

Neutrino Paradigm and LHC

Goran Senjanović ICTP, Trieste

La Sapienza, March 30, 2012

Neutrino Mass

only new established physics beyond SM

if Majorana

window

new physics

how serious a chance at LHC?

Effective operators and New Physics

SM degrees of freedom

two operators stand out

$$\mathcal{L}_{\nu} = Y_{eff}^{\nu} \frac{\ell \ell H H}{\Lambda_{\nu}}$$

$$\mathcal{L}_p = Y_{eff}^p \frac{qqq\ell}{\Lambda_p^2}$$

Weinberg '79
Wilczek, Zee '79

$$Y_{eff} \simeq 1$$

$$\Lambda_{\nu} \lesssim 10^{14} \, GeV$$

$$\Lambda_p \gtrsim 10^{15} \, GeV$$

Grand Unification?

suggestive:

$$\Lambda_{\nu} \lesssim \Lambda_{p} \simeq M_{GUT}$$

SO(10) tailor made

minimal supersymmetric version:

$$\theta_{\rm atm} \simeq 45^o \Leftrightarrow \theta_{ub} \simeq 0$$

Bajc, GS, Vissani '02

$$\theta_{13} \simeq 10^o$$

Goh, Mohapatra, Ng '03

K

GS: RNC '11

T2K, Daya Bay

NO LHC

Fermi theory

$$G_F = \frac{1}{\Lambda^2}$$

$$\Lambda \simeq 300 \, GeV$$

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2} \qquad g \simeq 0.6$$

$$M_W \simeq 80 \, GeV$$

True scale can be (much) smaller

$$G_N = \frac{1}{M_P^2}$$

$$M_P \simeq 10^{19} \, GeV$$

$$G_N = rac{g^2}{\Lambda_F^2}$$

$$g \ll 1$$

$$\Lambda_F \simeq TeV$$

$$\Lambda_F \simeq TeV \qquad \not \uparrow g = (\Lambda_F R)^{-n/2}$$

large extra dimensions

ADD '98

Talk:

a case for LHC as a neutrino machine

acase study of a (the?) theory

□ seesaw at LHC

crucial role:

Dirac equation

anti particles

particle \Longrightarrow different antiparticle

for every fermion

not necessarily,

says Majorana

Ettore Majorana

March 26

1938

took a boat from Palermo to Napoli never seen afterwards

only 32

"A slightly uncertain destination"

beautiful novel, physics remarkably correct

neutrino = anti neutrino?

majorana '37
neutron

Lepton Number Violation:

`creation of electrons'

neutrino less double beta decay

Racah'37

Furry '38

o colliders - LHC

Keung, GS '83

Parity violation in weak interaction Lee, Yang '56

not well known: they argue it is a hidden symmetry *

* mirror fermions

SO(2N) unified thoeries

Gell-Mann, Ramond, Slansky '79 GS, Wilczek, Zee '84 Bagger, Dimopoulos '84

Martínez, Melfo, Nestí, GS '11 Melfo, Nemevsek, Nestí, GS, Zhang '11

Majorana Program:

neutrino mass

$$\nu_{M} = \nu_{L} + \nu_{L}^{*} \qquad \Longleftrightarrow \qquad m_{\nu}^{M}(\nu_{L}\nu_{L} + h.c.)$$

$$\longrightarrow \bigotimes \longleftarrow \qquad \Longleftrightarrow \longrightarrow$$

 $\Delta L=2$ lepton number violation

Neutrinoless Double-beta decay Goepert-Mayer '35

$$^{76}_{32}Ge \not\rightarrow^{76}_{33}As + e + \bar{\nu} \implies ^{76}_{32}Ge \rightarrow^{76}_{34}Se + e + e + \bar{\nu} + \bar{\nu}$$

$$^{76}_{32}Ge \rightarrow^{76}_{34}Se + e + e$$

proportional to neutrino mass

$$t_{1/2} \ge 10^{24} \, yr \implies m_{\nu}^{M} \lesssim 1 \, eV$$

Neutrino mass contribution

Klapdor'01-10 HM

central value $\Delta m_{12}^2 = (7.58 \pm 0.21) \, 10^{-5} \, \text{eV}^2$ $|\Delta m_{23}^2| = (2.40 \pm 0.15) \, 10^{-3} \, \text{eV}^2$ $\tan^2 \theta_{12} = 0.484 \pm 0.048$ $\sin^2 2\theta_{23} = 1.02 \pm 0.04$ $\sin^2 2\theta_{13} = 0.07 \pm 0.04$

