100 MeV/c)

 Close to the interaction point (inner layer radius 14 mm)

High resolution on impact parameters

Operate in high background environment

Trigger rate 30 kHz


Two sub-systems:

Pixel Vertex Detector (PXD)

- DEPFET sensors
- 2 Layers: 14, 22 mm radii
- PXD 1: 2019 2022 incomplete 2-layer
- PXD 2: from 2024 (installed in LS1)

Silicon Vertex Detector (SVD)

- Four layers double-sided silicon strips
- 39 135 mm radii

 D^0 Lifetime

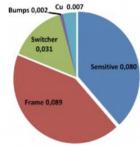
2 times better than Belle

τ [ps]

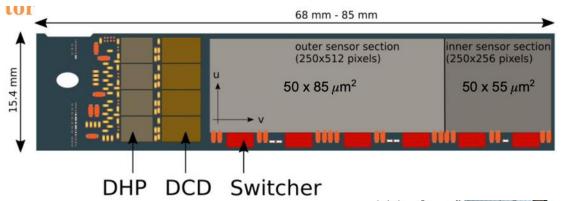
Preliminary **Belle II**

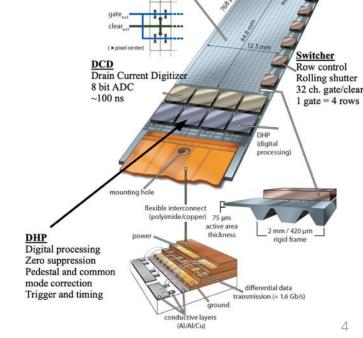
 $D^{*+} \rightarrow D^0 \pi_e^+$

The Pixel Vertex Detector (PXD)


Depleted P-channel Field Effect Transistor (DEPFET)

Developed at MPG HLL


- Fast charge collection (~ns) into internal gate
- Lower power consumption and heat dissipation in the active area
- Modules: Self supporting "all silicon" structure
 - Support frame ~ 525 μm/450 μm thick
 - Monolithic active area 75 μm thick
- Readout Scheme
 - > Rolling shutter readout → low power
 - > 192 gates, ~100 ns per gate \rightarrow full frame (integration time) \approx 20 μ s
- Design
 - > 1% occupancy (Layer 1)
 - > system limit ≈ 3% (DHP/DAQ/tracking)
- Sensor Scale
 - > 40 sensors, each 250 × 768 pixels → ~8 Mpixel total

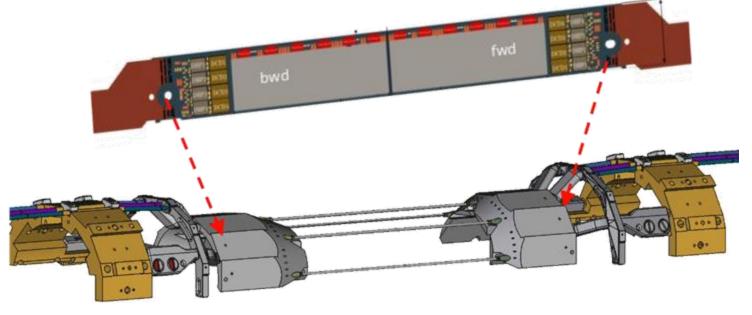

ASICs on module

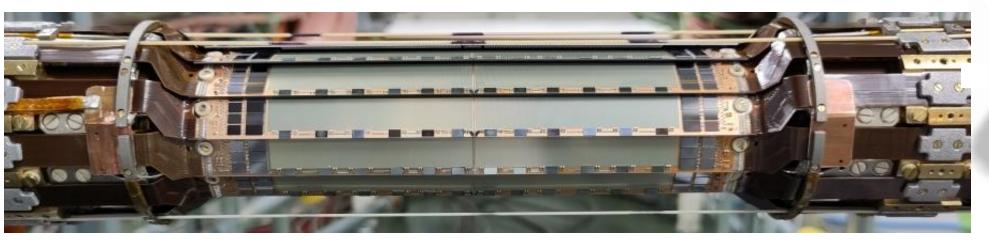
- > Switcher: consecutive row selection for data readout
- > DCD (Drain Current Digitizer): Analog to digital conversion of signal
- > DHP (Data Handling Processor): Digital Processing, data formatting

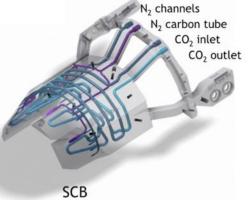
 \sim 0.21% X_0 / layer material budget

PXD Design: Modules, Ladders, and Cooling

Module

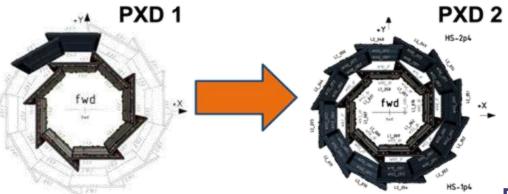

- 2 modules glued to one ladder
- 20 ladders in total (2 modules per ladder)


Ladders

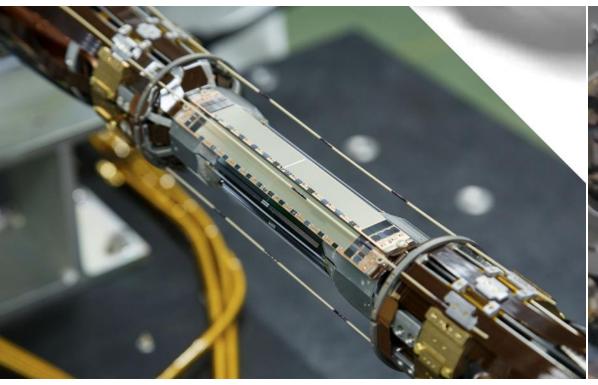

- 10 ladders 1 half-shell
- Screwed on support colling block (SCB)
- Half-shell (HS) mounted on beam pipe

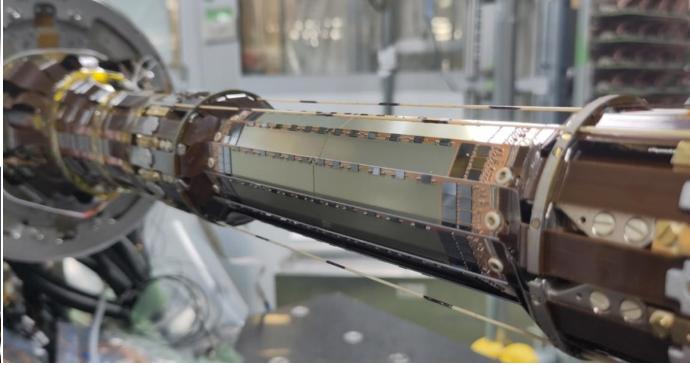
Cooling

- ~ 9 W per module = ~ 360 W for full detector
- 2-phase CO₂: DHP + DCD (8 W)
- N₂ gas: Switcher + sensor (1 W)



PXD 2: Installed in 2023 with fully equipped 2nd layer

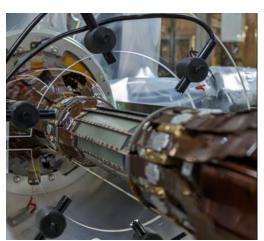

RUN1 PERFORMANCE

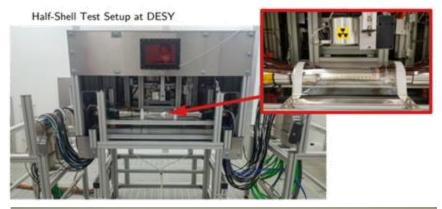

- Di muon hit efficiency
 - > ~ 99 % in fiducial region
 - > ~ 96 % in tracking acceptance
 - > Noise performance < 1 ADU (~200 e-)
- Impact parameter resolution:
 - ~1.5 2 times better than Belle

