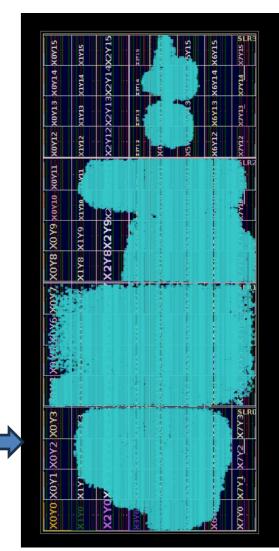
WP2 FPGA Status Report

Simone Gennai & Bernardino Spisso

CNN HLS4ML implementation studies for the ATLAS RPC Level 0 trigger system

- We are making different CNN HLS4ML implementation studies to demonstrate the feasibility of deploying machine learning algorithm on FPGA for the L0 trigger of the ATLAS experiment.
- The final aim is to understand if it is possible to optimize the design to obtain an efficient and fast inference.
- Our architecture is based on a 2D Convolutional Neural Network; we used the HLS4ML library to implement it on a Xilinx Virtex UltraScale+ xcu250-figd2104-2I-e FPGA.
- We are trying to reduce the complexity of the neural network because we had some issues related to the design routing.

Post implementation studies


We designed many CNN architectures, changing some of the neural network parameters (such as weight quantization, data type, number of kernels, number of layers), because Vivado HLS is not always able to complete the implementation.

Sometimes the design is not routable as its global congestion is high (depending on the CNN parameters).

HLS4ML library & Vitis/Vivado 2024.1

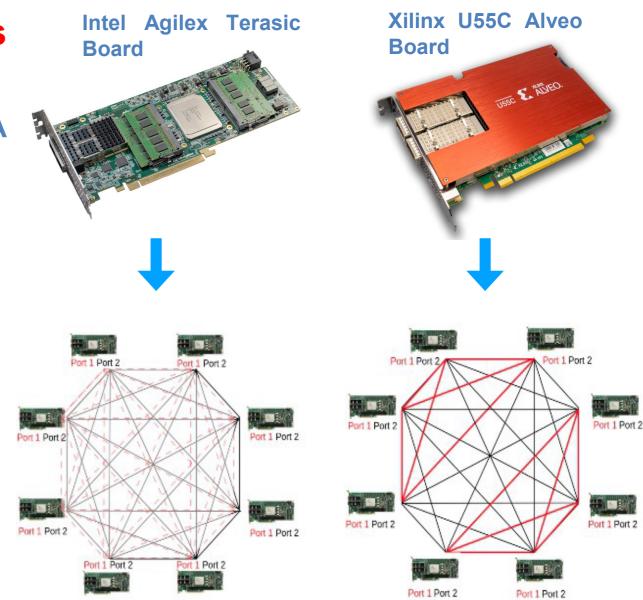
Site Type						Available	
		548546	-	· · · · · · · · · · · · · · · · · · ·	0		31.74
LUT as Logic		548523	0	T	0	1728000	31.74
LUT as Memory		23	0	T	0	791040	<0.01
LUT as Distribut	LUT as Distributed RAM		0	T	1		1
LUT as Shift Reg	ister	23	0	T	I.		1
CLB Registers		605855	0	I	0	3456000	17.53
Register as Flip Flop		605855	0	T	0	3456000	17.53
Register as Latch		0	0	I	0	3456000	0.00
CARRY8		264	0	I	0	216000	0.12
F7 Muxes		2138	0	T	0	864000	0.25
F8 Muxes		42	0	I	0	432000	<0.01
F9 Muxes		0	0	I	0	216000	0.00
· · ·			+	+	+-	,	-+
Site Type		Fixed			Ava	ilable	Util%
DSPs	24			0		12288	0.20
DSP48E2 only	24		1			1	

This is our first implementation in a Xilinx Virtex UltraScale+ xcu250figd2104-2I-e FPGA.

We need to reduce the complexity of the Neural Network to optimize the design.

