Apertura sigla R&D FCC

Francesco Giuli

CdS Roma Tor Vergata - Preventivi 11/07/2025

Istituto Nazionale di Fisica Nucleare

Particle physics in the middle of 2025

- Apart from the Higgs discovery, all fundamental questions that motivated the LHC still remain open!
 - DM, matter-antimatter asymmetry, EW-Planck hierarchy, strong CP problem, v masses, ...
- World priority is a high-precision Higgs factory to precisely probe the crucial scalar sector of the SM
- FCC-ee Feasibility Study:
 - Model-independent <u>Higgs couplings</u> <u>down to 0.1%</u>
 - ▶ Indirect BSM up to $\Lambda \approx 7$ (70) TeV (+ EW observables)
 - Higgs Yukawa couplings to lightest fermions (u, d, s, e, v?, DM?)
 - > Flavour-violating $\underline{H} \rightarrow \underline{q}\underline{q}' \underline{d}\underline{e}\underline{c}\underline{a}\underline{y}\underline{s}$?
- > Followed by energy-frontier hadron collider (FCC-hh): Higgs self-couplings + direct BSM searches up to $\Lambda \approx 100 \text{ TeV}$

ESPP Open Symposium

High-priority future initiatives

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

 the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

CERN FCC-ee project

> 80-100 km tunnel in the Geneva area

> e⁺e⁻ operation before pp at \sqrt{s} = 90, (125), 160, 240 and 350 GeV

Working point	Z, years 1-2	Z, later	WW	HZ	tt		(s-channel H)
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 163	240	340-350	365	$m_{\rm H}$
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)
Lumi/year $(ab^{-1}, 2 \text{ IP})$	24	48	6	1.7	0.2	0.34	(7)
Physics Goal (ab^{-1})	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
				10^6 HZ	10 ⁶ 1	tī	
Number of events	$5 imes 10^1$	2 Z	10^8 WW	+	+200k	ΗZ	(6000)
				$25k WW \rightarrow H$	$+50 \mathrm{kWV}$	$V \to H$	

State-of-the-art detectors + exquisite control of the beam energy → tiny systematic uncertainties (10⁻⁵)

Top quark mass at FCC-ee

> e⁺e⁻ collisions from threshold scan around \sqrt{s} = 340-345 GeV

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser '15]

4

5

Parlon FFs at FCC-ee

- High luminosity and high energies of furure lepton colliders open new opportunities for precision determination of FFs <u>2407.10059</u>
- \succ Fits to FFs at NLO in QCD carried out with data solely from future e⁺e⁻ colliders

- Assuming same (un-)correlated systematic uncertainties as SLD measurements
- Statistical errors calculated based on prescribed luminosities
- W boson data essential for quark flavour separation
- Similarly Higgs boson data for constarining gluon FFs
- ILC, FCC-ee and CEPC give quite similar results except in regions limited by statistics

W boson mass at FCC-ee

> Different high-precision m_W extractions require parallel QCD processes

 $\stackrel{_{19/29}}{\succ} m_W$ measurements help us understand non-pQCD i.e. color reconnection effects

People involved

ີ Cognome ↑≞	Nome ↑↓	%
Camarri	Paolo	10%
Cerrito	Lucio	10%
De Sanctis	Umberto	10%
Di Ciaccio	Anna	10%
Giuli	Francesco	20%
Vanadia	Marco	10%

0.7 FTE in total

Since < 2 FTE, we are under Dotazioni Gruppo 1</p>

- > ~1.2 k€ metabolismo
- ~4.5 k€ conferences and workshops
- Missions to be opened under RD FCC Bologna
- For the time being just analyses-oriented contribution
- Detector-oriented contribution in the future <u>if able</u> to increment FTE/people