PXD 1: 2019 - 2022

Commissioning of PXD 2 – From DESY to KEK Installation

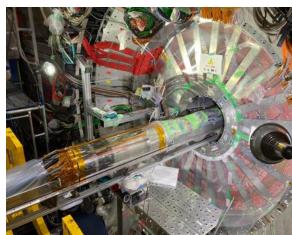
Commissioning at DESY

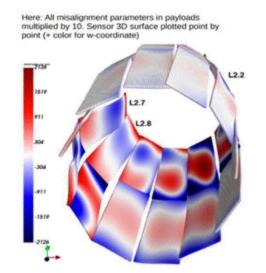

- Conducted source scans and system tests on half-shell setups
- Tested power supply, DAQ, CO₂, and N₂ cooling with Aluminium dummy beam pipe
- Two ladders were damaged by glue joint failure, highlighting sensitivity to heating and bending
- The half-shell was repaired with ladder replacements and improved mounting, with careful monitoring of temperature and bending

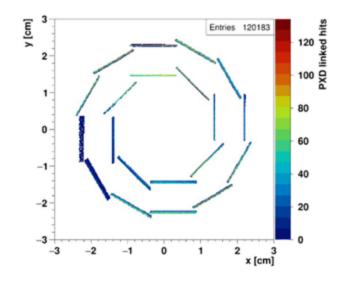

Commissioning at KEK

- First operation of full PXD 2
- Issue:
 - > 2 ladders with significant bowing
 - > One module with high noise

Installation in Belle II

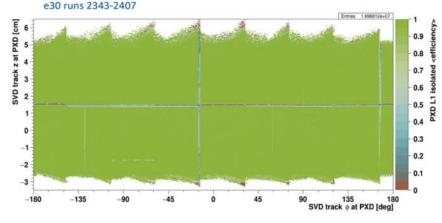

- Attached SVD and installed in Belle II
- Perform cosmic runs to study bending more precisely

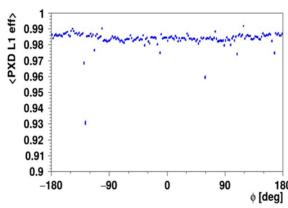




PXD 2 Cosmic Study and Operation Performance

PXD 2 cosmic data taking


- Study ladder behaviour with cosmic data
 - > Test with different cooling setups
- Bending in 2 ladders (4 Modules):
 - ~1 mm sagitta observed, smaller than the 2 mm, safe limit from endurance studies
- ✓ Decided to keep both ladders off during operation start



Operation Performance from March - April 2024

- Running with 35/40 modules:
 - > 4 Modules off because of bowing
 - > 1 Module off because of noise
- L1 and L2 efficiency > 98 % in the fiducial region
- Operation temperature high but within limits
- Noise <1 ADU
- Smooth operation with minor down times

Efficiency as a function of the azimuth angle $\boldsymbol{\Phi}$

Sudden Beam Loss (SBL) and Damages

Two beam loses with high dose in PXD

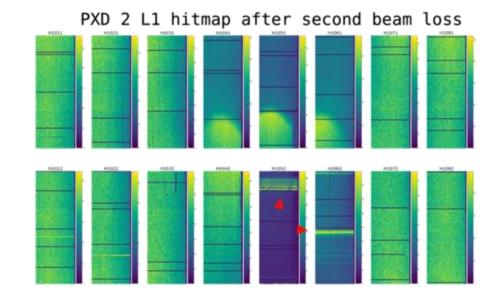
Possible Reason for SBL:

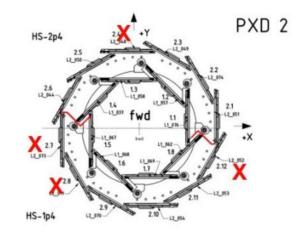
- Vacseal residue in the vacuum system
- Does other sources of SBL exist?

SBL effect on PXD

- In May 2024: two major SBLs damaged Switcher ASICs, causing ~2% PXD readout loss and increased currents
- After the 2nd SBL PXD 2 was powered down
- PXD 2 remains functional with good performance
- Additional SBL events may cause further damage

Therefore, PXD 2 will be turned off during beam operations to prevent further damage until stable beam conditions are restored!

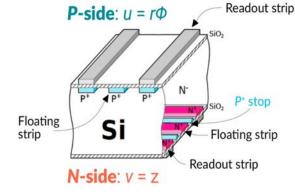

During this summer shutdown we cleaned from vacseal residual the areas of the beam pipes.

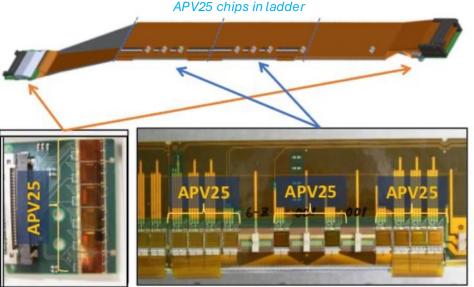

Future Plans

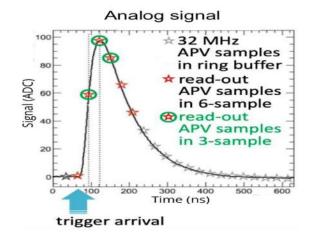
- Improving faster detection of beam instabilities earlier beam abort
- Decided to turn off PXD 2 for now to investigate:
 - > To optimize beam operation
 - > To solve origin of SBL event

SBL effects on a collimator

Under development a fast-shutdown PS board to rump down the Switcher ASICs rapidly (<30 µs) in the event of on SBL "precursor" to minimize the risk of SBL-induced damage


SVD Sensor Design


Double Sided Silicon Strip Sensors (DSSD)


- 172 DSSD with area coverage 1.2 m²
- Bias voltage: 100 V
- Perpendicular strips to provide 2D spatial info
- Depletion voltage: 20 60 V
- Strip pitch: 50/75 μm (r-φ) and 160/240 μm (z)
- Front-end electronics: APV25 chip, 50 ns shaping time
 - Originally developed for the harsh radiation environment at the LHC
 - 192-cell analog pipeline / 128 channels
 - >100 Mrad tolerance, 0.4 W power
- Cooling: two-phase CO₂ system
 (-20° C with PXD1 and -25° C with PXD2)
- Material budget: 0.7 % X₀/layer

APV25 Operation mode

- Operated in multipeak mode @32 MHz
 (% of SuperKEKB bunch crossing frequency of 254 MHz)
- > (By default) 6 samples of analog output are recorded to reconstruct output waveform
- > Alternative 3/6 mixed mode tested for high-luminosity to reduce dead-time

SVD Operation during Run 1

Performance in Run 1 (March 2019 – June 2022)

Cluster charge

- Stable throughout and matching the expectation; 24ke⁻ for a MIP passing through a ~320 μm thick silicon sensor

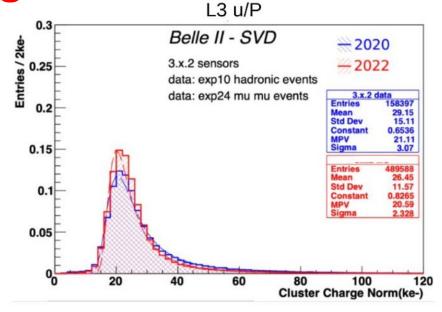
Cluster SNR

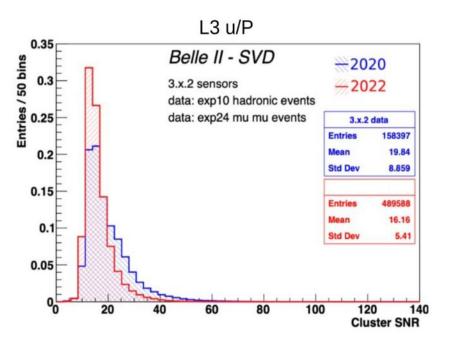
- Very good cluster SNR in all 172 sensors
- Small reduction in 2022 due to radiation damage

Position resolution

- Stable position resolution within 10–25 μm observed, as expected from strip pitches

