

SVT IB status report

On behalf of INFN teams (Bari, Padova, Pavia, Trento*, Trieste)

First L0-L1 bare half-barrel prototype

* Trento (TIFPA) new INFN unit joining ePIC (formally after the summer) and already contributing to SVT IB activities

SVT INNER BARREL

Basic ingredients:

- Wafer-scale MAPS chips (ITS3 65 nm CMOS, thickness \leq 50 µm)
- Chips bent in semi-cylindrical shape at target radii
- Ultra-light carbon foam/fiber structures
- Air cooling

Layer	Radii (mm)	Single sensor area (mm²)	# of sensors for a half-layer
LO	38	266 x 58.7	2
L1	50	266 x 78.3	2
L2	126	266 x 97.8	4

- Present status and future activities
 - L0-L1 assembly procedures
 - IB Global mechanics
 - IB FPC characterization
 - IB Thermo-mechanical studies

epic

L0-L1 assembly procedure

Sensors alignment and joining

Joint sensors bending

FPC to joint sensors interconnection

Local support structures gluing

Services integration in layer

L0-L1 half-barrel assembly

L0-L1 half-barrel integration to L2

L0-L1 assembly procedure

Sensors alignment and joining

Joint sensors bending

FPC to joint sensors interconnection

Local support structures gluing

Services integration in layer

L0-L1 half-barrel assembly

L0-L1 half-barrel integration to L2

Few tens micron precision reached targeting 50 micron pitch between the two sensors

L0-L1 assembly procedure

TO DO

TO DO

TO DO

Double sensors bending mastered for L0 and L1

Video: https://cernbox.cern.ch/s/wONOJ9puKAFk6IB

L0-L1 assembly procedure

TO DO

TO DO

TO DO

epic

Local support gluing tools rapidly evolving toward final requirements

L0-L1 assembly procedure

First L0-L1 bare half-barrel prototype

31.12.2025

SVT Realizzazione prototipo termo-meccanico half-barrel strati interni L0-L1

30%

L0-L1 assembly procedure - Activity summary

Layer	Dates	BENDING	GLUING	REMOVAL
L0 _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage
L0 _{V2.1}	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	—	—
L0 _{V2.2}	16/01/25-31/01/25	YES	YES	YES
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	_
L0 _{V4}	03/04/25-10/04/25	YES	YES	YES
L0 _{V5}	26/05/25-03/06/25	YES	YES	YES
L1 _{V1}	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	
$L1_{V2}$	07/07/25-09/07/25	YES	YES	YES

L0-L1 assembly procedure - Prototype campaign, material procurement

Completed by December 25

L0-L1 assembly procedure - Prototype campaign, material procurement

Prototype	Components	Goal	
IBL012_P6/7	 2+2+4 ER2 pad wafer L0+L1+L2 sensors (x 2 HB?) L0+L1+L2 local support structures gloabal support mechanics (advanced design) FPCs (advanced design) air distribution inlet & outlet (advanced design) 	 first complete IB HB prototype w/o sensors including test of wirebonding to FPCs final test on HB support mechanics possibly built 2 complete HBs (to allow HB mechanical support matching test) 	Requires ER2 pad sensor → Targeting <u>July 26</u>
IBL012_P8	 2+2+4 ER2 wafer L0+L1+L2 sensors L0+L1+L2 local support structures mechanics, FPCs, cooling (~final/advanced design) 	 complete IB HB prototype w/ sensors qualification model w/ bent sensors for cooling + powering/DAQ/DCS finalisation 	Requires - ER2 sensors - FPC (?)

- Power/Readout system (?) Targeting <u>October 26</u>

SVT Realizzazione prototipo half-barrel SVT L0-L1 integrante struttura supporto locale in carbon foam, prototipo FPC e procedura di wirebonding, struttura di supporto globale in composito

31.12.2026

L0-L1 assembly procedure - Prototype campaign, material procurement

Silicon pieces	4 L0 - 4 L1	AVAILABLE	Spares to be procured
Heaters	2 L0 - 2 L1	AVAILABLE	Spares: 2 L0 / 2 L1
Pad sensors	[2 L0 - 2 L1 - (4 L2)] x 2	2026	If two HB (16 pad sensors = 16 wafers) \rightarrow No spares
ER2 sensors	2 L0 - 2 L1 - (4 L2)	2026	Only one half-barrel \rightarrow No spares

Blank silicon pieces of exact L0 and L1 sizes

Heaters integrating blank silicon

L0-L1 assembly procedure - Prototype campaign, material procurement

3D printed	Mixing printed and manufactured in very first exercises		
Carbon fibre/foam	 Material for support structure elements Half-ring on LEC → Allcomp K9 (standard density, 200-260 kg/m³) Longerons and half-ring on REC → Carbon RVC Duocel (density 45 kg/m³, PPI 100) Carbon fleece: wet-laid non woven carbon fibre veil(8 g/cm²) Outer shell: carbon fibre (from global structure) Foam procurement Allcomp K9 → Not easy to procure in small amount; try to associate with large request (e.g. ATLAS) ERG Carbon RVC Duocel → Company in USA, but possible purchasing from Europe Foam shaping Procedure details collected from CERN colleagues Ongoing at Genova INFN → First example completed (in POCOfoam) Berkley (Nikki) or U.K. (George) → Expressed availability Local workshop → To be identified 	EXEMPTION EXEMPTION	Сот #: 33354/1 Ту: 2
	 Multiple-producers under investigation (Padova) 	First samples of ERG Material sent to Ge	Carbon RVC Duoce

