dRICH Project Overview

dRICH Sub-System Organization

6.10.04 Particle Ident	ification Level-3	CAM from Project
6.10.04.03 dRICH	Level-4	CAM from Project + DSTC from EPIC (M. Contalbrigo)
		Work packages lead from EPIC
Photo-Detector	Level-5	R. Preghenella, INFN-BO, INFN-FE, INFN-CS, INFN-SA, INFN-CT, INFN-TS, NISER
Front-end Asics	Level-5	F. Cossio, INFN-TO, INFN-BO
Data-acquisition	Level-5	P. Antonioli, INFN-BO, INFN-RM1, INFN-RM2
Mechanics	Level-5	A. Saputi, INFN-FE, INFN-BO, INFN-LNS, JLAB, BNL
Gas radiator	Level-5	F. Tessarotto, INFN-TS, BNL
Mirror	Level-5	A. Vossen, DUKE, INFN-FE, JLab
Aerogel Radiator	Level-5	G. Volpe, INFN-BA, INFN-FE, Temple U., RICH Consortium
High-Pressure	Level-5	S. Dalla Torre, INFN-TS, INFN-FE, INFN-LNS
Simulation		C. Chatterjee, INFN-TS, INFN-GE, INFN-CS, INFN-LNS, INFN-SA, CHU, CHK, DUKE, RICH Consort

ePIC dRICH

Goals:

Hadron 3σ–separation between 3 - 50 GeV/c Complement electron ID below 15 GeV/c Cover forward pseudorapidity 1.5 (barrel) - 3.5 (b. pipe)

dRICH Features:

Extended 3-50 GeV/c momentum range --> Dual radiator Single-photon detection in high Bfield --> SiPM Limited space --> Compact optics with curved detector Dual-radiator Ring-imaging Cherenkov Detector (dRICH)

Essential to access flavor information

2025 Reviews

April 1-2 Incremental Preliminary Design and Safety Review of pfRICH, dRICH and hpDIRC "60% Preliminary Design Review"

PASSED

June 11-13 10th EIC Detector Advisory Committee Meeting

•(dRICH) The chromatic error is dominating the overall performance of the aerogel. It is recommended to study the optimization between (a) loss of photon yield and (b) reduction in chromatic error, using a possible optical filter installed after the aerogel tiles.

•(dRICH/DAQ) High level filtering of interactions through the GTU is being built into the DAQ design, with the specific example of the dRICH filtering provided. As this is developed the ePIC collaboration should work to understand the dependence between detectors this may introduce and prioritize the external inputs for this online filtering for different detectors.

•(dRICH) In order to optimise the ALCOR time gate, a simulated distribution of the time-of-arrival of the photon signal (and background) on the photon detector plane would be required, together with an evaluation of the main front-end electronics contributions (if any) before the application of the time gate.

•(dRICH) Preliminary results from studies of the SiPM array optical window after annealing were shown. A more detailed evaluation of the effect of high-temperature annealing on the shape integrity and optical properties of the resin layer is advised.

Global services (cables, cooling, etc.) through the endcaps have been identified, including their impact on the hpDIRC and dRICH positioning. These should continue to be monitored to allow reasonable overhead for packing and inevitable increases as additional services are identified.

Design Status

	Technical requirements			Validated technical solutions		2026
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 dn/d λ = 6 10 ⁻⁶ nm ⁻¹ scattering length > 50 mm	ightarrow	Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C_2F_6	with n = 1.00086 dn/d λ = 0.2 10 ⁻⁶ nm ⁻¹ absorption length > 100 m		Purging Monitoring
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length	\Box		Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad	\rightarrow	Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	\Box	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	\Box	Layout Annealing Carrier
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability	\Box	ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch		ALCOR 64ch BGA package FEB
DAQ:	1.3 Tbps maximum data throughput Streaming readout Suppression of no-interaction frames	$\Box\!$	AMD Artix FELIX	VTRX+ tranceiver Polarfire scrubber GTU trigger		RDO Data filter dRICH tagger
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow	\rightarrow	Real-scale prot. Detector box Cooling

