Commissione Scientifica Nazionale

Gruppo 1
Catania

02/07/2025

Gruppo 1: Anagrafica 2026

• Sigle 2026:

• **CMS**: 2.3 FTE

• **ICAR_US**: 2.0 FTE

• **RD_FCC**: 1.7 FTE

• **LHCf**: 0.8 FTE

• **KLOE**: 0.1 FTE

• **SND**: 0.3 FTE

• Nuova sigla!

Nome	Posizione	FTE	Sigla
Albergo Sebastiano	Prof. Ordinario	0.4	RD_FCC (0.2) + LHCf (0.2)
Calì Ivan	Assegno di Ricerca	1	RD_FCC
Castorina Paolo	Senior	0	LHCf
Costa Salvatore	Senior	0	CMS
Di Mattia Alessandro	Primo Ricercatore	1	CMS (0.7) + SND (0.3)
Fricano Gaetano	PhD UniPA	1	ICAR_US
Geraci Elena	Ricercatore	0.3	LHCf
Lapertosa Alessandro	Ricercatore	1	CMS
Mandaglio Giuseppe	Prof. Associato	0.1	KLOE
Persiani Rino	TD PNRR (SAMOTHRACE)	0	RD_FCC
Petta Catia	Prof. Associato	0.8	ICAR_US
Piparo Giuseppe	TD PNRR (ICSC)	0	LHCf
Puglia Sebastiana	RTDA	0.5	RD_FCC
Russo Marco	Prof. Ordinario	0.2	ICAR_US
Tricomi Alessia	Prof. Ordinario	0.9	CMS (0.6) + LHCf (0.3)
	Totale Gruppo 1 CT	7.2	

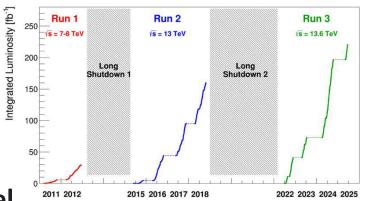
CMS: Anagrafica e Ruoli

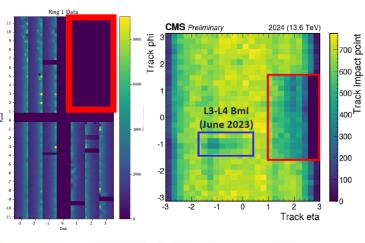
Nome	Posizione	FTE
Costa Salvatore	Senior	0
Di Mattia Alessandro	Primo Ricercatore	0.7
Lapertosa Alessandro	Ricercatore	1
Tricomi Alessia	Prof. Ordinario	0.6
	Totale CMS	2.3

In passato, anagrafica divisa tra CMS e FASE2_CMS

Da quest'anno: soltanto CMS

- Coinvolti da sempre nel contesto del Tracciatore
- Responsabilità (L2 e L3):
 - S. Costa: Logistics Manager del Tracciatore di Fase 2 (dal 2020) → CMS Award!
 - "remarkable dedication to serving the Tracker project as resource and logistics manager"
 - A. Di Mattia: Coordinatore Production Database del Tracciatore di Fase 2 (dal 2018)
 - A. Lapertosa: Coordinatore del Tracker Data Quality del Tracciatore attuale (dal 2023)
 - A. Lapertosa: Contact Person per la Comunicazione del Tracciatore (dal 2023)





CMS: Stato e Contributi

- LHC Run 3: presa dati fino a fine Giugno 2026 (ancora un'anno!)
- Importanti risultati di analisi (Run 2), prime pubblicazioni dati Run 3
 - Catania:
 - Contributo alle operazioni: certificazione della qualità dei dati
 - Record: nel 2024 certificati 123 fb⁻¹ (efficienza 89%)
 - Identificazione brevi anomalie nel rivelatore Pixel con ML model
 - 0.3% dei dati CMS con grave difetto (per pochi minuti)
 - J. Morris (U. Nebraska): borsa di studio INFN-DOE exchange
- HL-LHC: collisioni attese nel 2030
- Produzione del nuovo Tracciatore (Fase 2) sta iniziando
 - Catania:
 - Contributo alla logistica e database di produzione
 - Functional test dei Front End Hybrid (FEH) moduli PS
 - Preparazione setup in corso
 - Presto setup sarà trasferito in Camera Climatica (Laboratorio CMS connesso alla camera pulita)
 - Fondi per post-doc/borsa di studio (da bandire)

CMS: Prospettive e Richieste

- Nel 2026:
 - Test dei Front End Hybrids dei moduli PS
 - Conclusione Operazioni e Data Quality Run 3 → Sviluppo Data Quality del nuovo Tracciatore

Missioni calcolate per:

- CMS@CT = 2.30 FTE
- 1 mp = 4.05 k€ @CT

Missioni	Richiesta [k€]	mP	Note
Metabolismo	9.5	2.3	1 mp/FTE x 2.3 FTE x 4.05 k€
Missioni duties e shifts	9.5	2.3	1 mp/FTE x 2.3 FTE x 4.05 k€
Responsabilità L2 (S. Costa)	4	1	1 mp/Resp x 1 Resp L2
Sviluppo Production Database	8	2	A. Di Mattia
Commissioning Test FEH al CERN	8	2	A. Di Mattia, A. Lapertosa
Manutenzione power supply system	12	3	Test Cavi al CERN
Totale Missioni CMS	51		

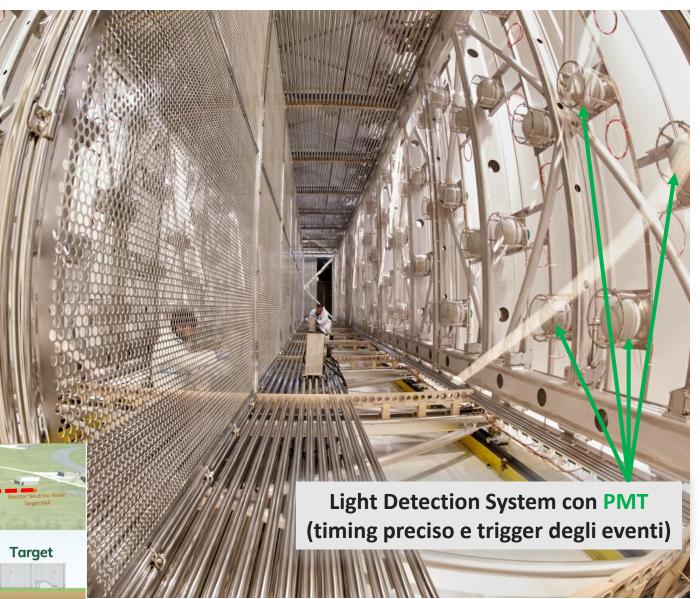
CMS: Prospettive e Richieste

- Nel 2026:
 - FASE2_CMS va a scadere (nessuna anagrafica)
 - Fondi CORE: Contributo INFN a costruzione del rivelatore: concluso nel 2025
 - Fondi residui (e extracosti) per Ibridi Fase 2 → Unica soluzione tramite Genova nel 2026