Seljak et al '06 Hannestad et al '10

vissani '99

 0.09 ± 0.02

Experiments

Experiment	Isotope	Mass of Isotope [kg]	Sensitivity $ au_{1/2}^{0 u}$ [yrs]	Sensitivity $\langle m_{ u} angle$, meV	Status	Start
	40	2×10^{26}	\sim 70	in progress	\sim 2012	
	1000	6×10^{27}	10-40	R&D	\sim 2015	
CUORE	$^{130}\mathrm{Te}$	200	$(6.5 \div 2.1) \times 10^{26}$	20-90	in progress	\sim 2013
MAJORANA	$^{76}\mathrm{Ge}$	30-60	$(1 \div 2) \times 10^{26}$	70-200	in progress	\sim 2013
		1000	6×10^{27}	10-40	R&D	\sim 2015
EXO	136 Xe	200	6.4×10^{25}	100-200	in progress	~ 2011
		1000	8×10^{26}	30-60	R&D	\sim 2015
SuperNEMO	⁸² Se	100-200	$(1-2)\times10^{26}$	40-100	R&D	\sim 2013-203
KamLAND-Zen	136 _{Xe}	400	4×10^{26}	40-80	in progress	~ 2011
		1000	10 ²⁷	25-50	R&D	\sim 2013-203
SNO+	$^{150}\mathrm{Nd}$	56	4.5×10^{24}	100-300	in progress	\sim 2012
		500	3×10^{25}	40-120	R&D	~ 2015

GERDA started

if confirmed

new physics necessary?

$$A_{\nu} \propto \frac{G_F^2 m_{\nu}^{ee}}{p^2} \simeq G_F^2 \ 10^{-8} \ GeV^{-1}$$

 $(p \simeq 100 \, MeV)$

$$\mathcal{A_{NP}} \propto rac{G_F^2 M_W^4}{\Lambda^5}$$

Feinberg, Goldhaber '59 Pontecorvo '64

 $\Lambda \sim TeV$ LHC

Neutrino mass: theory

Standard Model

$$SU(2)_L \times U(1)$$

$$\left(\begin{array}{c}
\nu_L\\e_L\end{array}\right)$$

 e_R

no u_R

L-R asymmetry

neutrino massless

L-R symmetry

Lee, Yang dream

 $\left(\begin{array}{c} u_L \\ d_L \end{array} \right) \left(\begin{array}{c}
u_L \\ e_L \end{array} \right)$

 $egin{array}{c} u_R \ e_R & d_R \end{array}$

 W_L

L-R symmetry

Lee, Yang dream

$$\left(\begin{array}{c} u_L \\ d_L \end{array}\right) \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right)$$

$$W_L$$

$$\begin{pmatrix} (\nu_R) \\ e_R \end{pmatrix} \begin{pmatrix} u_R \\ d_R \end{pmatrix}$$

$$W_R$$

$$m_{W_R} \gg m_{W_L}$$

 $E\gg m_{W_R}$

parity restored?

Patí, Salam '74 Mohapatra, GS '75

$$G = SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

$$Q = T_L^3 + T_R^3 + \frac{B - L}{2}$$

· hypercharge Y:

traded for

gauge B-L

• RH neutrinos:

LR symmetry & no B-L anomaly

Minimal model: theoretical limit

Maiezza, Nemevsek, Nesti, GS 10

rare processes:

 $K_L - K_S$ mass difference...

Beall, Bander, Soní '81

Mohapatra, GS, Tran '83 Ecker, Grimus '85

Zhang, An, Ji, Mohapatra 'o

experiment is catching up!