Excellent SVD hit-time performance


resolution < 3 ns for signals(time range of beam-induced background ~100 ns)

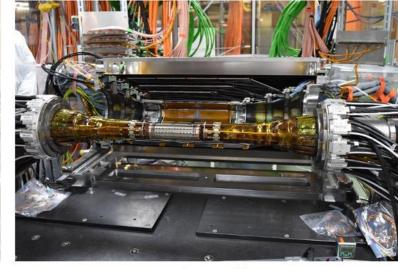

Hit efficiency

- Hit efficiency > 99% for most of the sensors

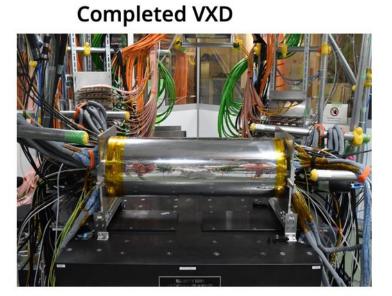
Masked strips

- Total masked strips < 1%

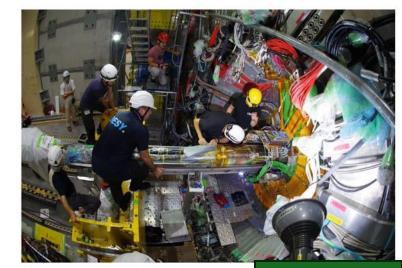
SVD During long shutdown 1


Feb. 2023

Opening the VXD



SVD Half



PXD insertion

Towards Belle II

Reinstalling

SVD Operation during Run 2

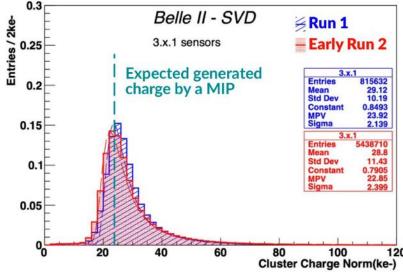
SVD was extracted and reinserted during PXD 2 installation (LS1), making Run 2 performance crucial

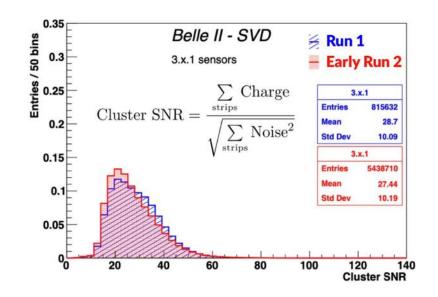
Run 2: Feb-July+Oct-Dec 2024:

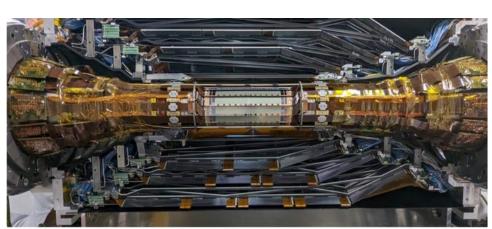
Smooth and stable operations!

Cluster charge and SNR

 No significant changes in cluster charge and SNR

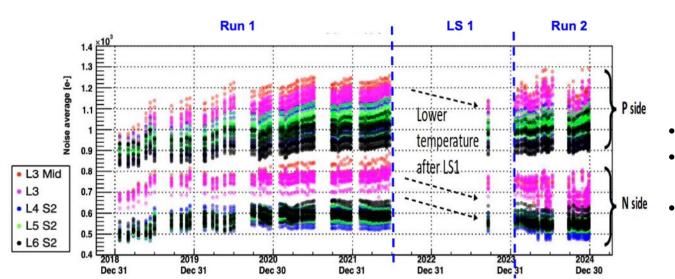

Sensor efficiency


Sensor efficiency is very high (>99%) for most of the sensors

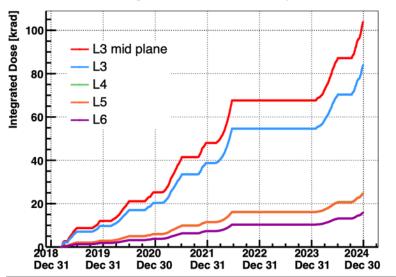

Occupancy during this run ~1%

Future Plan

- New algorithms based on time resolution to suppress background and preserve tracking performance at high rates
- Maintain SVD performance with higher occupancy anticipated with increased SuperKEKB luminosity


Radiation and Beam Background Effects on SVD

Beam Background Effects

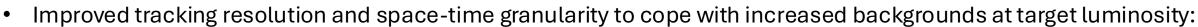

- Sudden beam loss are a risk, but no pinhole defects observed in DSSDs during Run 2
- Integrated radiation dose can still degrade sensor performance: increase leakage current, strip noise, decrease charge collection (SVD limit from S/N ratio: 6 Mrad).

Radiation Dose Measurements

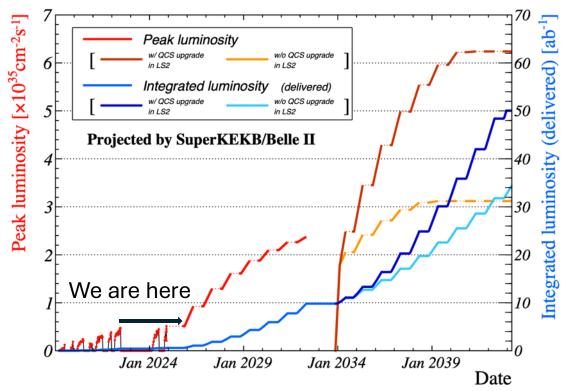
- Total integrated dose on Layer 3 mid-plane: ~100 krad, equivalent to ~2.5×10¹² n/cm² (measured via diamond detectors) with no observed performance degradation
- Sensor noise increased 10-35% in Run 1 (due to radiation)
- Partially recovered (10%) after LS1 (annealing + lower cooling temperature)

Integrated dose in SVD Layers

SVD Performance Resilience:

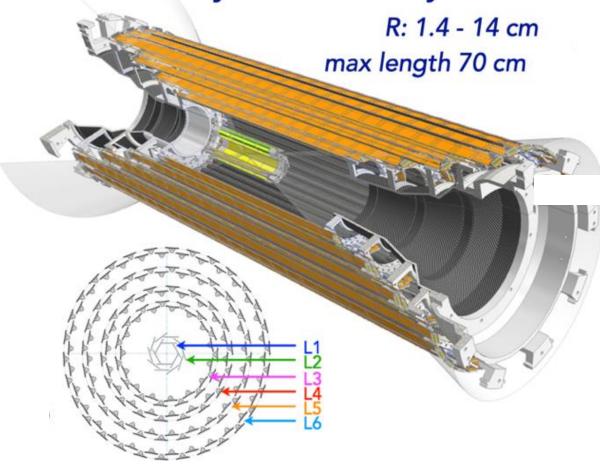

- No significant degradation in SVD performance was observed
- Current SVD hit occupancy <1%, increased during Run 2 due to machine conditions
- Sensors still collect charge effectively after 10 Mrad from test campaign

Upgrade Proposal VXD → VTX


To achieve the target $\mathcal{L} = 6 \times 10^{35} \, \text{cm}^{-2} \text{s}^{-1}$ and $\int \mathcal{L} dt = 50 \, \text{ab}^{-1}$ a major re-design of the I.R. (i.e. QCS upgrade) is needed.