2.000" x 12.000" x 1.000"

±0.030 ±0.100 ±0.030

L0-L1 assembly procedures | Global mechanics | FPC characterization | Thermo-mechanical studies

PRESENT STATUS AND FUTURE ACTIVITIES

Global mechanics

- Current global support design
 - modifications subject to better definition of services
 - CFC bi-layer laminate or woven fabric configuration (depending on the part/position)

- Production status
 - o three companies available for production (all in Italy)
 → already received the offers, two consistent, one much cheaper
 - \rightarrow few pre-production pieces will be qualified to decide
 - connected to the L0-L1 prototype campaign
 → raw versions of the L0-L1 external shell ready/ shipped to Bari for IBL01-P3&4 (October 2025) and IBL01-P5 (December 2025)

Global mechanics

- Current global support design
 - modifications subject to better definition of services
 - CFC bi-layer laminate or woven fabric configuration (depending on the part/position)
 - current design integrated in the general detector structure (collaboration with BNL)
 - material budget always checked after updates

IB integration into the SVT

Flexible Printed Circuit

- FPC development activities
 - Design and production of test pieces, selection of aluminium based technology
 - Development of procedures and tools for FPC bending and interconnection to the sensor
 - Qualification tests of flat and bent FPC test pieces
 - Mainly signal integrity tests of high speed links at 10.24 Gbps S-Parameter measurement (VNA), eye diagram (High speed scope), BERT (FPGA)
- Ongoing and planned activities in 2025
 - Ongoing discussion with LTU and Daresbury for the production of simple FPC test pieces - 25 cm long, differential lines
 - Commissioning of setup and first signal integrity tests of ITS3 FPC (flat configuration)
 - FPGA boards, adapter boards and ITS3 FPC prototype acquired

16

ITS3 FPC test setup and interconnections

Flexible Printed Circuit

- Activities planned for 2026
 - Ongoing discussion with LTU and Daresbury for the production of FPC test pieces based on ITS3 FPC design three, double layer FPCs assembled together
 - Bending and bonding trials with 2025 test pieces
 - Signal integrity tests of 2025 test pieces, in flat and bent configuration
 - Signal integrity tests of 2026 test pieces, in flat configuration
- Some bottlenecks
 - Available oscilloscope not sufficient for tests of 10.24 Gbps signals (4 GHz, 40 GS/s) - looking into rental or loan possibilities of fast oscilloscope
 - 2-channel VNA available; funding requested (by ALICE INFN groups) for High-speed Interconnect Analyzer or 4-channel VNA - if approved, available in 2026

ITS3 FPC test setup and interconnections

Thermo-mechanical studies

- Vibrational studies
 - FEA based simulations
 - Experimental measurements
- Thermal studies
 - Fluent simulations
 - Thermal expansion tests (in climatic chamber)
 - Air-flow measurements (in wind tunnel)

 To identify potential issues/failures and
 → evaluate the short-term/long-term reliability of SVT-IB

To define the operational parameters of the air-cooling system

Thermo-mechanical studies - Vibrational studies

- Modelling strategy developed to analyze the vibrational behavior of thin silicon shell structures for the SVT-IB.
- FEM modal analysis validated against analytical models to ensure high accuracy and reliability of the simulations.
- First FEM random vibrational test with PSD aerospace spectrum to assess the structural integrity and mechanical resilience of the silicon shells under severe transport conditions.

SVT DSC meeting June 24 (<u>https://indico.bnl.gov/event/28692/</u>) by E. Serra: <u>https://docs.google.com/presentation/d/1T2sU62jXrhPWwts_Kt3RfQ5yjr9m1qCf/edit?usp=share_link&ouid=113048360736710244&rtpof=true&sd=true</u>

Thermo-mechanical studies - Vibrational studies

- Developing a FEM-based model of the whole SVT-IB for estimating the displacement noise in the silicon sensors due to multiple sources of vibrations (air-flow, seismic/cultural, thermal)
- Configuring a dedicated experimental apparatus for performing extensive vibrational tests at PRIM facility in Trento

Vibrational test of ALPIDE sensors mounted on a CFRPs stave.

L0-L1 assembly procedures | Global mechanics | FPC characterization | Thermo-mechanical studies

PRESENT STATUS AND FUTURE ACTIVITIES

Thermo-mechanical studies - Ansys/Fluent simulations

Study of support deformation with different copper quantity: full and half load.- w.i.p.!

Static Temperature

Weak points show up (bends in the supporting arms)

A small (~8 µm max.) deformation appears in the sensor region

Simulation of heat transfer between a surface emitting 40 mW/cm² + 8 W/cm² sensor + LEC and air flow @ 15 m/s.