Consumi	Richiesta [k€]	mP	Note
Metabolismo	3	2.3	1.5 k€/FTE x 2.3 FTE
Manutenzione Camera pulita	4		Contributo gestione comune
Totale Consumi CMS	7		

Consumi	Richiesta [k€]	mP	Note
Manutenzione Lab CMS	6		Aria secca, condizionamento, filtri
Totale Consumi FASE2_CMS	6		

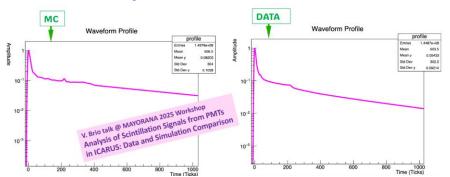
Tipo	Richiesta [k€]	mP	Note
Missioni	51	2.3	
Consumi CMS	7	2.3	
Consumi FASE2_CMS	6		
Totale CMS	64		

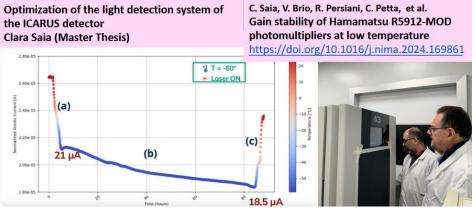


ICAR_US: Anagrafica e Ruoli

Nome	Posizione	FTE
Petta Catia	Prof. Associato	0.8
Russo Marco	Prof. Ordinario	0.2
Fricano Gaetano	PhD UniPA	1
	Totale ICAR_US	2.0

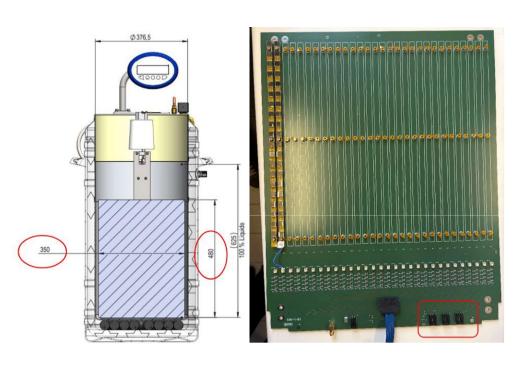
- TPC con LAr all'avanguardia
 - Precursore per rivelatore di DUNE
- Rivelatore storico INFN (proposto da Rubbia, 1977)
 - **Installato al Gran Sasso (2010-14)**
 - Trasferito negli USA, aggiornato detector
 - **Operativo al Fermilab dal 2022**
 - Parte del Short Baseline Neutrino Program





ICAR_US: Stato e Contributi

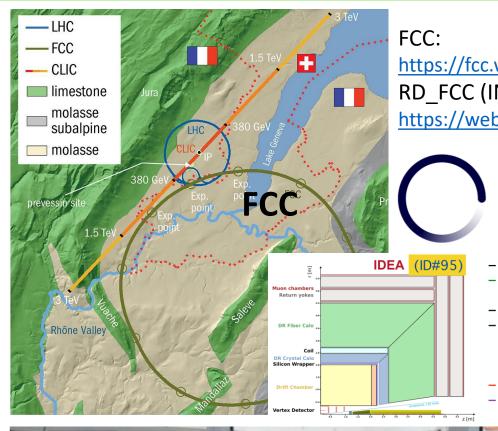
- Detector in buone condizioni: Presa dati in corso, dal 2022 (fino al 2027)
 - Catania:
 - Calibrazione in energia dei PMT, Dati vs MC (V. Brio)
 - Studio segnali ottici dei Run 2 e Run 3
 - Tesi di laurea (M. Barreda Escalona)
 - Gain stability dei PMT
 - Osservate variazioni a basse temperature
 - Studiata dipendenza con HV, temperatura, ...
 - Tesi di laurea (C. Saia)
 - Articolo NIM A: https://doi.org/10.1016/j.nima.2024.169861
 - Sospetto: materiale dei dinodi
 - Previsto studio di approfondimento
 - Test con PMT forniti da Hamamatsu
 - Correlazione tra LAr purity e costanti di tempo di scintillazione
 - Confrontare segnali di scintillazione con differente LAr purity
 - Studio proseguirà con contributo di C. Saia (borsista INAF)



ICAR_US: Prospettive e Richieste

- Nel 2026:
 - Attività ICARUS (PMT)
 - Analisi dati, calibrazioni
 - Caratterizzazione dei PMT (test criogenici)
 - Attività DUNE (Vertical Drift)
 - Test SiPM + elettronica a Milano (setup CACTUS-VD) → Test 5600 flex (20 SiPM) in N liquido
 - Test ProtoDUNE al CERN (ProtoDUNE-VD)

Tipo	Richiesta [k€]	mP	Note
Missioni	16		Missioni ICARUS
Missioni	26.5		Missioni DUNE
Consumi	2		Test PMT in Camera climatica
Totale ICAR_US	44.5		



RD_FCC: Anagrafica e Ruoli

Nome	Posizione	FTE
Albergo Sebastiano	Prof. Ordinario	0.2
Calì Ivan	Assegno di Ricerca	1
Persiani Rino	RTD PNRR (SAMOTHRACE)	0
Puglia Sebastiana	RTDA	0.5
	Totale RD_FCC	1.7

- FCC-ee (principale progetto dopo HL-LHC al CERN)
 - IDEA: uno dei possibili rivelatori progettati
- Calorimetri a Dual Readout
 - Metallo con 2 tipi di fibre scintillatori
 - Misurare simultaneamente Scintillazione e Cherenkov
 - **Correzione tramite f_{em} misurata evento per evento**
- Primo prototipo negli anni 2000 -> Evoluzione negli anni
 - Prototipi più grandi e più granulari
- HiDRa2: Call Gruppo 5 (chiude nel 2025) → Solo RD FCC
 - PMT (moduli esterni)
 - SiPM (uno per fibra, modulo centrale)

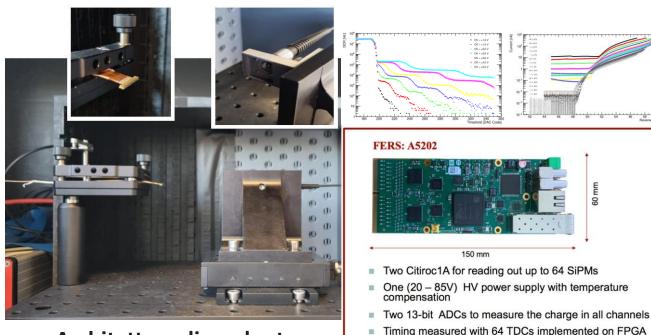

https://fcc.web.cern.ch/

RD FCC (INFN):