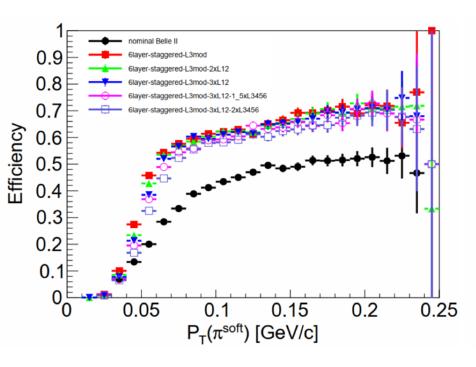
- The VXD provides excellent performance at occupancy < 1%.
- Performance degradation expected in high BKG scenario at target luminosity, where (with large uncertainties in the extrapolation):
 - PXD layer 1: 32 Mhz/cm² \rightarrow 2% occupancy
 - SVD layer 3: 9 Mhz/cm² \rightarrow 9% "

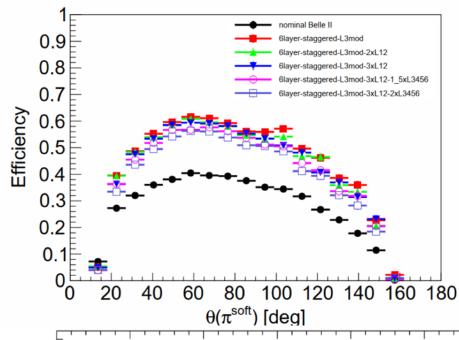
A new fully pixelated CMOS detector proposed to replace the VXD. Requirements:


- Hit rate up to 120 Mhz/cm² / resolution < 15 um / Integration time 50-100 ns
- Improved radiation tolerance to ensure long-term detector performance:
 - TID: 100 Mrad
 - NIEL: $5 \cdot 10^{14} \, n_{eq} / cm^2$
- Reduced material budget about 3.0% X₀ (sum of all layers)
- Adapt to the new interaction region re-design
- VTX Installation planned during the long shutdown 2, starting in 2032, TDR preparation in 2027.

The Vertex detector upgrade: VTX

- Concept: 6 straight layers with DMAPS
- Higher space-time granularity & lower material budget
 - More robust in high background & better tracking & vertex resolution at low momentum
- Lighter services & "easy" geometry
 - adaptable to potential changes of Interaction Region
- □ Technical choices
- Identical pixel sensor on all layers:
 Optimized BELle II pIXel (OBELIX) chip
 - Thin DMAPS sensor, derived from TJ-Monopix2:
 33 um pitch & 50 ns timestamping
 - Operated at room temperature: power 200 → 300 mW/cm²
- iVTX: innermost 2 layers, all-silicon, self-supported, different cooling options under evaluation → 0.3 % X₀
 - 1. Thermal conduction by thermal pyrolytic graphite
 - 2. Liquid in Al thin pipes
- oVTX: 4 outer layers, carbon fiber frame, water cooled: 0.6→0.8 % X₀

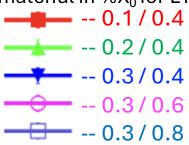

Baseline VTX layout with 6 layers

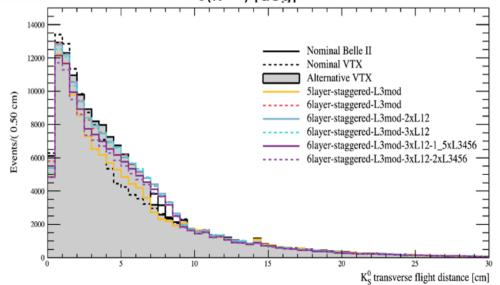


Most conservative BKG extrapolation

	L1	L2	L3	L4	L5	L6	Unit
Radius (mm)	14.1	22.1	62.5/69.0	82.5/89.0	108/114.5	133.5/140	mm
#Ladders	6	10	30	36	48	60	
#Sensors per ladder	4	4	12	16	20	24	perladder
Mat budget (% X0)	0.3	0.3	0.6	0.6	0.6	0.6	% X0
Expected hit rate * (MHz/cm2)	34	16	1.13	0.76	0.41	0.27	MHz/cm2

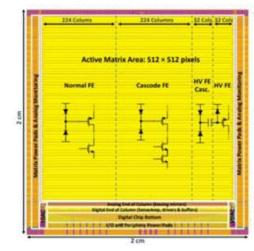
Performance Simulation Results



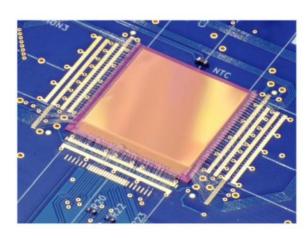


Slow π : all the VTX geometry versions perform better than the nominal Belle II

material in $%X_0$ for L1&2 / L3,4,5,6:


 ${\rm K^0_S}$: The higher material budget on L1&2 has negligible impact on the efficiency, but worsens the B vertex resolution significantly (though 0.3% ${\rm X_0}$ is still better than nominal Belle II).

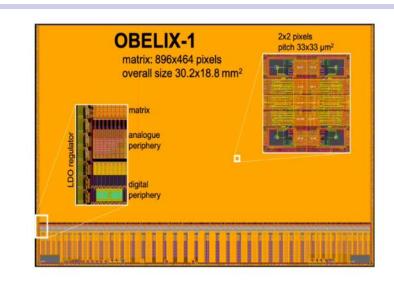
VTX Sensors: TJMP2 & OBELIX Overview


TJ-Monopix2 (TJMP2): the OBELIX forerunner

Developed for the ATLAS ITK as a DMAPS using Tower 180 nm CMOS, modified for rad-hardness & faster readout (good at high fluence at low temps), FE derived from ALPIDE

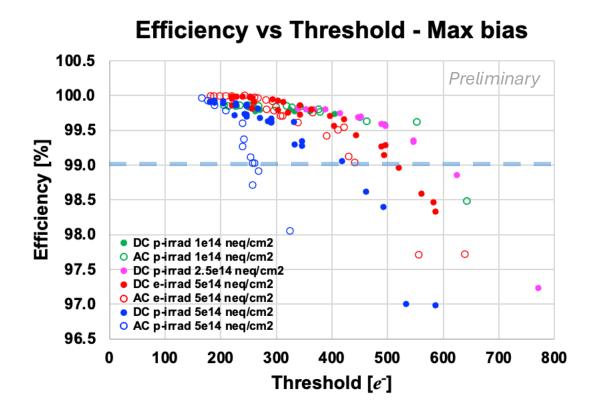
- Pixel & Matrix Specs:
 512×512 pixels (2×2 cm²), pitch 33.04×33.04 μm², 7-bit ToT,
 3-bit threshold tuning, thicknesses ~30 μm (epi/CZ-bulk)
- Readout Architecture:
 Column-drain R/O for >120 MHz/cm², triggerless in TJMP2,
 25 ns integration.
- Front-End Flavors:
 - 4 variants in amplifier & coupling (AC/DC) for rad environments

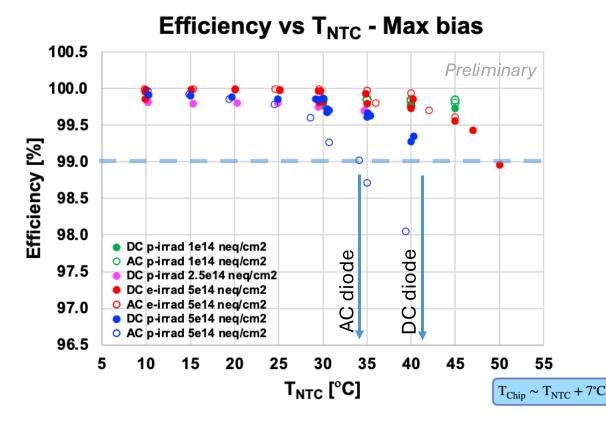
Layout of TJMP2 sensor: divided in 4 regions with different FE



TJM2 sensor bonded on a test board

OBELIX


Optimized Belle II pIXel sensor

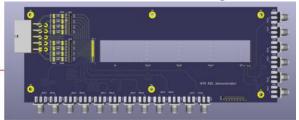

- Based on Tower Semiconductor 180 nm CMOS & TJMP2 design + new digital periphery
- Designed to stand high hit rates (120 MHz/cm²) with strong radiation tolerance (TID 100 MRad, NIEL 5×10¹⁴ n_{eq}/cm²)
- High performance with <15 µm spatial resolution, <200 300 mW/cm² power consumption, for hit rate from few to 120 MHz/cm² and <50 ns time stamping

First full-scale prototype (OBELIX-1) targeted for submission in Winter 2025

Efficiency on irradiated TJMP2: TB March 2025 @ DESY

Defined the operation temperature based on 99% efficiency measured on test-beams after chip irradiation@5 x 10^{14} n_{eq}/cm²: iVTX sensor should stay < 40 °C (less strict for oVTX)

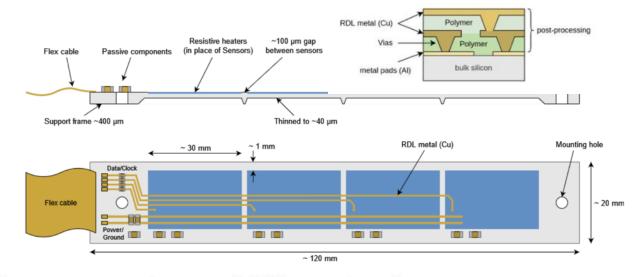
DC front-end (OBELIX1 choice for the whole matrix) provides higher operation range than AC.