Construction Plan

A construction and QA plan is outlined accounting for lead, assembling and commissioning time

Year						2027					20	028					2	029					20	030					2	031					2032			
Month		10 11	12	1 2 3	3 4	5 6 7	8 9	10 11 1	2 1 2	2 3 4	4 5 6	7	8 9	10 11 12	1 2	3 4	4 5 E	578	8 9 1	0 11 12	1 2	3 4	1 5 6	78	9 10	11 12	1 2	3 4	5	6 7	8 9 1	0 11 12	1 2	3 4	567	8 9	10 11	12
Milestones		pTDR																										AS	s					RR			INS	
Construction																																						6
	FDR - Final Design Complete (dRICH)																																					
SiPM	Tender, Production, QA tests																																					
ALCOR chip	Tender, Production, QA tests																																					
FEE board & DAQ	Tender, Production, QA tests																																					
Slow Control	Tender, Production, QA tests																																					
Power supply	Tender, Production, QA tests																																					
Vessel	Tender, Production, QA tests																																					
Detector box	Tender, Production, QA tests																																					
Cooling System	Tender, Production, QA tests																																					
Gas system	Tender, Production, QA tests																																					
Gas	Tender, Production, QA tests																																					
Aerogel	Tender, Production, QA tests																																					
Mirror	Tender, Production, QA tests																																					
Alignment	Tender, Production, QA tests																																					
Assembling	Assembling																																					
Photo-detector	Assembling of Photo Sensors & Electroncis, DAQ Readout Sy	()																																				
Mechanics & Optics	Mechanical Assembly																																					
Detector box	Detector box shipping																																					
Detector box	Detector box final assembling & test																																					
Services	Slow Control, Interlock and DAQ Installation																																					
Gas and Cooling	Gas and Cooling System Installation & Test																																					
Validation	Functionality tests																																					
				1 C	.D2					D3																											:	

CD-2: Validate ALCOR-64 & RDO design

Validate real-scale prototype mechanics Study detector box engineering Details the aerogel tile dimensions Determine a baseline for online data filtering Work out a baseline cooling & gas sytem

CD-3: Optimize component performance Complete component integration Finalize cooling & gas system Detail detector integration and maintenance

\rightarrow	

31.7.2026	dRICH	Caratterizzazione ALCOR a 64 canali
31.7.2026	dRICH	Disegno preliminare dRICH detector box
31.12.2026	dRICH	Verifica funzionalità RDO e sviluppo firmware per lettura chip ALCOR
31.12.2026	dRICH	Realizzazione sistema per test separazione criogenica del gas C2F6

Construction Plan

A construction and QA plan is outlined accounting for lead, assembling and commissioning time

Year						2	2027						2028						20	029			T			2030						2031					2	032		
Month		10 11	1 12	1 2	3 4	4 5	6 7	8 9 1	10 11 1	2 1	2 3	4 5	6 7	8 9	9 10 11	1 12	1 2	3 4	5 6	5 7 8	8 9 10	0 11 12	2 1	2 3	4 5	6 7	8 9	10 11 1	12 1	2 3	4 5	6 7	8 9	9 10 11	12 1	2 3	4 5 6	578	9 10	11 12
Milestones		pTDR																													ASS					R	R		INS	
Construction																																								
	FDR - Final Design Complete (dRICH)																																							
SiPM	Tender, Production, QA tests																																							
ALCOR chip	Tender, Production, QA tests																																							
FEE board & DAQ	Tender, Production, QA tests																																							
Slow Control	Tender, Production, QA tests																																							
Power supply	Tender, Production, QA tests																																							
Vessel	Tender, Production, QA tests																																							
Detector box	Tender, Production, QA tests																																							
Cooling System	Tender, Production, QA tests																																							
Gas system	Tender, Production, QA tests																																							
Gas	Tender, Production, QA tests																																							
Aerogel	Tender, Production, QA tests																																							
Mirror	Tender, Production, QA tests																																							
Alignment	Tender, Production, QA tests																																							
Assembling	Assembling																																							
Photo-detector	Assembling of Photo Sensors & Electroncis, DAQ Readout Sy	/																																						
Mechanics & Optics	Mechanical Assembly																																							
Detector box	Detector box shipping																																							
Detector box	Detector box final assembling & test																																							
Services	Slow Control, Interlock and DAQ Installation																																							
Gas and Cooling	Gas and Cooling System Installation & Test			_																																				
Validation	Functionality tests					_																																		
					CD	2				C	D3																													
						_																																		