Neutral gauge boson

 Z_{LR}

$$rac{M_{Z_{LR}}}{M_{W_R}}=rac{\sqrt{2}g_R/g_L}{\sqrt{(g_R/g_L)^2- an^2 heta_W}}$$
 . = 1.7 for gL = gR

very hard to see at LHC

indirectly at ILC

Curse: neutrino mass

• neutrino massive just like the electron

· naive expectation:

 $m_{\nu} \simeq m_e$ (if Dirac particles)

more subtle

radiative stability

Branco, GS'77

$$m_D \gtrsim \frac{\alpha_W}{4\pi} \, \xi_{LR} \, m_\ell$$

$$\gtrsim 1 - 10 \, eV$$

$$\xi_{LR} \gtrsim \frac{\alpha_W}{4\pi} \, \frac{m_t m_b}{M_{W_R}^2}$$
$$\gtrsim 10^{-6}$$

for W_R in a few TeV region

Blessing: neutrino mass

seesaw

 $M_{\nu_R} \propto M_{W_R}$

$$egin{array}{ccc}
u_L & 0 & m_D \
u_R & m_D & M_{
u_R} \end{array}
ight)$$

Mínkowskí '77 Mohapatra, GS '79

 $m_{\nu} = m_D^T \frac{1}{M_{\nu_R}} m_D$

neutrino mass related to P violation Glashow '79
Gell-Mann et al '79
Yanagida '79

seesaw

$$m_{\nu} \simeq \frac{m_D^2}{m_N}$$

$$m_D \gtrsim 10 \, eV$$

$$m_{\nu} \lesssim 10^{-1} \, eV$$

$$m_N \gtrsim keV$$

the bigger N mass, the better

$$m_N \gtrsim 100\,GeV \implies m_D \gtrsim 100\,keV$$

New source for $0\nu2\beta$

$$LL \propto rac{1}{M_{W_L}^4} rac{m_
u}{p^2}$$
 N = right-handed $p \simeq 100 MeV$

$$m_{\nu} \simeq 1 \, eV$$

neutrino

Mohapatra, 45'81

$$RR \propto \frac{1}{M_{W_R}^4} \frac{1}{m_N}$$

 $M_{W_R} \simeq m_N \simeq 10 M_{W_L} \sim \text{TeV}$

LHC connection?

Tello, Nemevsek, Nestí, GS, Víssaní, PRL'11

Nemevsek, Nestí, GS, Tello 1112.3061 [hep-ph]

If neutrino mass small

 (W_R, N) @ TeV

connection with LHC?

Keung, G.S. '83

rotation in a plane

production @ colliders

Keung, G.S. '83

· direct probe of Majorana nature:

- · Parity restoration
- · Lepton Number Violation: same sign leptons

14 TeV LHC

Nestí

red = background

peaks = mass of W_R (GeV)

no background above 1.5 TeV

- up to 4 TeV@L=30/fb quinenko et al '06 CMS
- · up to ~ 6 TeV @ L= 300/fb Ferrari et al, '00 ATLAS

LHC @ E = 7 TeV

lljj

Nemevsek, Nesti, GS, Zhang, 11

January

early data:

L=33-34/pb

estimate:

L = 1/fb

 $M_{W_R} \gtrsim 1.4 \, TeV$

 $M_{W_R} \gtrsim 2.2 \, TeV$

LHC @ E = 7 TeV

latest: $M_{W_R} \gtrsim 1700\,GeV$ July L = 240/pb

CMS public note: CMS PAS EXO-11-002 Leonidopoulos, talk @ IECHEP, Grenoble, July

July '11

Mohapatra, 45 '75, '81

Model content

R-triplet

$$\langle \Delta_R \rangle = \begin{pmatrix} v_R \end{pmatrix}$$

- · mass of N(majorana)
- · mass of WR and ZR

bi-doublet

$$\phi \sim (h_{\rm SM}, H_{\rm heavy})$$

$$\langle \phi \rangle = \left(\begin{array}{cc} v & \\ & \sim v \end{array} \right)$$

• EW symmetry breaking

$$\langle \Delta_L \rangle = \begin{pmatrix} v_L \end{pmatrix}$$

• mass of ν (majorana)

$$v_R \gg v \gg v_L$$

Yukawa sector

$$\mathcal{L}_{Y} = \frac{1}{2} \ell_{L}^{T} \varepsilon C Y_{\Delta_{L}} \Delta_{L} \ell_{L} + \frac{1}{2} \ell_{R}^{T} \varepsilon C Y_{\Delta_{R}} \Delta_{R} \ell_{R} + \bar{\ell}_{L} (Y_{\Phi} \Phi + \tilde{Y}_{\Phi} \tilde{\Phi}) \ell_{R} + \text{h.c.}$$