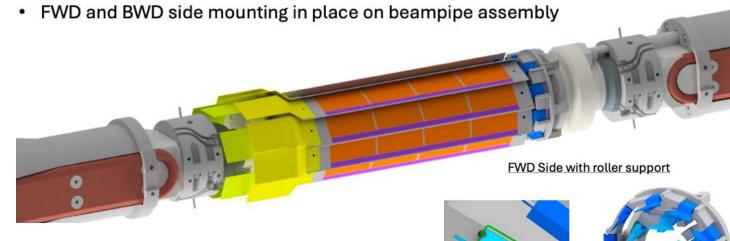
iVTX (L1&2) Ladders

- All-silicon module 4 contiguous OBELIX sensors diced as a block from the wafer, thinned to 50 um
 - Post-process redistribution layer (RDL) for interconnection

Prototypes:


 First real-size ladder at IZM-Berlin with dummy Si & resistive heater to test cooling too

Multi-reticle ladder
Size: 12x2 cm² (4x chips interconnected)


Full front and backside processing Impedance, continuity of the RDL, integrity data lines Selective etching

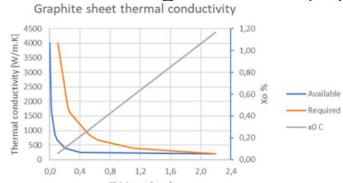
Modelling progressing on iVTX mechanics

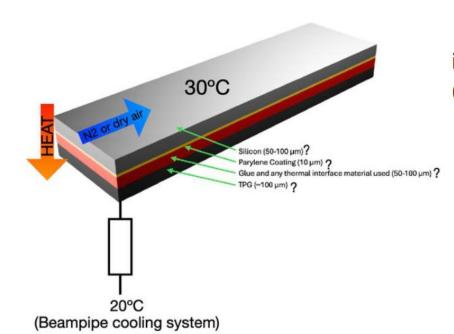
Ladder re-modelled with active region / periphery shown

To be updated to the new I.R. geometry

iVTX Cooling by Thermal Contact

(This solution already adopted in the MVD of the CBM experiment)


- Thermal Pyrolytic Graphite (TPG): high crystalline graphite manufactured from thermal decomposition of hydrocarbon gas at an extremely high temp.
- iVTX ladder supported by a TPG plate, acting as:
 - Thermal heat sink


the high alignment of the graphene layers causes superior thermal conductivity which makes it an excellent thermal management material with thermal conductivity around 1500W/(m K) for 380 um thickness

(i.e. 4x higher thermal conductivity than Cu but with 1/4 of copper's weight

Mechanical stiffener

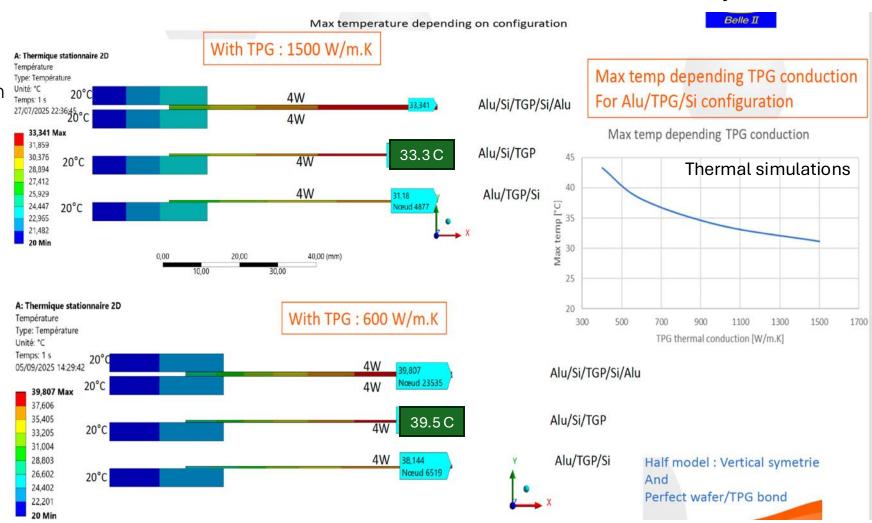
TPG Young's modulus 20 GPa, 1/4 of Al tensile strength is 80 MPa, 1/5 of Al

iVTX prototype ladder (under construction)

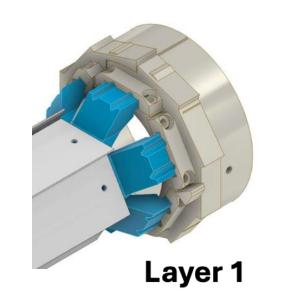
iVTX ladder developments

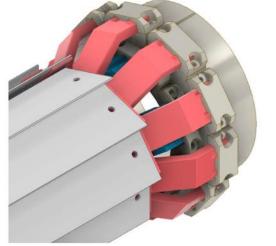
iVTX: Two Ladder cooling solutions -> critical study now

Thermal simulations: we are below 40 C even with the lowest TPG conductivity.


Plan A: Solid thermal conductor (TPG)

- -easier for mechanics but still many question (gluing, coating, ...)
- -requires water cooling at the end-piece -low radiation impact on heat conductivity, according to ATLAS SCT experience(*)
- -first iVTX TPG prototype ladders expected in December

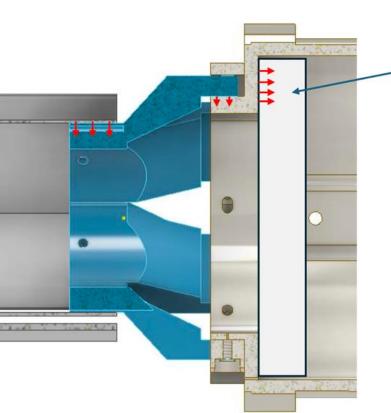

(*): Measurement of the thermal conductivity of PG substrates for use in SCT modules (by G.A. Beck et al.)