CD-2: Validate ALCOR-64 & RDO design

Validate real-scale prototype mechanics Study detector box engineering Details the aerogel tile dimensions Determine a baseline for online data filtering Work out a baseline cooling & gas sytem

CD-3: Optimize component performance Complete component integration Finalize cooling & gas system Detail detector integration and maintenance

- Stage 1: Procurement for the PDU components (asics, SiPM, carrier, FEB, RDO...) Anticipate mirror and gas procurement to reduce risk
- Stage 2 : Central 2-3 year for the detector box assembling before delivery to BNL Aerogel production after engineering optimization Gas system realization after BNL authority approval
- Stage 3: Mechanical structures and assembling Completino of services 6 months of contingency and functionality tests

INFN Funding Profile

Costraints:	 Installation in 2032 Detector boxes ready to be moved to BNL in 2031 SiPM production done in a row (2 yr)
Assumptions	- possibility to spread the major procurements in batches/years
Potential risk:	- late investment on aerogel & mechanics

Peak investment being mitigated with respect 2024 anticipation

Quality Assurance

QA is organized to allow essential acceptance tests on 100% of components plus in-depth sample characterization

- QA stations organized in order to
 - Be close to the assembling site
 - Ensure adequate personnel training
 - Provide redundancy & investment synergy
 - Support specific in-deep characterization studies

- Aerogel: Integrity, defects, transmittance, refractive index, dimensions, planarity
- Mirror: Dimensions, shape accuracy, radius, reflectivity
- Sensors: Electrical connections, quench resistor, I-V characteristics, DCR, relative PDE
- Readout: Electrical connections, bias levels, threshold and gain scans, time jitter, DAQ rate
- Gas: Refractive index, transparency, sound speed, leakage rate

Component	QA station 1	QA station 2	QA detail and backup	QA Acceptance	In-depth
Aerogel	Temple U.	BNL	INFN-BA	100 %	5%
Gas	BNL		INFN-TS	2 %	2%
Mirror	JLab	Duke U.		100 %	10%
Sensor (SiPM)	INFN CS-SA-CT	INFN-TS	INFN-BO	100 %	1%
Readout	INFN-BO	INFN-FE	INFN-TO	100 %	1%

Mechanical

Aerogel

Optical quality of mid-size samples being validated with lab characterization

Optics: Good reproducibility of refractive index Transmission length > 50 mm (best worldwide standard)

Туре	15 x 15 cm ²	, 3-cm thick	18 x 18 cm ²	, 2-cm thick
Serial number	AG20001	AG20002	AG19701	AG19702
Refractive index (at 405 nm)	1.0264	1.0263	1.0272	1.0272
Transmission length (at 400 nm) [mm]	53.9	58.1	52.8	52.9
Transmittance (at 400 nm) [%]	56.8	59.1	67.6	67.8
Lateral block size [mm]	146.5	146.7	176.8	177.1
Thickness [mm]	30.5	30.6	20.7	20.6
Weight [g]	62.94	63.82	62.42	62.63
Density [g/cm³]	0.0962	0.0970	0.0965	0.0971
File name of transmittance data [.txt]				Same as ser