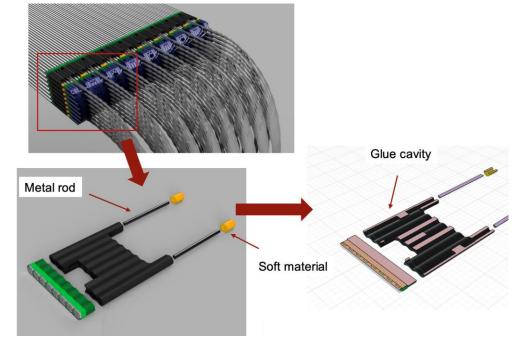
https://web.infn.it/RD FCC/

- VTX MAPS
- Main Tracker:
- He+Isob drift chamber
- Si/LGAD wrapper (TOF)
- DR calorimetry (fibres):
- ECAL: Crystals
- HCAL: Iron outside the Solenoid
- HTS Solenoid (up to 3T)
- Muon ID: μ-RWELL

RD_FCC: Stato e Contributi


- Valutazione performance prototipi di calorimetri Dual Readout
 - Testbeam al CERN (2023, 2024, 2025, 2026)
- Costruzione prototipo (Pavia, Como, Catania)
 - Catania:
 - Test di Hamamatsu PMT per la qualifica del modello

(time resolution ≈ 200 ps)


Optical link interface for readout (6.25 Gbit/s)

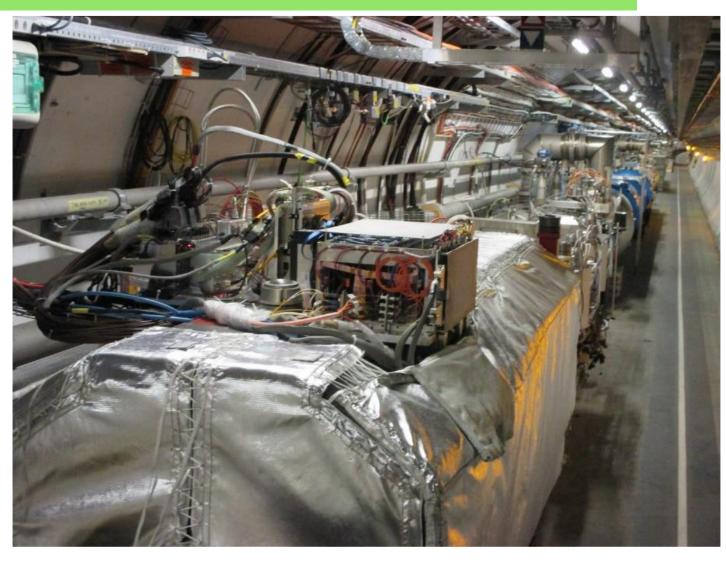
• Assemblaggio (incollaggio, saldatura) e test di 200 microPCB (I. Calì, Servizio Tecn. Avanzate)

Stazione di test per SiPM e microPCB

Architettura di readout: SiPMs e schede FERS (CAEN)

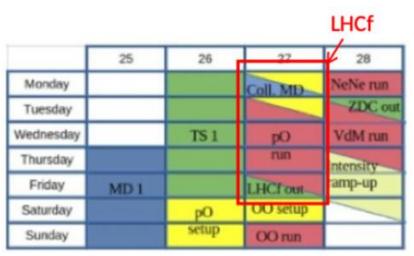
RD_FCC: Prospettive e Richieste

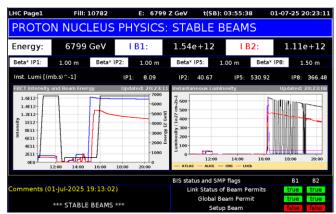
- Nel 2026:
 - Contribuire al testbeam 2026


Tipo	Richiesta [k€]	mP	Note
Missioni	4.5		1.5 riunioni + 3 Testbeam (sj)
Consumi	2		
Totale RD_FCC	6.5		

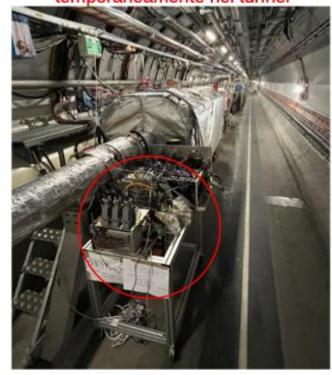
LHCf: Anagrafica e Ruoli

Nome	Posizione	FTE
Albergo Sebastiano	Prof. Ordinario	0.2
Castorina Paolo	Senior	0
Geraci Elena	Ricercatore	0.3
Piparo Giuseppe	TD PNRR (ICSC)	0
Tricomi Alessia	Prof. Ordinario	0.3
	Totale LHCf	0.8

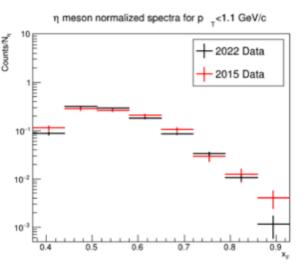

- Contributo storico del gruppo di Catania
 - LHC-forward: 140 metri dal punto di collisione
 - 2 calorimetri (Arm1 e Arm2) nel tunnel LHC
 - Studio di particelle neutre in avanti
- Nel 2025 si conclude la presa dati del rivelatore
 - L'analisi dati andrà avanti per diversi anni
- Gruppo LHCf cresce:
 - Humboldt University (Berlino) entra in LHCf
 - Catania: 2 Tesisti mag. (C. Carollo, C. Lauricella)



LHCf: Stato e Contributi


- Preparazione run protone-Ossigeno: importante per caratterizzazione raggi cosmici in atmosfera
 - Inizialmente previsto nel 2024, è stato spostato a Luglio 2025 → in corso questa settimana!
 - 2024: preparazione della rete e del software
 - 2025: test del DAQ (Arm2 nel tunnel LHC), test congiunto acquisizione dati ATLAS+LHCf
 - Questa settimana: run pO → estrazione rivelatore dal tunnel
 - Previsto testbeam SPS a settembre: calibrazione dati

Test del rivelatore disposto temporaneamente nel tunnel

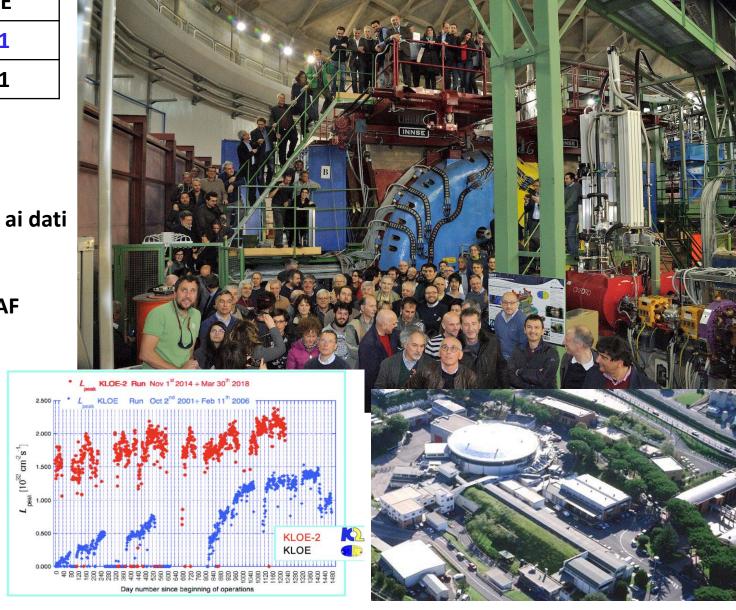

LHCf: Prospettive e Richieste

• Nel 2026:

- Analisi dei dati LHCf e ATLAS+LHCf
 - Produzione del π^0 (dati pp 2015): finalizzazione analisi
 - Produzione del mesone η (dati pp 2022): finalizzazione analisi
 - Studio del processo one-pion-exchange con ATLAS (dati pp 2022)
 - Analisi dei dati p+O 2025
 - Analisi dati testbeam 2025: calibrazione guadagni degli scintillatori
- Sviluppo di algoritmi di Machine Learning (ICSC-Spoke2)
 - Ricostruzione K⁰_s dal decadimento in 4 fotoni
 - Ricostruzione Λ^0 dal decadimento $n+\pi^0$

Tipo	Richiesta [k€]	mP	Note
Missioni	16.5		14.5 + 2 (sj)
Consumi	1.5		
Totale LHCf	18		

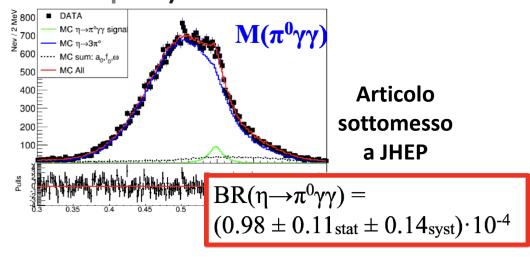
Spettro preliminare η

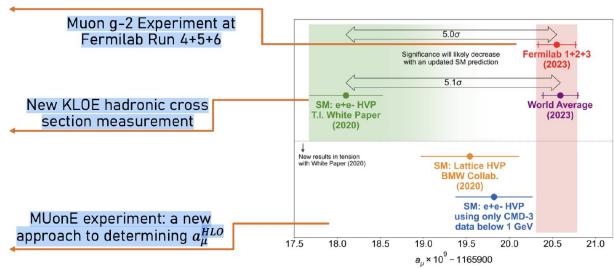


KLOE: Anagrafica e Ruoli

Nome	Posizione	FTE
Mandaglio Giuseppe	Prof. Associato	0.1
	Totale KLOE	0.1

- - Presa dati conclusa nel 2018
 - Alcuni analisi ancora attive
 - Importante non interrompere accesso ai dati
 - Conservazione dei dati (processo in corso)
 - Ricostruzione dei dati (formato .root)
 - Trasferimento dei dati: Frascati → CNAF
- Responsabilità G. Mandaglio:
 - Convener hadron physics working group
 - Componente del Policy e Institution board




KLOE: Stato e Contributi

Alcune analisi ancora in corso (alcune progrediscono, altre in sospeso)

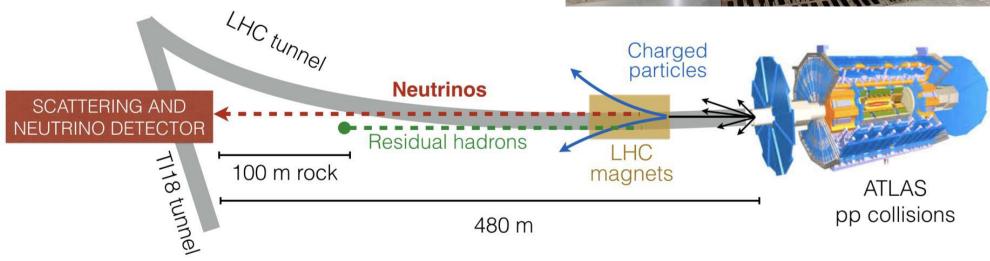
Ongoing analyses			
$K_S \rightarrow 3\pi^0$ (CP viol.)	KLOE-2 data		
"Back from the future" effect in $K_S K_L \!\!\to \pi^+ \pi^- \pi^+ \pi^-$	KLOE data		
Direct CP violation ε'/ε	KLOE+KLOE-2 data – PhD Thesis		
$\eta \to \pi^0 \gamma \gamma $ - χPT golden mode	KLOE data		
$e^+e^- \rightarrow \omega \gamma_{\rm ISR}$	KLOE data – PhD Thesis		
$e^+e^- ightarrow \pi^+\pi^- \gamma_{ m ISR}$	KLOE data		
$\gamma\gamma o \pi^0$	KLOE-2 data		
B-boson search in $\phi \rightarrow \eta \pi^0 \gamma$, $\eta \rightarrow \gamma \gamma$	KLOE data		
$e^+e^- \rightarrow \eta \mu^+\mu^-$	KLOE data		

- Grande risalto per la misura del fattore-g del muone (recenti risultati dall'esperimento Muon g-2)
- Gruppo di ricerca KLOE a Liverpool (G. Venanzoni)
 - Ripetere misura sezione d'urto adronica e+e-
 - Precedente misura (dati 2002 e 2006): 0.5 fb⁻¹
 - Nuova misura (dati 2004 e 2005): 1.7 fb⁻¹
 - Previsti miglioramenti sia in incertezza statistica che sistematica
 - Unblinding a fine 2025

KLOE: Prospettive e Richieste

- Nel 2026:
 - Mantenere accesso ai dati per permettere la continuazione delle analisi in corso

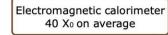
Tipo	Richiesta [k€]	mP	Note
Missioni	1		Meeting generali, partecipazione a conferenze
Totale KLOE	1		



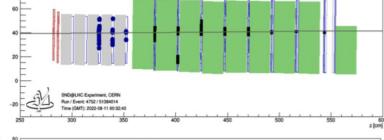
SND: Anagrafica e Ruoli

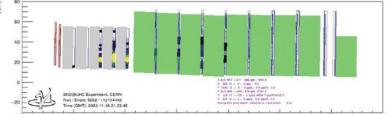
Nome	Posizione	FTE
Di Mattia Alessandro	Primo Ricercatore	0.3
	Totale SND	0.3

- Nuova sigla in Gruppo 1 Catania!
- Esperimento SND@LHC
 - "Scattering and Neutrino Detector at the LHC"
 - Approvato e costruito nel 2021 (in 12 mesi)
 - Presa dati durante LHC Run 3: 2022-26
 - 2023: osservazione di neutrini a collider
 - Analisi e presa dati proseguono
- Nuovo rivelatore per HL-LHC