Thermo-mechanical studies - Cooling tests (preliminary)

- Test of air cooling with high LEC power (1.6 W/cm²) with alternative dissipators in aluminium 3D printed.
- Measurement of air flow (hot-wire anemometer) and temperature (IR camera and PT100). Local mechanics and global support (simplified design) 3D printed.
- Test results expected by fall 2025.

Dummy heat load, sized as two joined sensors, both L0 and L1

Dissipators (2 options), 3D-printed, aluminium (but same material budget as carbon foam half-rings) for the h-side

Thermo-mechanical studies - Cooling tests (advanced)

- Dedicated prototype IBL01_P5 (> January 2026)
 - L0 and L1 heaters
 - Proper carbon foam or alternatives
 - Air-ducts and temperature sensors (PT1000)

- Wind tunnel setup
 - Investigating for available infrastructure

ITS3 wind tunnel @CERN

Realizzazione test termici per definizione parametri sistema di raffreddamento prototipo half-barrel SVT L0-L1

ITS3 BBM6 prototype

Thermo-mechanical studies - Thermal expansion studies (in climatic chamber)

- Dedicated prototype IBL01_P3+P4
 - $\circ~$ L0 and L1 naked silicon pieces
 - Proper carbon foam and carbon fibre external shell
- Test schedule (from ITS3 TDR) to be refined
 - Temperature: from 40°C to 10°C, in steps of 2 °C (with a 15-minute interval) and a ramp rate of 0.5°C per minute.
 - Relative humidity in the climate chamber maintained at a constant 50% during thermal cycles.
 - Testing phase, including multiple thermal cycles, should last 50 hours.
 - Subsequent thermal tests will be conducted to examine both the effect of a rapid temperature increase (ramp rate up to 10°C per minute) and determine the maximum temperature before failure.
- Scheduled after the completion of dedicated prototype in October

Model : Genviro 030LC Temperature range : from -70 °C to +90 °C Humidity range : from 10% to 98 % Dimensions : 330 mm x 280 mm x 330 mm

Summary

- L0-L1 assembly procedure
 - bare barrel procedure definition in advanced status
 - prototype campaign defined for Q4 of 2025 and 2026
- Global mechanics: first prototype expected mid-2026
 - non-CFC prototypes for assembly/integration tests needed by late 2025
- FPC activities focus on progressing test pieces development, commissioning and initial signal integrity tests
- Thermo-mechanical studies
 - First development FEA vibrational analysis completed and more detailed studies planned for the coming months
 - Thermal effect simulation in Ansys/Fluent: activity started
 - \circ $\,$ Thermal expansion studies in preparation for Q4 2025 $\,$
 - Cooling tests developing now, first results during fall 2025

L0-L1 assembly procedure - Activity summary

Parallelism has higher priority than pitch minimization since a large tilt can affect the success of the bondings to FPC.

#	ID	Average pitch (µm)	Tilt angle (°)
1	L0v1	150	±0.021
2	L0v2	285	±0.008
3	L0v3	144	±0.006
4	L0v4	141	±0.002
5	L1v1	75.5	±0.0014
6	L0v5	51.5	±0.0004*

+ Offline measurements by analysing pictures
+ Design of accessories to reduce the number of attempts to reach the desired tilt and pitch.

*tilt under the resolution of dinoscope

Negligible cuspids are observed after the bending

L0-L1 assembly procedure - Activity summary

Layer	Dates	BENDING	GLUING	REMOVAL
L0 _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage
L0 _{V2.1}	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	—	-
L0 _{V2.2}	16/01/25-31/01/25	YES	YES	YES
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	—
$L0_{V4}$	03/04/25-10/04/25	YES	YES	YES
L0 _{V5}	26/05/25-03/06/25	YES	YES	YES
L1 _{V1}	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	_
$L1_{V2}$	07/07/25-09/07/25	YES	YES	YES

L0-L1 assembly procedure - Activity summary

Layer	Dates	BENDING	GLUING	REMOVAL	
L0 _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage	
L0 _{V2.1}	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	—	—	-
L0 _{V2.2}	16/01/25-31/01/25	YES	YES	YES	
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	_	
$L0_{V4}$	03/04/25-10/04/25	YES	YES	YES	
L0 _{V5}	26/05/25-03/06/25	YES	YES	YES	
L 1 v1	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	_	
$L1_{V2}$	07/07/25-09/07/25	YES	YES	YES	

L0-L1 assembly procedure - Activity summary

_ayer	Dates	BENDING	GLUING	REMOVAL	
L0 _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage	
L0v2.1	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	_	_	
L0v2.2	16/01/25-31/01/25	YES	YES	YES	
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	—	
L0 _{V4}	03/04/25-10/04/25	YES	YES	YES	
L0 _{V5}	26/05/25-03/06/25	YES	YES	YES	
L 1 v1	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	_	
L1 _{V2}	07/07/25-09/07/25	YES	YES	YES	

Crack stopped during bending procedures using microscope (not easily visible by eye).

Broken silicon pipe found in the same box - Don't stack many silicons in the same box

- Visual inspection before each assembly

Discovered fracture was covered by extra kapton tape

Extra tape was not sufficient: fracture was the source of the successive break in the picture