Туре	18 x 18 cm ² , 2-cm thick INFN shape								
Serial number	AG19802W	AG19803W							
Refractive index (at 405 nm)	1.0273	1.0274							
Transmission length (at 400 nm) [mm]	53.0	50.8							
Transmittance (at 400 nm) [%]	68.4	67.8							
Block size/shape	As designed	As designed							
Thickness [mm]	20.1	19.8							
Weight [g]	44.10	Not determined							
File name of transmittance data [.txt]	Same as ser	ial numbers							

Mechanics: Meniscus & shrinkage requires edge cutting Water-jet cut ensures precise shaping

> Checking surface flatness Moving to 20 x 20 cm²

Engineering of the aerogel wall expected by 2026

Goal: > 20 x 20 cm² to minimize dead area To be chcked: Quality vs production yield

M. Contalbrigo

11

Mirror

CFRP substrate mid-size (~50 cm side) demonstrator validated with lab tests before coating

Optics: Good surface precision Acceptable radius of curvature Moving to coating

Mechanics: Holder Alignment

√ R = 2200 +/- 1%

M. Contalbrigo

Realistic Components

Engineering of all the mechanical details pursued with the real-scale prototype being realized in 2025

Real-Scale Prototype Tests

Lab tests:

Mechanical stability Gas & light thightness Temperature gradients Assembling scheme Inner components supports Optical septa....

2025 beam-test goal:

Commissioning at SPS H8 in November

Real scale 1-sector prototype with demo components ALCOR readout with RDO

2026 beam-test goal:

Performance validation with beam

Detector Box

entrance window

Marco Nenni, Carlo Mingioni (INFN TO)

photodetector

box

Richieste 2026

Sezione INFN	Attivita'	Capitolo	Cifra (keuro)	Motivazione
BA	Aerogel	Cons.	30	Engineering studies on large samples 20x20 cm ²
BA	Aerogel	Cons.	4	Rafraction index measurement
LNS	Real-scale prot.	Cons.	3	Metabolismo test meccanici su materiali compositi per prototipi
FE	Real-scale prot.	Cons.	5	Supporti componenti prototipo
FE	Real-scale prot.	Cons.	8	Piattaforma per movimentazione controllata prototipo scala reale
FE	Real-scale prot.	Inv.	3	Motoriduttori per movimentazione prototipo + meccanismi
FE	Real-scale prot.	Cons.	2	Telescopio cosmici per prototipo scala reale
FE	Real-scale prot.	Inv.	2	Pompa a membrane per ricircolo veloce gas
FE	Real-scale prot.	Cons.	6	Acquisto gas C_2F_6 e Argon per gestione prototipi
FE	Real-scale prot.	Tras.	4	Trasporto prototipi
FE	Detector box	Cons.	8	Prototipo detector box
FE	Detector box	Cons.	5	Quarzi per prototipi
FE	Detector box	Cons.	9	Produzione schede elettronica per prototipo master panel

Richieste 2026

Missioni per test-beam (s.j. tempo fascio) dove validare le varie componenti in sviluppo

Sezione INFN	Attivita'	Capitolo	Cifra (keuro)	Motivazione
BA	Test-beam	Cons.	3	Test campioni aerogel
BO	Test-beam	Cons.	8	Test SiPM e RDO
CS	Test-beam	Cons.	2	Test sensori
СТ	Test-beam	Cons.	3	Test sensori
FE	Test-beam	Cons.	8	Test prototipi
GE	Test-beam	Inv.	1	Test sistemi di tagging
LNS	Test-beam	Cons.	3	Test meccanica
RM1	Test-beam	Inv.	2	Test DAQ
SA	Test-beam	Cons.	2	Test sensori
то	Test-beam	Tras.	5	Test ALCOR
TS	Test-beam	Cons.	3	Test sistemi gas