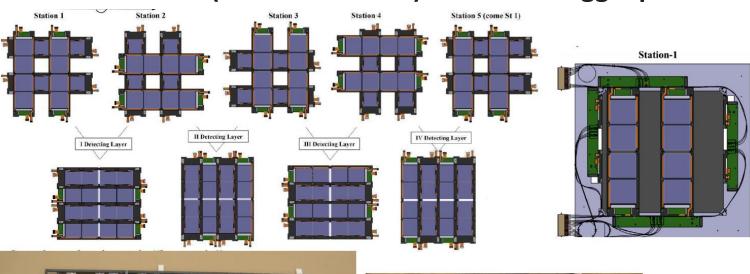
SND: Stato e Contributi

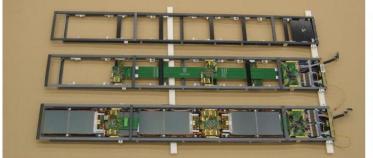

- Rivelatore SND attuale:
 - Veto per muoni (scintillatore)
 - Ricostruzione vertice (emulsioni)
 - Calorimetro elettrom. (Tungsteno + SciFi)
 - Calorimetro adronico (Ferro + scintillatore)
 - Sistema per muoni (piani scintillatori XY)

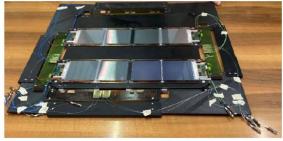


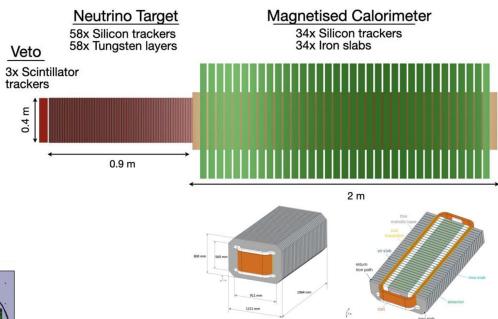
Hadronic calorimeter 9.5 λ on average

- Ritardo nell'analisi delle emulsioni (processo complesso)
 - Analisi attuali utilizzano solo lettura elettronica (calorimetri)
 - Osservazione neutrini mu → https://doi.org/10.1103/PhysRevLett.131.031802
 - Osservazione eventi senza muoni → https://doi.org/10.48550/arXiv.2411.18787

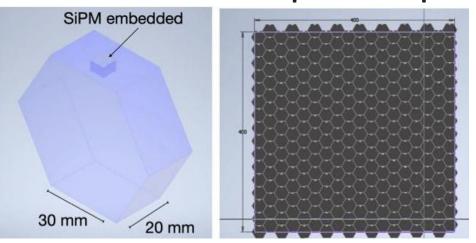


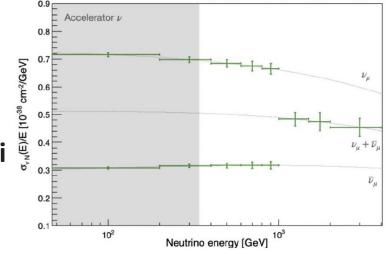

- Programma di fisica SND@LHC:
 - Sezione d'urto pp → v_e + X
 - 90% dei v_e provengono da decadimenti adroni charm
 - Sezione d'urto di produzione adroni charm (sottrarre contributo dei kaoni)
 - Test universalità leptonica con neutrini $(v_e / v_\tau, v_e / v_\mu)$
 - Misura rapporto CC/NC

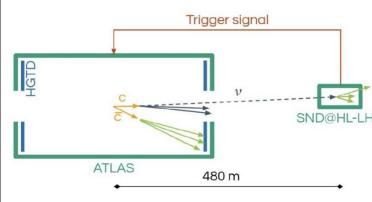



SND: AdvSND per HL-LHC

- Nuovo rivelatore: AdvSND per HL-LHC
 - Piani di tracciamento al silicio (Strip da CMS Tracker)
 - Piani di scintillatore (esagoni con SiPM embedded)
 - Strati di ferro con magnete permanente
- Recupero moduli Strip dai Layer 5-6 del CMS Outer Barrel
 - Estrazione (Settembre 2026) → Assemblaggio piani




- Design innovativo:
 - Risoluzione temporale: 50 ps



SND: Prospettive e Richieste

- Nel 2026:
 - Contributo al rivelatore di Vertice di AdvSND:
 - Setup, calibrazione in dE/dx, algoritmi di tracciamento
 - Integrazione con il trigger di ATLAS
 - Risoluzione temporale: 50 ps
 - Segnale verso ATLAS
 - Registrare eventi cc
 - c in ATLAS: 10% degli eventi
 - 1300 eventi (in 3000 fb⁻¹)
 - Fisica del neutrino @ 1 TeV

- Nuova sigla:
 - Opportunità per coagulare le competenze sparse sulle varie sigle di gruppo 1
 - Rivelatore AdvSND (Tracciatori al Silicio, SiPM) e Fisica del neutrino

Tipo	Richiesta [k€]	mP	Note
Missioni	1.5	0.3	1 mp/FTE + 1K€/FTE
Consumi	0.5	0.3	1 k€/FTE
Totale SND	2.0		

Richiesta [k€]

Gruppo 1 : Dotazioni e Richieste totali

Tipo	Richiesta [k€]
Missioni	9
Consumo	5
Inventariabile	9
Seminari	2
Pubblicazioni	1
TOTALE Dot. Gruppo 1	26

- Gruppo 1: 7.2 FTE
- Formule in backup slide

CMS	64
ICAR_US	44.5
RD_FCC	6.5
LHCf	18
KLOE	1
SND	2
Dot. Gruppo 1	26
TOTALE Catania Gr1	162

Sigla

• Richieste servizi

Richiesta Servizi CT	Tecnologie Avanzate	Elettronica	Calcolo
CMS	2	2	2.4
ICAR_US	1	0	0
RD_FCC	1	0	0
LHCf	0	0	0
KLOE	0	0	0
SND	0	0	0
TOTALE Gr1	4	2	2.4