Istituto Nazionale di Fisica Nucleare

•We have finally received the clusters in both Naples and Milan:

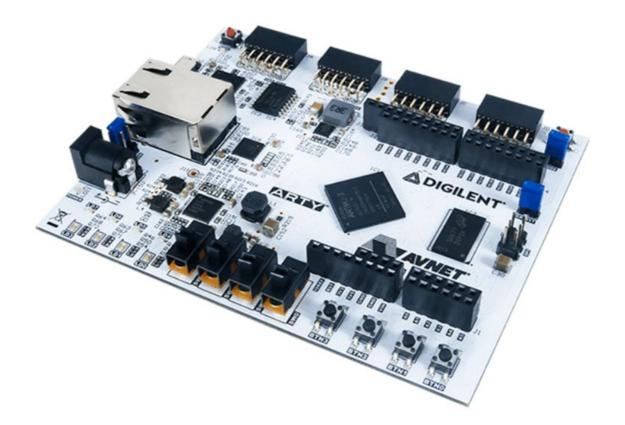

A total of three clusters equipped with 21 FPGA boards

Naples:

- 2 Servers with:
 - 8 Xilinx U55C Alveo boards

Milano-Bicocca:

- 2 Servers with:
 - 8 Xilinx U55C Alveo boards
- 2 Servers with:
 - 8 Intel Agilex Terasic boards



Unfortunately for the Intel cluster, the optical modules for Intel are not compatible with FPGAs something that had been assured to us by the seller, so their use is now limited.

For Xilinx, Mirko Mariotti will soon test the full mesh configuration

- We have re-proposed an introductory course for FPGA programming in Milan:
- https://agenda.infn.it/event/45908/
- Professors: M. Mariotti, A. Triossi, S. Summers
- The course used servers with FPGAs to give each user a
- Complete system for compiling firmware.
- A further advanced course is being organized for October in Perugia

