UNIDET- Universal detector for quantum light (2023-202<mark>6, estensione</mark>)

The team

Trento Institute for Fundamental Physics and Applications

Andrea Salamon 20% Thu Ha Dao 50% Mirko Lobino Paolo Rech Massimo Cazzanelli Leonardo Lomongi Igor Lopez Gonzalez Alberto Quaranta

Francesco Mattioli 20% Alessandro Gaggero 20% Francesco Martini 20%

Martino Bernard Gioele Piccoli

Waveguide and SC structure

Theoretical simulation of the array

- 1) Efficiency that grows as 1/n
- 2) Different configuration studied
- 3) L. Limongi, et al, Optics Communications 575, 131244 (2025)

Waveguide and SC structure

- 1) Strip loaded configuration
- 2) Nanomeander of NbN
- 3) Optimization of the efficiency of each element
- 4) Planarization to be done by ErzTM in Germany

Waveguide fabbricated

- 1) Waveguides and grating couplers fabbricated
- 2) 10dB coupling losses and overcoupled structures
- 3) New fabbriation run on the way

Current status and reasons for extension

- 1) Samples sent to Germany
- 2) Dummy dices and real samples
- 3) Ready around September
 - Real samples

Progress so far and plan for 2025-26

Progress so far:

- 1) Planarization of the structure (outsourced)
- 2) Optimized superconductor film deposition
- 3) Squeezed vacuum source for characterization

To do in 2026

- 4) Packaging of the devices
- 5) Test of home made detectors with laser light

23

uPd

NbN'

- 6) Test with quantum source
- 7) Synergy with UPHOS (new experiment)

Richieste finanziarie 2026

2000 Consumabili clean room CNR-IFN 1000 PCB di test 1000 Componenti PCB e cavi per installazione nel cryocooler 1000 Due fiber array 1000 Fibre ottiche varie 1000 Due polarizzatori a tre pad, connettori FC/APC 1500 Display misuratore di pressione Leybold 2000 Missioni

10500

UPHOS- Ultrafast PHOtonics for quantum Simulation (2026-2028)

Trento Institute for Fundamental Physics and Applications

The team

Pavia unit							
Age	FTE						
49	0.7						
37	0.5						
56	0.5						
47	0.5						
	Age 49 37 56 47						

Total FTEs

2.2

Roma Tor Ver	gata	unit
Member	Age	FTE
F. De Matteis	63	0.2
A. Gaggero	46	0.5
C. Marin	29	0.3
F. Martini	37	0.5
F. Mattioli	51	0.2
P. Piergentili	37	0.2
A. Rengarajan	28	0.5
A. Salamon	55	0.7
Total FTEs		3.1

TIFPA unit

Age	FTE
29	0.2
26	0.3
48	0.2
33	0.3
61	0.2
44	0.3
	Age 29 26 48 33 61 44

Total FTEs

1.5

Trento Institute for Fundamental Physics and Applications

Boson Samplig

What is boson sampling

- 1) Interfering n bosons in a network of m modes;
- 2) Calculating the probability of a certain distribution output is hard.

Photons naturally solve the BosonSampling problem

F. Sciarrino, Lecture on boson sampling, https://www.sif.it/media/2e2d8d06.pdf

Boson Samplig

Sampling the output distribution (*even approximately*) of noninteracting bosons evolving through a linear network is hard to do with classical resources

Theory of Computing, 333–342

F. Sciarrino, Lecture on boson sampling, https://www.sif.it/media/2e2d8d06.pdf

Choice of the best degree of freedom

Choice of the best degree of freedom

Frequency-bin encoding

- High-dimensional entanglement
- Gate parallelization in a single spatial mode
- Inherent resilience to bit-flip errors
- Compatibility with WDM infrastructure
- Manipulation with fiber optic components

Waveguide technology

Ring resonator: one source generates many frequency bins

Waveguide technolgy

- 1) Strip loaded configuration
- 2) Synergy with UNIDET
- 3) For this experiment we need photon number resonving detectors
- 4) Devices purchased from Ligentech

Scheme of the experiment

- 1. We can couple frequency modes with a phase modulator;
- 2. Compact set up that can access many frequency modes;
- 3. Potential for a fully integrated platform, source modulator and circuit, and detectors.

Main goal: demonstration of a non universal quantum processor

The experimental results of boson sampling allow to calculate the permanent of the unitary matrix encoded in the optical network. This problem can be mapped into:

- 1. graph similarity problem, a fundamental problem in several fields like drug discovery
- 2. social network analysis
- 3. computer vision

Gantt chart

WP2: Photon sources design - 1st PIC WP3: Unitary transformations design - 1st PIC WP2+WP3: 1st PIC production at Ligentec WP2: Photon sources characterization - 1st PIC WP3: Unitary transformations characterization - 1st PIC WP1: Integration test - 1st PIC WP2: Photon sources design - 2nd PIC WP3: Unitary transformations design - 2nd PIC WP2+WP3: 2nd PIC production at Ligentec WP2: Photon sources characterization - 2nd PIC WP3: Unitary transformations characterization - 2nd PIC WP4: Photon Number Resolving detector design WP4: PNR detectors optimization optical stack WP4: PNR new packaging development WP4: PNR fidelity characterization and optimization WP4: PNR charcterization with WP2 photon sources WP1: Integration and test of the final experiment

Budget for 2026-2028

Unit	Item	2026	2027	2028	Description
PV	Travel	2	2	2	Collaboration and common tests
	Cons		63		Si3N4 + LiNbO3 PIC production at Ligentec
RM2	Cons	5	5	5	Laboratory consumables
	Travel	2	2	2	Collaboration and common tests
	Cons	63			Si3N4 + LiNbO3 PIC production at Ligentec
	Cons	7	7	7	Cleanroom consumables at CNR-IFN
	Cons	5	5	5	Laboratory consumables
	Equip	12			RF tone generator (contribution)
TIFPA	Travel	2	2	2	Collaboration and common tests
	Cons	5	5	5	Laboratory consumables
TOTAL		103	91	28	
TOTAL				222	