Plan B:Al water tubes

- -relatively more complex
- -greater material budget

Solution for iVTX with TPG heatsink cooling FWD side

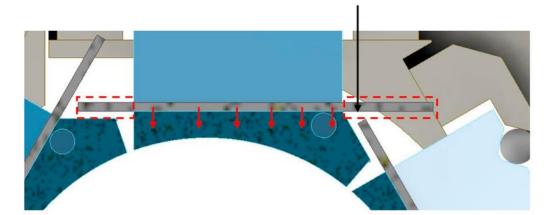
Layer 2


Structures FWD Side:

- 1. Ladder Support Arm
- 2. Linear Guide
- 3. FWD Support Flange

Structures BWD Side:

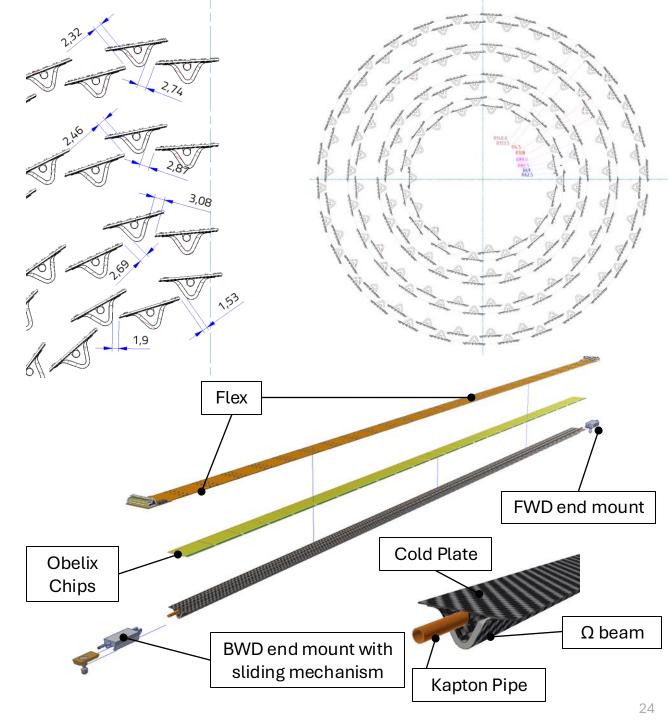
- 1. Ladder Support Arm
- 2. BWD Support Flange

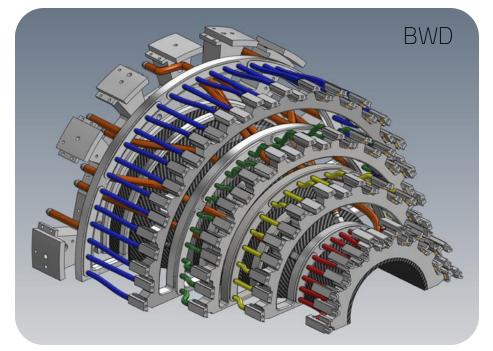

Assumes paraffin manifold provides the cooling; if not, we need to add an additional cooling block or manifold to this list on both sides

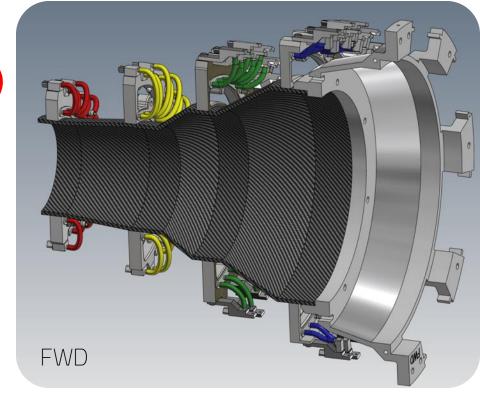
Paraffin manifold

Red arrows show thermal pathway via conduction

Note it is unlikely that the support will be able to cover the entire width of ladder




oVTX


- Ladder structure (ALICE ITS2-inspired):
 - CF support structure (Ω beam), cold-plate with 1 pipe and liquid cooling
 - Chip and Flex circuit for power & signal
- Prototypes:
 - Mechanical & thermal characterization done for the longer ladder ~70 cm (outermost layer)
- Mechanical design & prototypes already advanced

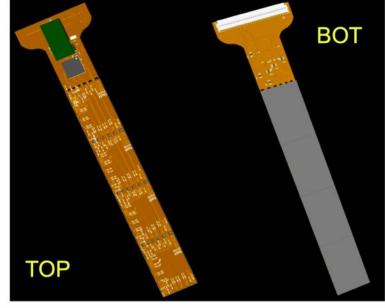
Design of the hydraulic services (in the old I.R.: to be re-done for the new QCS)

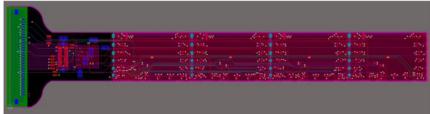
- All the manifolds (except for Layer 6) integrated into the end rings.
- The scheme: Layer "X" with manifold on the Layer "X+1" end ring.
- The pipes are grouped into manifolds (sets of 5 for the L3, of 6 for the other layers).
- The end rings are hollow to allow space for cables routing.

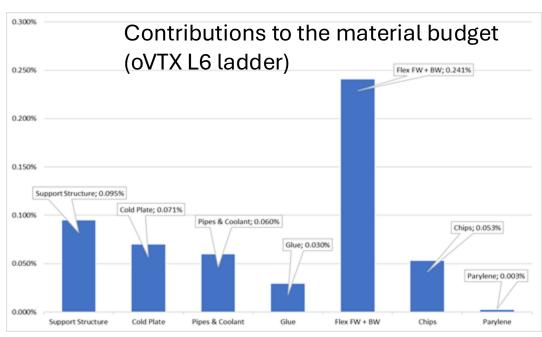
L4 - ladders to manifolds

L3 - ladders to manifolds

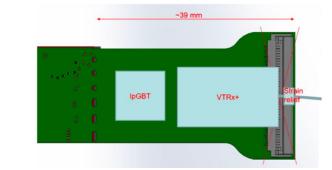
Legenda: L6 - ladders to manifolds L5 - ladders to manifolds

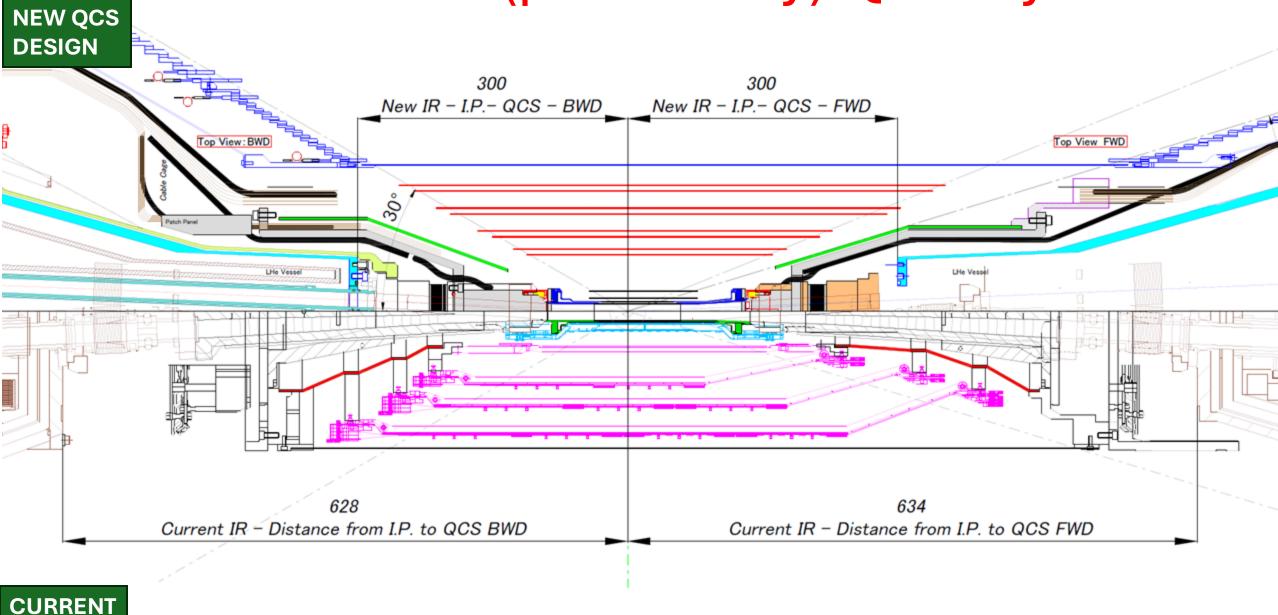

- Working to find a solution w/o modifying the FWD end flange
- Each layer has the manifold located on its own end ring, preventing the piping and flex cables from crossing
- A mock-up is needed to evaluate the tube's flexibility and its minimum bending radius.