INFN Updated list of papers and contributions

Istituto Nazionale di Fisica Nucleare

Tabella 1

			-
itolo	Autori	Link a paper/conference	Accepted for PUB/PRoceeding
ast Neural Network Inference on FPGAs for Triggering on Long- ived Particles at Colliders	Andrea Coccaro Francesco Armando Di Bello Stefano Giagu Lucrezia Rambelli and Nicola Stocchetti		Andrea Coccaro et al 2023 Mach. Learn.: Sci. Technol. 4 045040
viluppo di acceleratori per il Machine Learning e sistemi di Inference as Service su FPGA	Daniele Spiga, Diego Ciangottini , Giacomo Surace, Giulio Bianchini, Loriano Storchi , Mirko Mariotti	Workshop Loano	
Serve inference extension for a FPGA vendor-free ecosystem	Daniele Spiga, Diego Ciangottini , Giacomo Surace, Giulio Bianchini, Loriano Storchi , Mirko Mariotti	CHEP 2023	EPJ Web of Conferences 295, 11012 (2024)
eep Learning techniques for reconstruction on ASTRI Mini-Array lonte Carlo data	Saverio Lombardi, Francesco Visconti, Michele Mastropietro	https://pos.sissa.it/444/713/pdf	PoS(ICRC2023)713
novel explainable approach in radiomics pipeline for local recurrence rediction of lung cancer: a feasibility study exploiting high energy hysics potential to evaluate the model	Mariagrazia Monteleone, Simone Gennai, Pietro Govoni, Chiara Paganelli	ACM ISBN 979-8-4007-0815-2/23/09. https://doi.org/10.1145/3632047.3632074	ACM ISBN 979-8-4007-0815-2/23/09. https://doi.org/10.1145/3632047.3632074
riggerless data acquisition pipeline for Machine Learning based atistical anomaly detection	Gaia Grosso, Nicolò Lai, Matteo Migliorini, Jacopo Pazzini, Andrea Triossi, Marco Zanetti, Alberto Zucchetta	CHEP 2023	G. Grosso et al EPJ Web of Conf., 295 (2024) 02033
0MHz Triggerless Readout of the CMS Drift Tube Muon Detector	Matteo Migliorini, Jacopo Pazzini, Andrea Triossi, Marco Zanetti	TWEPP 2023	M. Migliorini et al 2024 JINST 19 C02050
ront-End RDMA Over Converged Ethernet, real-time firmware simulation	Gabriele Bortolato, Antonio Bergnoli, Damiano Bortolato, Daniele Mengoni, Matteo Migliorini, Fabio Montecassiano, Jacopo Pazzini, Sandro Ventura, Andrea Triossi, Marco Zanetti	TWEPP 2023	G. Bortolato et al 2024 JINST 19 C03038
ront-End Rdma Over Converged Ethernet, real-time firmware simulation	Gabriele Bortolato, Antonio Bergnoli, Damiano Bortolato, Daniele Mengoni, Matteo Migliorini, Fabio Montecassiano, Jacopo Pazzini, Sandro Ventura, Andrea Triossi, Marco Zanetti	TIPP 2023	
he CMS Level-1 trigger data scouting for LHC run 3 and the MS phase-2 upgrade	Sabrina Giorgetti (Matteo Migliorini, Rocco Ardino, Jacopo Pazzini, Andrea Triossi, Marco Zanetti) on behalf of the CMS Collaboration	La Thuile 2024 - YSF	
ardware implementation of quantum machine learning predictors or ultra-low latency applications	Lorenzo Borella, Alberto Coppi, Jacopo Pazzini, Andrea Stanco, Andrea Triossi, Marco Zanetti	EuCAIFCon 2024	
uantum machine learning classifiers implemented on FPGA for ultra- w latency applications	Lorenzo Borella, Alberto Coppi, Jacopo Pazzini, Andrea Stanco, Andrea Triossi, Marco Zanetti	ICHEP 2024	
hysics potential to evaluate the model riggerless data acquisition pipeline for Machine Learning based iatistical anomaly detection OMHz Triggerless Readout of the CMS Drift Tube Muon Detector ront-End RDMA Over Converged Ethernet, real-time firmware simulation ront-End Rdma Over Converged Ethernet, real-time firmware simulation he CMS Level-1 trigger data scouting for LHC run 3 and the MS phase-2 upgrade ardware implementation of quantum machine learning predictors or ultra-low latency applications	 Pietro Govoni, Chiara Paganelli Gaia Grosso, Nicolò Lai, Matteo Migliorini, Jacopo Pazzini, Andrea Triossi, Marco Zanetti, Alberto Zucchetta Matteo Migliorini, Jacopo Pazzini, Andrea Triossi, Marco Zanetti Gabriele Bortolato, Antonio Bergnoli, Damiano Bortolato, Daniele Mengoni, Matteo Migliorini, Fabio Montecassiano, Jacopo Pazzini, Sandro Ventura, Andrea Triossi, Marco Zanetti Gabriele Bortolato, Antonio Bergnoli, Damiano Bortolato, Daniele Mengoni, Matteo Migliorini, Fabio Montecassiano, Jacopo Pazzini, Sandro Ventura, Andrea Triossi, Marco Zanetti Sabrina Giorgetti (Matteo Migliorini, Rocco Ardino, Jacopo Pazzini, Andrea Triossi, Marco Zanetti) on behalf of the CMS Collaboration Lorenzo Borella, Alberto Coppi, Jacopo Pazzini, Andrea Stanco, Andrea Triossi, Marco Zanetti Lorenzo Borella, Alberto Coppi, Jacopo Pazzini, Andrea Stanco, Andrea Triossi, Marco 	CHEP 2023 TWEPP 2023 TWEPP 2023 TIPP 2023 La Thuile 2024 - YSF EuCAIFCon 2024	G. Grosso et al EPJ Web of Conf 295 (2024) 02033 M. Migliorini et al 2024 JINST 19

Link to the flagship document

KPI ID	Description	Acceptance threshold	Status up to today
KPI2.2.3.1	Development of triggering algorithms, on-line analyses, data acquisition on FPGA	Submission of 1 paper to a peer- reviewed journal	1 paper already accepted
KPI2.2.3.2	Online scouting	Submission of 1 paper to a peer- reviewed journal	paper published in: <i>PoS</i> ICHEP2024 about scouting
KPI2.2.3.3	Development of tools to integrate several FPGAs together	Submission of 1 paper to a peer- reviewed journal	G. Bortolato et al 2024 JINST 19 C03038
KPI2.2.3.4	Organizing courses about FPGA programming on low and high level	At least two courses organized	1 course done at the end of 2023 1 VHDL course done in February 2024 1 course done in June 2025