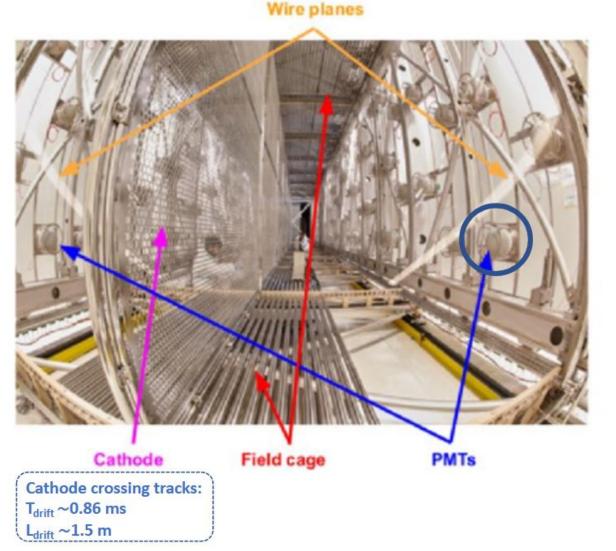
Backup

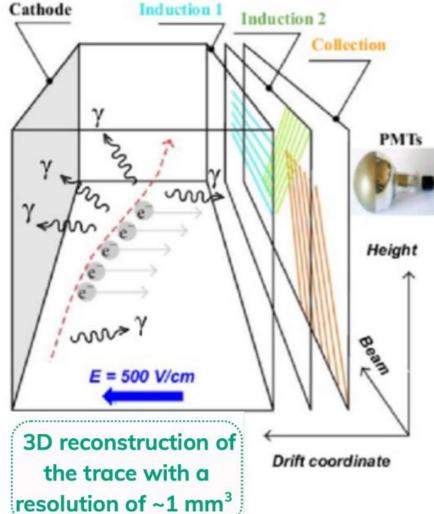
Calcolo richieste Dot 1

- Missioni = (FTE+0.7)*0.6 +DIST
 - +1.5 k€ per ciascun referee non coordinatore
 - +2.0 k€ per ciascun osservatore
 - + extra per membri di comitati
 - ECFA 4k€, PDG 4k€, ACCU 2k€, LHCC 4k€
 - SPSC 3k€, VQR 1.5k€, RRB 8k€, ...
- Consumo = (FTE+6.0)*0.36
- Inventariabile = 5.2*LN(FTE)+FTE/3.8-3
- Pubblicazioni (< 15 FTE) = 1
- Seminari (< 15 FTE) = 2

*Unità k€ (arrotondamenti a 0.5k€)

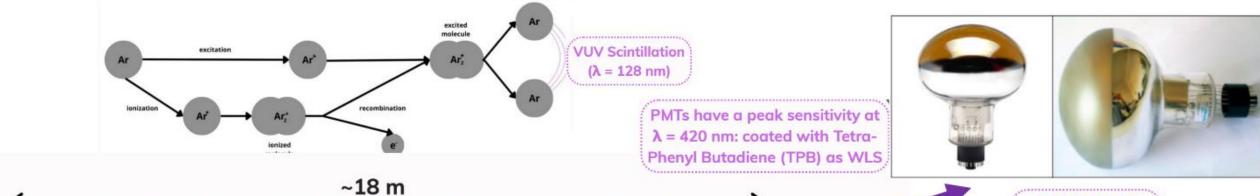
DIST			
Sede	k€		
CA, CT, LE, TS	+3		
ВА	+2		
RM1/2/3, LNF	-2		
Altre sedi	0		

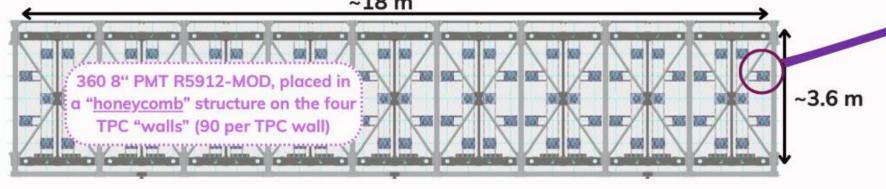

	Pubblicazioni	Seminari
FTE	k€	k€
<15	1	2
15-45	2	2
>45	3	2

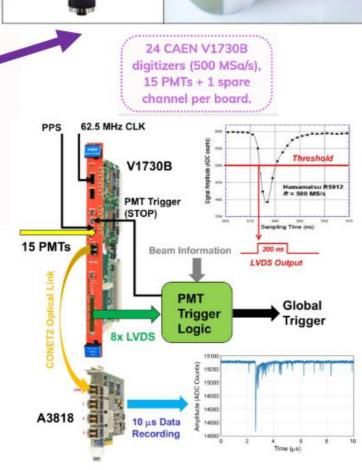


ICAR_US: LAr TPC

ICARUS T600 - LAR TPC

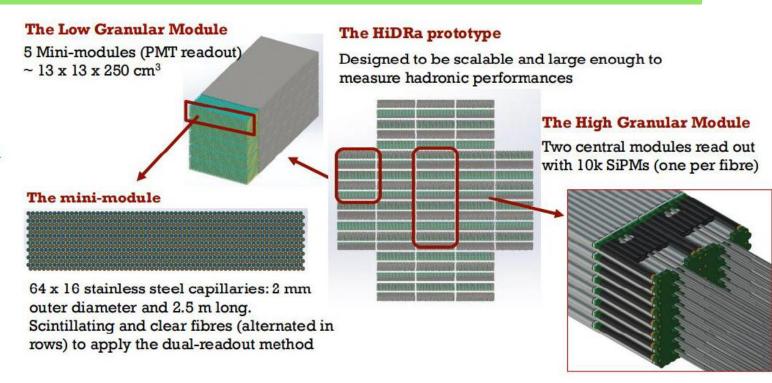

Anode: 3 parallel planes of wires (54k) at 0°, +60°, -60°

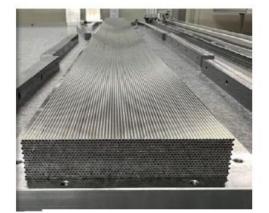


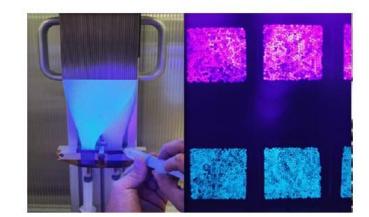


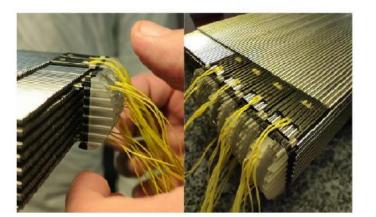
ICAR_US: Light Detection System

- identify the occurrence time t0 of each interaction inside the TPCs with O(ns) precision → within 2 ns beam spills
- improve spatial resolution of the events reconstruction along the longitudinal direction with O(m) precision.
- fundamental element for the trigger system for events and for cosmic ray veto (in anti-coincidence with Cosmic Ray Tagger signals).