in components
$$\begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

 $v_{L(R)}$

small Yukawa Dirac

latest limits: 2012

theory bound

Particle	Final states	Lower limit	Collaboration	Comments
$\overline{W_R}$	$e/\mu + N$	2.5 TeV	CMS [35]	light N (missing energy)
W_R	$\ell\ell jj$	$\lesssim 1.7 \; { m TeV}$	CMS [36]	heavy Majorana N [37]
Z_{LR}	$e^{+}e^{-}/\mu^{+}\mu^{-}$	$\sim 2 \text{ TeV}$	ATLAS [38]	see [39]
Z_{LR}	e^+e^-	$\sim 3 \text{ TeV}$	LEP [40]	indirect, see $[41, 42]$
Δ_L^{++}	$\ell_i^+\ell_i^+$	\mid 100-355 GeV \mid	ATLAS [43]	spectrum dependent [44]
$\Delta_L^{++} \ \Delta_R^{++}$	$\ell_i^+\ell_j^+$	\mid 113-251 GeV \mid	ATLAS [43], CDF [45]	flavor dependent

updated on Tuesday ATLAS

~ 2 - 2.5 TeV

LHC: measure m_N and V_R

in order to illustrate: type 11 seesaw

$$V_R = V_L^*$$
 $m_N/m_\nu = const$

Tello, Nemevsek, Nesti, GS, Vissani, PRL'11

Back to neutrinoless double beta decay

Tello et al '11

Right only

opposite from $m_{
u}$

Left + Right

non-vanishing

Lepton Flavor Violation

$$\mu \to e \, e^c e$$

$$\Rightarrow m_N \lesssim M_{\Delta}$$

Cirigliano et al '04 Tello '08

(Loop: $\mu \rightarrow e \gamma$

 $\mu
ightarrow e$ conversion in nuclei)

Neutrino mass: back to basics

Effective operators and New Physics

SM degrees of freedom

two operators stand out

$$\mathcal{L}_{\nu} = Y_{eff}^{\nu} \frac{\ell \ell H H}{\Lambda_{\nu}}$$

$$\Lambda_
u$$

$$\Rightarrow Y_{eff}^{
u} rac{v^2}{\Lambda_{
u}} \,
u
u$$
 Majorana mass

$$\mathcal{L}_p = Y_{eff}^p \frac{qqq\ell}{\Lambda_p^2}$$

Weinberg 79 Wilczek, Zee '79

$$Y_{eff} \simeq 1$$

$$\Lambda_{\nu} \lesssim 10^{14} \, GeV$$

$$\Lambda_p \gtrsim 10^{15} \, GeV$$

Weinberg's d= 5 operator: uv completion = seesaw

$$(\ell^T \epsilon H) C(H^T \epsilon \ell) = (\ell^T \epsilon C \vec{\sigma} \ell) (H^T \epsilon \vec{\sigma} H) = (\ell^T \epsilon \vec{\sigma} H) C(H^T \epsilon \vec{\sigma} \ell)$$

singlet fermion (sterile)

Type 1 LR

triplet scalar Y=2

Type 11 LR

triplet fermion Y=0

Type III SU(5)

Seesaw mechanism: type I

SM + right-handed neutrino

assumed heavy

decoupled (except for tiny neutrino mass)

crying for W_R

Bounds on the e-N mixing

Atre, Han, Pascoli, Zhang '09 Mitra, Gs, Vissani '11

N can be as light as you wish

light N: neutrino mass, baryogenesis, DM

NUSM

Asaka, Blanchet, Shaposhníkov '05,

N can still do neutrinoless double beta

Probing seesaw @ LHC

Type II seesaw

Magg, Wetterich '80 Lazarides, Shafi, Wetterich '81 Mohapatra, GS '81

$$\mathcal{L} = Y_{\Delta} \ell^{T} \epsilon C \Delta \ell + \mu H^{T} \epsilon \Delta^{\dagger} H + m_{\Delta}^{2} \Delta^{\dagger} \Delta + \dots$$

$$v_{\Delta} \simeq \mu rac{M_W^2}{m_{\Delta}^2} \lesssim GeV$$
 (ho parameter)

in components
$$\begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

$$M_{\nu} = U_{\ell}^T m_{\nu} U_{\ell} = Y_{\Delta} v_{\Delta}$$

probe neutrino masses and mixings

Why only the triplet?