Manifold Inlet (or Outlet)

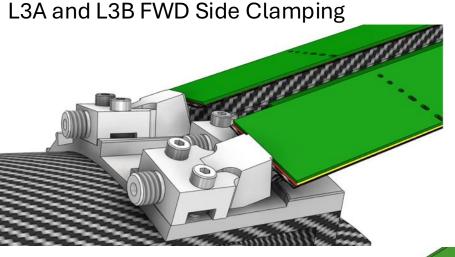

Al Flex for minimal material budget

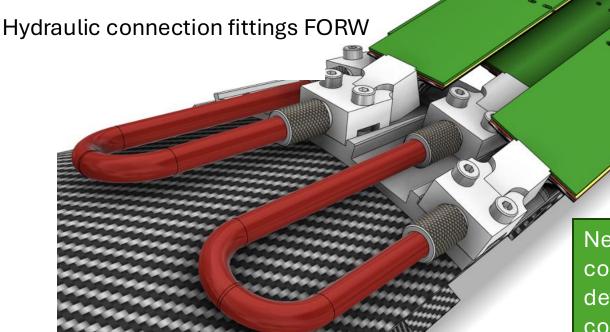
IpGBT/VTRX+ integration

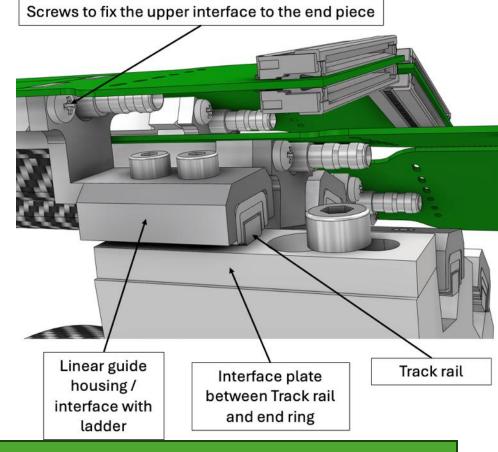

Design of the Dummy Al-Flex



- · Remove data connector (top side)
- Integration of the lpGBT/VTRX+ on the top layer
- Keep bottom connector for: chip power supply and bias voltage, VTRX+/lpGBT power supply
- \bullet Replace 40-pin connector with Molex FD19 30 pin 1mm pitch
- Flex head widened to ≈ 39 mm
- Simplified flex with 4 chips (1 master 3 slaves)
- 6 layer stack-up, compliant with CERN fabrication requirements


Design to be adapted to the new OBELIX-1 gds file (already validated by CERN!)


The old vs NEW (preliminary) QCS layout


Belle II

Specific issues under study (waiting for the new/conservative QCS design)

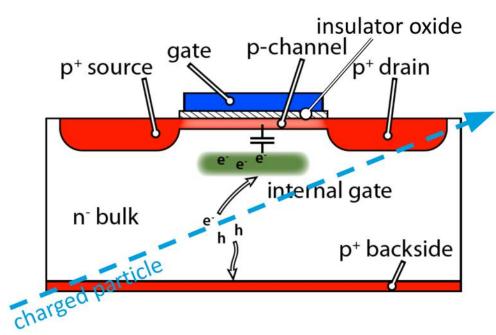
Sliding mechanism (BACKW)

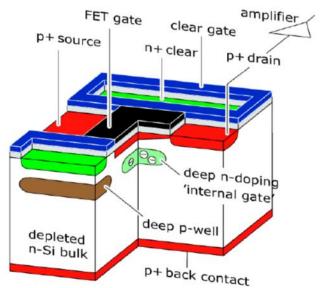
Needed engineering developments to translate conceptual ideas into a CAD model and prototypes, by defining the (hydraulic/electrical) services in the new constrained space, still ensuring that the old/tested ladder-mount procedures work.

Conclusions

- After months of preparation (Vacseal cleaning, new RF gun, ...) SUPERKEKB is going to restart collisions in November. Belle II will restart data taking with SVD efficient as ever and PXD OFF, waiting for stable beam conditions, i.e. hopefully w/o observing SBL any longer, in case implementing enhanced fast-shutdown systems to safeguard the PXD.
- The plan (A) is to collect up to 1 ab⁻¹ in 2026ab runs reaching 10³⁵ cm⁻² s⁻¹ of inst. luminosity. Such achievements are the crucial steps for the final goal of the project!
- To reach the target luminosity 6 10³⁵ cm⁻² s⁻¹ and 50 ab⁻¹ by 2042 a major redesign of the I.R. is needed.
- The mechanical design of the new vertex detector depends critically on the confirmed position and design of the QCS and other constraints from the machine around the interaction point.
- The Obelix chip is going to be submitted to foundry.
- Continue R&D and engineering activities on VTX ladder prototypes.
- Needed MEXT Review (under discussion)
 Path for the Belle II upgrade to LS2 (2032):
- Finalize baseline Define upgrade baseline upgrade configuration → BPAC/ARC review TDR review LS2 2025 2026 2027 2028 2029 2030 2031 2032 2033 Installation Construction Prepare TDR

BACK UP SLIDES

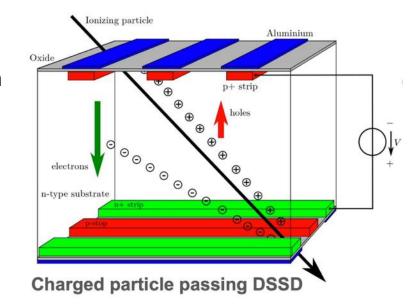

DEPFET sensor principle

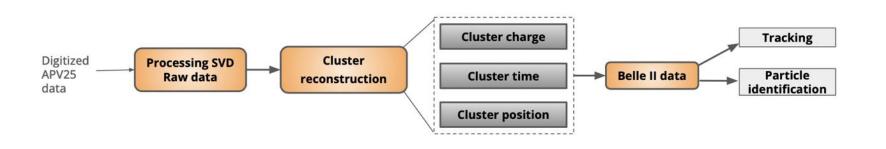

How it works

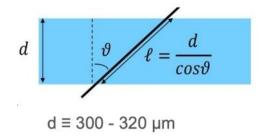
- A Field Effect Transistor (FET) is built directly into a fully depleted silicon bulk.
- The internal gate (a deep n-implant beneath the channel) collects signal electrons, which in turn modify the source–drain current.
- After readout, the stored charge is removed through an n+ implant using a punch-through reset mechanism.

Why it's Important

- Fast response
 - charges are collected within nanoseconds
- ensuring excellent signal-to-noise performance
- Low power and low mass
 - with only ~75 µm active thickness, the sensor adds minimal material to the tracker
- Non-destructive readout

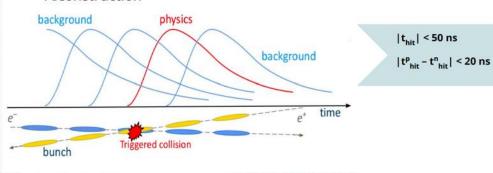


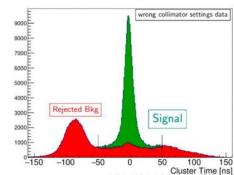



SVD Data Reconstruction

Charged particles passing through fully depleted sensors creates e-h pairs, which produces hits in the strips

- **Cluster**: Collection of strips with signal-to-noise ratio (SNR) above certain threshold
- A cluster has
 - Charge: Sum of the charges of each strip belonging to the cluster, depends on incident angle of the particle
 - > **Time**: Charge-weighted average of strip times relative to trigger
 - > **Position**: reconstructed from strip charges
 - > **Noise**: Quadrature sum of noise of each strips


SVD Towards Future High Luminosity


(alghoritms to maintain high performance)

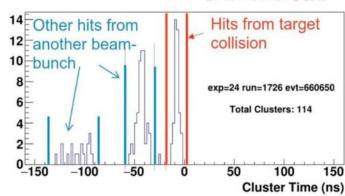
Hit time selection PoS ICHEP2024 (2025) 855

Excellent SVD hit-time performance: resolution < 3 ns for signals, while time range of beam-induced background is around 100 ns