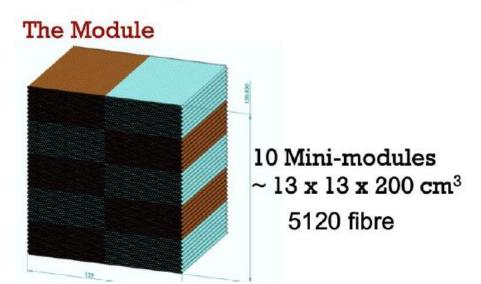


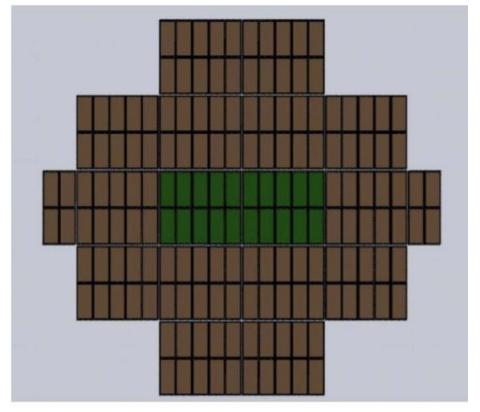



RD_FCC: HiDRa2


The Hidra-2 project aims to design, build and qualify a prototype of fiber sampling granular DR calorimeter to evaluate:

- a) a stand-alone hadronic resolution around 30%/ \sqrt{E} or better, both for single hadrons and for jets, while maintain a resolution for isolated electromagnetic (EM) showers close to $10\%/\sqrt{E}$:
- b) a transversal resolution of O(1 mrad)/ \sqrt{E} ;
- c) a longitudinal one of a few cm (by phasing);
- d) a modular and scalable construction technique;
- e) an innovative reading architecture based on SiPM;
- f) the performance of Deep Neural Network algorithms in exploiting such a large amount of (3D) information.

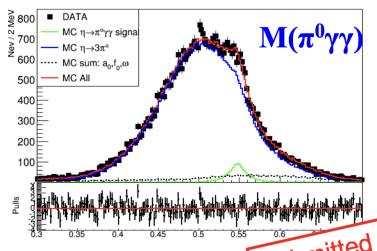

RD_FCC: HiDRa2


HiDRa (High-Resolution Highly Granular Dual-Readout Demonstrator)

- R&D tecnologico per il rivelatore IDEA; <u>finanziamento richiesto ~858 K€</u>
- Obiettivi: produrre un prototipo «scalabile» di calorimetro a Dual Redout con un'innovativa architettura di readout basata sui SiPMs e schede FERS

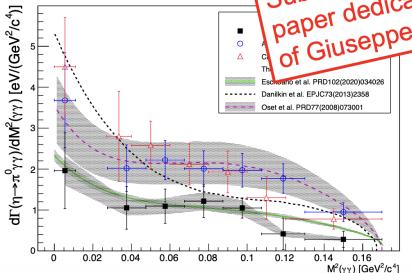
$$\sigma_E \approx 30\%/\sqrt{E}$$
 , $\sigma_{elett.} \approx 10\%/\sqrt{E}$
 $\sigma_T \approx O(1mrad)/\sqrt{E}$, $\sigma_L \sim 5$ cm

Compito di Catania: test e qualifica dei SiPM, contribuire allo sviluppo del readout


Realizzazione di un prototipo costituito da 16 Moduli 13×13×200 cm³, i due Moduli centrali Letti con Matrici a SiPM integrati su 10 FERs. I restanti moduli sono letti da 150 PMTs.

KLOE: Analisi sottomessa JHEP

$\eta \rightarrow \pi^0 \gamma \gamma \ decay$



- Integrated luminosity of 1.7 fb⁻¹ ($\sim 7 \cdot 10^7 \, \eta$'s)
- 5 prompt photons selection, no charged tracks
 1200 signal events
- Data distribution fit with MC components:

$$\eta \rightarrow 3\pi^0$$
, $\eta \rightarrow \pi^0 \gamma \gamma$ signal, sum of non- $3\pi^0$

- Fit $\chi^2/\text{ndf}=215/200$ (fit prob=22%)
 - Normalized $3\pi^0$ sample with 7 photons
 - ystematic uncertainty come from 5 n, analysis cuts and normalization

Submitted to JHEP
Submitted to JHEP
paper dedicated to the memory
of Giuseppe Fabio Fortugno

BR(
$$\eta \to \pi^0 \gamma \gamma$$
) = $(0.98 \pm 0.11_{\text{stat}} \pm 0.14_{\text{syst}}) \cdot 10^{-4}$

- Separate fits in bins of $M2(\gamma\gamma)$
- Second bin missing due to the veto for $\pi 0\pi 0$ events (from $\phi \rightarrow f0(980)\gamma$, with $f0(980) \rightarrow \pi 0\pi 0$ and $e+e-\rightarrow \omega\pi 0$ with $\omega \rightarrow \pi 0\gamma$)

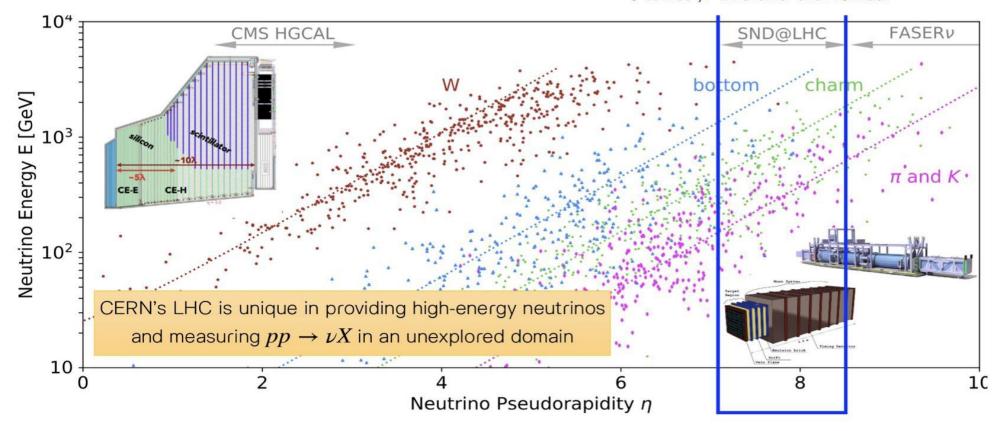
SND: Fisica del neutrino ai collider

Neutrino production at LHC

An old Idea: A. De Rùjula, R. Rükl, 1984, Neutrino And Muon physics in the collider mode of future accelerator, CERN-TH-3892-84