Principle: all "Yukawa" Higgs allowed by the SM symmetries

vevs: color and charge singlets

$$\ell = \left(\begin{array}{c} \nu \\ e \end{array}\right)_L \qquad e_R \qquad \Longrightarrow \qquad$$

H: Y=1 doublet $\Delta: Y=2$ triplet

Type III seesaw: triplet fermions

Foot, Lew, He, Joshi '89

MINIMAL SU(5)

Georgi-Glashow

- · no unification
- · neutrino massless

extra fermionic 24_F

Bajc, G.S. '06 Bajc, Nemevsek, G.S. '07

$$24_F = (1_C, 1)_0 + (1_C, 3)_0 + (8_C, 1) + (3_C, 2)_{5/6} + (\bar{3}_C, 2)_{-5/6}$$

1

triplet T

hybrid: type 1 + 111

singlet S

- · one massless neutrino
- · unification

 m_T vs M_{GUT} @ two loops

Bajc, Nemevsek, G.S. '07

LHC:

$$\Delta L = 2$$

LHC:

 m_T

del Aguila, Aguilar-Saavedra '08

 $450\,(700)\,GeV\,@\,L=10\,(100)fb^{-1}\,$ Franceschini, Hambye, Strumia '08 Arhrib, Bajc, Ghosh, Han, Huang, Puljak, GS '09

LHC:

- a can probe the origin of neutrino mass
- can resolve the mystery of parity violation
- o can directly observe lepton number violation
- o can directly see Majorana nature

Thank you

general results

Lepton Flavor Violation

talk by Nemevsek, NuFact11 - saturday

Tello, Nemevsek, Nesti, GS, Vissani, PRL'11

Supersymmetry?

- · can mímic many of the phenomena
- Type III wino with RP violation

$$\mathcal{W}_{R_p} = \lambda \ell \ell e^c + \lambda' q \ell d^c + \lambda'' u^c d^c d^c + \mu \ell H$$

· too many parameters

assumptions about sparticle masses

• supersymmetric seesaw?

subject in itself

Neutral gauge boson

 Z_{LR}

CMS-PAS EXO-11-019 July

relative to $Z \to \ell^+\ell^-$ are presented. These limits exclude at 95% confidence level a Z' with standard-model-like couplings below 1940 GeV, the superstring-inspired Z'_{ψ} below 1620 GeV

$$rac{M_{Z_{LR}}}{M_{W_R}}=rac{\sqrt{2}g_R/g_L}{\sqrt{(g_R/g_L)^2- an^2 heta_W}}$$
 = 1.7 for gL = gR

W_R How right is it?

LHC is a pp symmetric machine, so it is not possible to use the simple A_{FB} asymmetry of W_R , to look for chirality of its interactions.

- One has to use the first decay $W_R \rightarrow eN$.
 - Determine the W_R direction

(from the full event!)

- Identify the first lepton.

- (the more energetic)
- Its asymmetry wrt the W_R direction gives the 'Right' chirality.
- It is necessary to efficiently distinguish the two leptons. (More difficult for $M_N \neq 0.6 \div 0.8 \, M_{W_R}$ [Ferrari '00])
- Also the subsequent decay $N \rightarrow \ell jj$ may be used.

Polarization seems to be visible in a wide range of masses M_{ν_R} , M_{W_R} .

BBN: $N_{eff}=4$ three $\nu+N_1$

11+

NH

Why only the triplet?

Principle: all "Yukawa" Higgs allowed by the SM symmetries

vevs: color and charge singlets

$$\ell = \left(\begin{array}{c} \nu \\ e \end{array}\right)_L \qquad e_R \qquad \Longrightarrow \qquad$$

H: Y=1 doublet $\Delta: Y=2$ triplet

Type III seesaw: triplet fermions

Foot, Lew, He, Joshi '89

MINIMAL SU(5)

Georgi-Glashow

- · no unification
- · neutrino massless

extra fermionic 24_F

Bajc, G.S. '06 Bajc, Nemevsek, G.S. '07

$$24_F = (1_C, 1)_0 + (1_C, 3)_0 + (8_C, 1) + (3_C, 2)_{5/6} + (\bar{3}_C, 2)_{-5/6}$$

1

triplet T

hybrid: type 1 + 111

singlet S

- · one massless neutrino
- · unification

 m_T vs M_{GUT} @ two loops

Bajc, Nemevsek, G.S. '07

LHC:

 $\Delta L = 2$