- Efficient to remove 50% off-time hit background, keeping signal efficiency above 99%
- Background rejection based on SVD hit-time selections already tested but not yet deployed on real data reconstruction

SVD occupancy limit

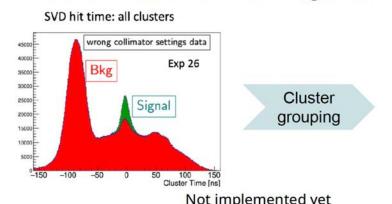
for Layer 3 can be set

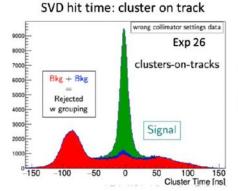

at 4.7%

Cluster grouping

PoS ICHEP2024 (2025) 855

Grouping the clusters on event by event basis using the cluster times


☐ Selection based on Grouping further reduces the fake rate by 15% on high-background data



Track time

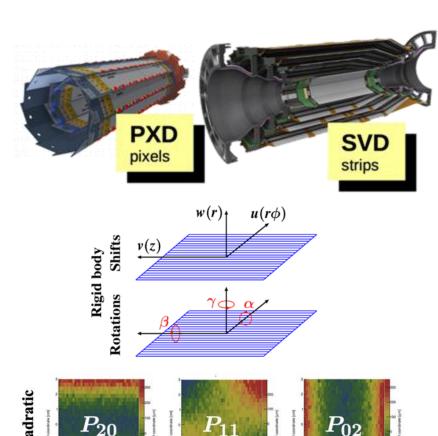
Average time of clusters belonging to the outgoing arm of the track, relative to time of collision

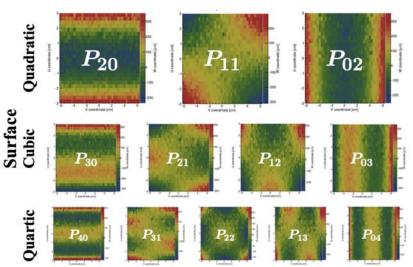
Remove off-time track, further reducing fake rate by a factor 1.5 for the high background scenario

Further increase SVD occupancy limit for Layer 3 from 4.7% to 6%

Vertex Detector Alignment

What is detector alignment?


- Calibration of the true spatial positions and orientations of detector sensors (PXD, SVD)
- Track reconstruction is matched with actual hit measurements using global track-based fits
- Minimizes track-to-hit residuals across thousands of events


What do we align?

- VXD includes: 2 PXD half-shells, 4 SVD layers (~ 65 ladders)
- Each has 6 rigid-body DOFs (translations and rotations)
- Includes surface parameters (Legendre polynomials up to 4th order)
- In total >4000 parameters are solved using Millepede II

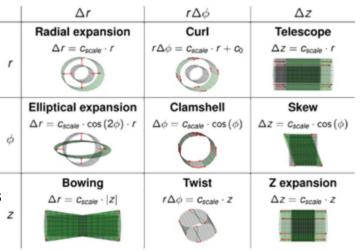
Why is alignment needed?

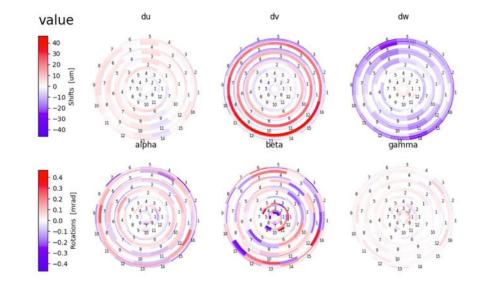
- Unaligned detectors show up to hundreds of µm shifts
 - Essential for maintaining vertex and tracking resolution required for Belle II physics
- Detector positions change due to vibrations, temperature fluctuations, and mechanical shifts

Alignment Monitoring and Results

Challenges

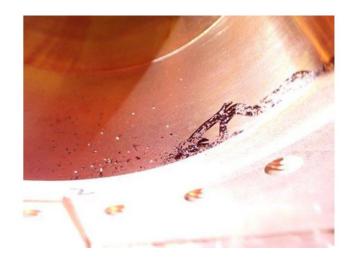
- Misalignments
- Weak Modes
- Deformations

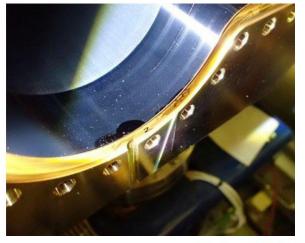

Track-based alignment method


- Performed using Millepede II and GBL track model
- Simultaneous global fit of rigid-body DOFs, surface shapes, and time-dependent parameters

Alignment data

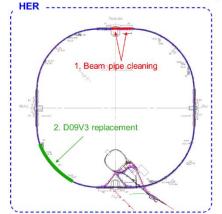
- Cosmic-ray muons with B-field off/on
- Collision events: dimuons, hadronic events

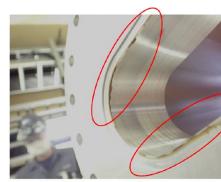




Beam pipe cleaning

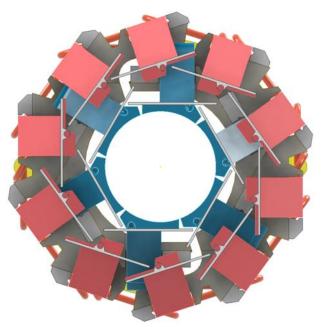
- Internal inspections have been completed, where
 - All MO-type flange connections where VACSEAL was likely used.
 - IR (HER, LER), LER wiggler sections (D04, D10, D11), others
 - Black stains were found on many flange connections and removed.



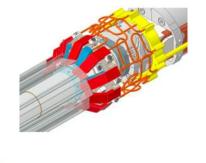

After removing the vacseal we observed decreasing the SBL happening from the cleaned area.

Vacseal Cleaning

- During D9V3 collimator replacement work
 - Black stains were found on HELICOFLEX flange connections.
 - VACSEAL had been used.
 - This is the first time such stains have been found on HELICOFLEX flange.
- Three HELICOFLEX flange connections will be inspected before operation.


Layer 1

Cooling Manifold Cooling Loop Linear Guide



View on FWD Side

Ladder Support Arm

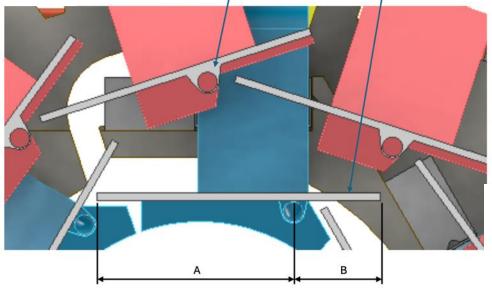
Layer 2

Structures FWD Side:

- 1. Ladder Support Arm
- 2. Linear Guide
- 3. FWD Support Flange
- 4. FWD Cooling Loop
- 5. FWD Cooling Manifold

Structures BWD Side:

- 1. Ladder Support Arm
- 2. BWD Support Flange
- 3. BWD Cooling Loop
- 4. BWD Cooling Manifold


Solution for iVTX with cooling pipes FWD side

Cooling pipes with Thermal interface to ladder depicted by chamfer

In the model, periphery is this side

- · Is this optimal?
- · Is this the latest design?

Consider thermal performance with pipe in this position and how it changes when modifying A & B

VTX Collaboration

VTX collaboration

IGFAE, Santiago
University of Bergamo
University of Bonn
University of Dortmund
University of Göttingen

Jilin University
KIT, Karlsruhe
IPMU, Kashiwa
Queen Mary University of London
CPPM, Marseille

IJCLab, Orsay
RAL, Oxford
INFN & University of Pavia
INFN & University of Pisa
IFCA (CSIC-UC), Santander

IPHC, Strasbourg
University of Tokyo
KEK, Tsukuba
IFIC (CSIC-UV), Valencia
HEPHY, Vienna