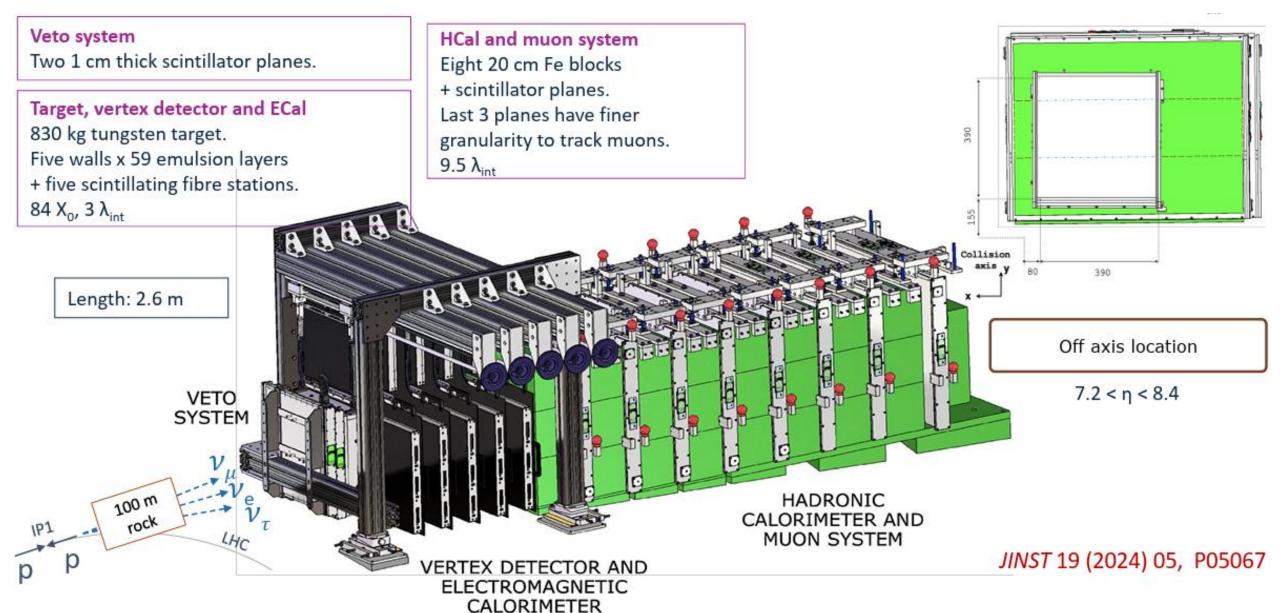
Which has become reality

IOP Publishing

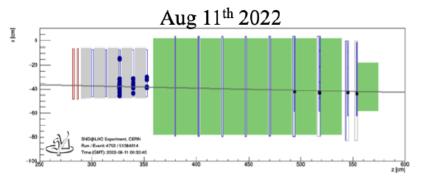

Journal of Physics G: Nuclear and Particle Physics

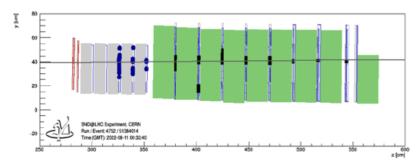
J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008 (19pp)

https://doi.org/10.1088/1361-6471/ab3f7c

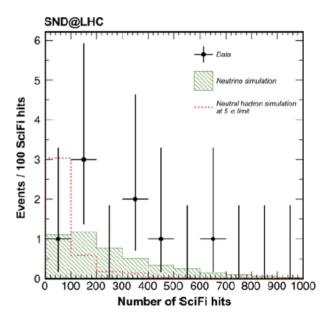

Physics potential of an experiment using LHC neutrinos

N Beni¹, M Brucoli², S Buontempo⁵, V Cafaro⁴, G M Dallavalle^{4,8}, S Danzeca², G De Lellis^{2,3,5}, A Di Crescenzo^{3,5}, V Giordano⁴, C Guandalini⁴, D Lazic⁶, S Lo Meo⁷, F L Navarria⁴ and Z Szillasi^{1,2}

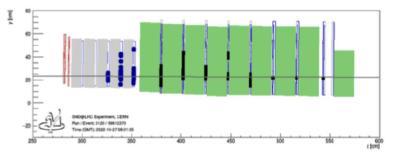



SND: Rivelatore

SND: Osservazione neutrini ai collider


Distribution of SciFi hits for ν_{μ} candidates with the MC expectation for ν events and background (augmented to the 5 sigma level)

Editors' Suggestion


Observation of Collider Muon Neutrinos with the SND@LHC Experiment

R. Albanese et al. (SND@LHC Collaboration)

Phys. Rev. Lett. **131**, 031802 (2023) – Published 19 July 2023

8 observed events and an expected background

$$(8.6 \pm 3.8) \times 10^{-2}$$

Background only hypothesis probability:

$$P = 7.15 \times 10^{-12}$$

 6.8σ observation

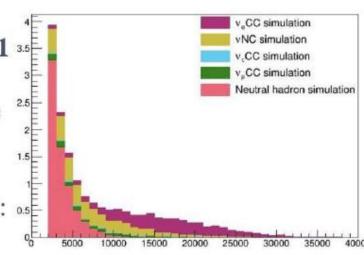
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.031802

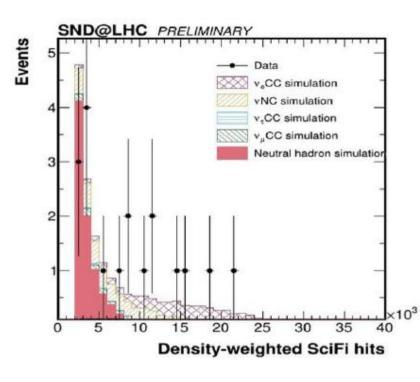
SND: Eventi con 0 muoni

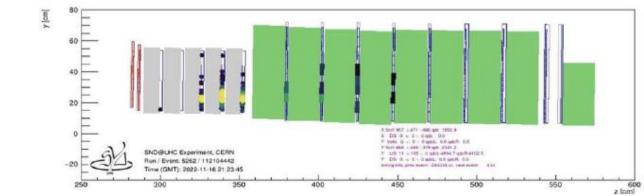
Neutral hadron background

- Define background-dominated control region to normalise the simulation
- Events expected in signal region: 0.01

Neutrino background


- Muon neutrino CC interactions are the dominant background, with 0.12 expected events.

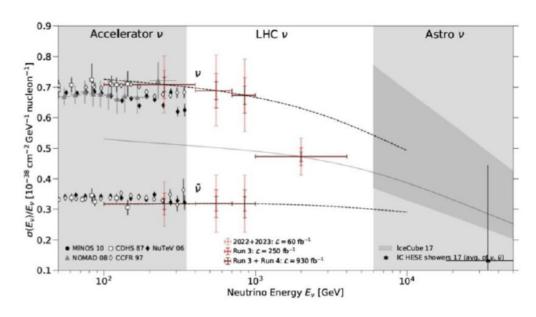

 Tau neutrino CC interactions expected: 0.5
- 0.002


0μ observation significance

- Total expected background: 0.13 ± 0.07 events
- **Expected signal: 4.7 events**

Number of events observed: 6 Observation significance 5.8 σ

SND: Fisica del neutrino @ 1 TeV


The Dawn of Collider Neutrino Physics

<u>Elizabeth Worcester</u>Brookhaven National Laboratory, Upton, New York, US July 19, 2023 • *Physics* 16, 113

Regime energetico inesplorato: O(1 TeV)

• v_{τ} , \bar{v}_{t} : test dell' universalità del sapore leptonico, sistematica per la ricerca dell'apparizione dei v_{τ} negli esperimenti di oscillazione;

 La stranezza in avanti, quantità collegata al «muon-puzzle» nella fisica dei raggi cosmici ad alta energia, può essere misurata

• QCD, regione con un contributo significativo degli adroni charmati. La sezione d'urto di produzione del charm in avanti è collegata alle PDFs a basso-x (rilevanti per la fisica dell'Higgs, per la saturazione QCD) e alla produzione dei neutrini atmosferici