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1) Loop extrusion                                              stochastic processes 

• obtain an effective model (...simpler)

• explains the power law in contact probability
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Example: effective interactions in DNA
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2) Protein-mediated interactions
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ε
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Vk(R)(eβϵk − 1)]

e.g., k=2



Example: subdiffusion 
MSD(τ) = [r(t + τ) − r(t)]2

of such domains are still unclear because some studies associate
them with the hetero/euchromatin compartmentalization
(Nozaki et al. 2017; Lerner et al. 2020) or cohesin-mediated TAD
organization (Ashwin et al. 2019), whereas others did not observe
significant correlation between such heterogeneity and chromatin
compaction (Shaban et al. 2020b).

Biophysical modeling has been instrumental in interpreting
and predicting the outcomes of live imaging experiments on chro-
matin motion (Tortora et al. 2020; Di Stefano et al. 2021). Indeed,
in classical kinetic theory, the value of the diffusion exponent α
may be a good indicator of themain underlying physical processes
driving the motion of the object under study. For small particles,
although standard diffusion is characterized by α=1, subdiffusion
(α<1) and superdiffusion (α>1) may indicate constrained or facil-
itated movement, respectively. For polymers that are large mole-
cules with many internal degrees of freedom, the fixed
connectivity along the chain constrains the motion of individual
monomers. The Rouse model, a standard polymer theory assum-
ing that mobility is only driven by thermal fluctuations (Doi
et al. 1988), thus predicts that the loci of the polymer chromatin
should experience a subdiffusive motion with α∼0.5, which is
the average typical exponent measured experimentally (Fig. 1).
One can then define a sub-Rousean (α<0.5) and a super-Rousean
(α>0.5) diffusion regime for polymers thatmay translate addition-
al constraints or forces acting on themonomermotion. Therefore,
several decorated Rouse-like models have been developed over the
years to suggest that the observed sub-Rousean dynamics may be
associated with condensation of chromatin (Di Pierro et al. 2018;
Shi et al. 2018) and the super-Rousean regimes with active process-
es (Chaki and Chakrabarti 2019; Foglino et al. 2019; for review, see
Tortora et al. 2020). Dynamical simulations of copolymer models
capturing quantitatively the different layers of chromosome orga-
nization (Shukron andHolcman 2017; Di Pierro et al. 2018; Ghosh
and Jost 2018; Liu et al. 2018; Shi et al. 2018; Shukron et al. 2019)
are consistent with an average sub-Rousean regime, with different
mobilities between euchromatic and heterochromatic regions and
with correlatedmotions associated with compartmentalization. In
particular, Shi et al. (2018) associated the experimentally observed
heterogeneity in chromatin motion to the intrinsic glassy dynam-
ics of chromosomes, whereas Shukron and Holcman (2017) and
Shukron et al. (2019) suggested that it emerges from cell-to-cell
variability in cross-linking sites.

All these experimental and theoretical works draw a compos-
ite—and relatively controversial—picture of how chromatin

moves inside cell nuclei during interphase and of how this hetero-
geneity in motion emerges from fundamental processes and from
chromatin architecture. In particular, this has led to two main de-
scriptions of chromatin motion, based on an analogy with materi-
als science (Strickfaden 2021): chromatin behaves like a “liquid” or
a “fluid” (Maeshima et al. 2016; Ashwin et al. 2020) pointing to a
dynamic andmobile viewof chromatinmotion; or it behaves like a
“gel” or a “solid” (Khanna et al. 2019; Strickfaden et al. 2020;
Eshghi et al. 2021) highlighting a more constrained dynamics
and rigid state.

Here, we investigated how the heterogeneous and anomalous
behaviors of chromatin mobility may emerge from first principles
using polymer modeling. In particular, we addressed the interplay
between the three-dimensional chromosomeorganization and the
different diffusion regimes of chromatin observed experimentally
by investigating the dynamics of heteropolymer models that
quantitatively describe the chromosome architecture.

Results

Quantitative data-driven modeling of 3D chromosome
organization
To investigate chromatinmotion in situations compatiblewith ex-
periments, we first developed a data-driven polymer model to
quantitatively describe the 3D chromatin organization. We mod-
eled chromatin as a coarse-grained heteropolymer (Fig. 2A). Each
monomer, containing 2 kbp of DNA and being of size 50 nm, is
characterized by three structural features inferred from Hi-C
maps (Methods): its TAD; its compartment (A or B); and, optional-
ly, its anchoring role in CTCF-mediated loops as often observed at
TAD boundaries in mammals (Dowen et al. 2014; Rao et al. 2014).
The spatiotemporal dynamics of the system is governed by generic
properties of a homopolymer (excluded volume and bending rigid-
ity) (Ghosh and Jost 2018) decorated by three types of short-
ranged attractive interactions accounting for the heterogeneity
of monomer states (Fig. 2A; Methods): intra- and inter-compart-
ment (EAA, EBB, EAB), intra-TAD with a strength that depends on
the local compartmentalization (ETAD,A, ETAD,B), and looping be-
tween CTCF anchors (Eloop). Our approach does not aim to investi-
gate how loops, TADs, or compartments emerge from first-
principlemechanisms but rather to fold an effective polymermod-
el that captures the main organizational features of chromosomes
from Hi-C and serves to study their consequences on chromatin
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Figure 1. Heterogeneity of chromatinmotion. (A) Examples of ensemble-averagedmean-squared displacement (MSD) profilesmeasured experimentally
at individual loci for different organisms and cell lines. The different data sets are from the following: (data1) Mouse pro-B (Khanna et al. 2019); (data2)
human MCF-7 (not transcribed gene) (Germier et al. 2017); (data3) human U2OS (centromeres) (Bronshtein et al. 2015); (data4) human U2OS (telo-
meres) (Bronshtein et al. 2015); (data5) human HeLa cells (Zidovska et al. 2013); (data6) mouse MF (Bronshtein et al. 2015); (data7 and data8) human
HeLaS3 (fast loci and slow loci, respectively) (Ashwin et al. 2019). (B,C) Distributions of diffusion constants (B) and diffusion exponents (C) inferred from the
time-averaged MSDs of different loci measured in human U2OS cells; data extracted from Bronshtein et al. (2015) and Shaban et al. (2020b).
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