Attività di Gruppo 3

• ALICE

- Spettrometro per muoni
- ITS3
- Analisi dati
- NA60+/DiCE

Anagrafica

•	202	5				202	26		
Ricercatori					Ricercatori				
		TELE_NEU RART (sinergico					TELE_NEU RART (sinergico		
Nome	ALICE	ALICE)	NA60+	Totale GR3	Nome	ALICE	ALICE)	NA60+	Totale GR3
Bosin Andrea	1.0		0.0	1.0	Bosin Andrea	1.0		0.0	1.0
Cicalò Corrado	0.7		0.1	0.8	Cicalò Corrado	0.7		0.1	0.8
De Falco Alessandro	0.7		0.1	0.8	De Falco Alessandro	0.7		0.1	0.8
Fionda Fiorella	0.8		0.2	1.0	Fionda Fiorella	0.8		0.2	1.0
Masoni Alberto	0.4	0.3	0.1	0.8	Masoni Alberto	0.4	0.3	0.1	0.8
Mulliri Alice	0.5		0.5	1.0	Mulliri Alice	0.0		1.0	1.0
Sarritzu Valerio	0.7		0.3	1.0	Sarritzu Valerio	0.7		0.3	1.0
Usai Gianluca	0.5		0.5	1.0	Dukhishyam Mallick	0.7		0.3	1.0
Totale FTE Ricercatori	5.3	0.3	1.8	7.4	Victor Feuillard	0.7		0.3	1.0
Tecnologi					Usai Gianluca	0.5		0.5	1.0
Mura Daniele	0.3	0.3	0.1	0.7	Totale FTE Ricercatori	6.2	0.3	2.9	9.4
Sabayashi Siddhanta	0.7		0.3	1.0	Tecnologi				
Puggioni Carlo	0.5	0.3	0.2	1.0	Mura Daniele	0.3	0.3	0.1	0.7
Totale FTE Tecnologi	1.5	0.6	0.6	2.7	Sabayashi Siddhanta	0.7		0.3	1.0
Tecnici					Puggioni Carlo	0.5	0.3	0.2	1.0
Arba Mauro	0.2		0.1	0.3	Totale FTE Tecnologi	1.5	0.6	0.6	2.7
La Delfa Luigi	0.1		0.1	0.2	Tecnici				
Marras Davide	0.2		0.1	0.3	Arba Mauro	0.2		0.1	0.3
Tuveri Marcellino	0.1		0.1	0.2	La Delfa Luigi	0.1		0.1	0.2
Totale FTE Tecnici	0.6	0	0.4	1	Marras Davide	0.2		0.1	0.3
					Tuveri Marcellino	0.1		0.1	0.2
Totale FTE Ric.+Tecn.	6.8	0.9	2.4	10.1	Totale FTE Tecnici	0.6	0	0.4	1
					Totale FTE Ric.+Tecn.	7.7	0.9	3.5	12.1

Metabolismo

- Il metabolismo viene calcolato sulla base degli FTE
 - Missioni: $(fte^*1.05+4)^*0.57 \rightarrow 9.5 \text{ kEUR}$
 - Consumo: fte * 0.5 \rightarrow 6
 - Seminari fte * 0.1 \rightarrow 1
 - Pubblicazioni fte * 0.2 \rightarrow 2.5
 - Inventario $(10/2.7971) * \ln(fte)^{1.5} \rightarrow 14$
 - Tot. non missioni = 23.5
 - Tot. = 33

Il muon tracking

DCS

- Siamo responsabili del DCS del tracking (M.Arba)
- Nel 2025:
 - Riscrittura script di configurazione dell'elettronica in modo da renderlo più efficiente e più facilmente upgradabile
 - Intervento sul FRED Server (interfaccia tra il DCS e le CRU) per cambio configurazione da gestione per ogni singolo detector a parte commune ad ALICE e parte con gestione Muon Arm.
 - Manutenzione
- Nel 2026:
 - realizzazione di un tool per la riconfigurazione al volo di parte del rivelatore via DCS durante il run.

Presa dati 2025 e stop invernale 2025-26

- Stop invernale 2025-26 più breve causa restart del fascio anticipato nel 2026
- Nel run Pb-Pb del 2025 ci si aspetta un miglioramento delle prestazioni del Sistema di tracking a causa della sostituzione dei quadranti della stazione 2 e la stabilizzazione del sistema di readout
- Test durante la prese dati in corso...
- Per ora sono previsti solo interventi di manutenzione di routine durante lo stop invernale (YETS) 2025-26
- Programma da rivalutare dopo la presa dati Pb-Pb di fine anno 2025

ITS 3 Readout electronics

WP3.3: Valerio Sarritzu, Markus Keil (CERN)

ITS 3 Readout electronics

Cagliari is also involved in the readout electronics and services for ITS3 and has a coordination role (Sabyasachi Siddhanta).

The first prototypes of the readout cards are being tested. Preparation ongoing for a qualification model with a half-detector with the associated test system, which would serve as a reference system.

Attività di analisi in dielettroni

- Fiorella Deputy physics coordinator (from June 2024)
- Run2 analyses:
 - Prompt and non-prompt J/Ψ-h correlations in pp at 13 TeV (in collaboration with L. Altenkamper, PhD Bergen) → publication accepted by JHEP in May 2025
 - J/Ψ production in jets in pp at 13 TeV (in collaboration with I. Lofnes, Postdoc Bergen) → paper proposal approved by the ALICE Collaboration, currently under internal review

Run3 analyses:

- Measurements of non-prompt J/Ψ fraction in pp at 13.6 TeV (in collaboration with S. Achyaria, postdoc Bari) → approved as preliminary at Quark Matter 2025
- Prompt and non-prompt J/Ψ-h correlations in pp at 13.6 TeV (in collaboration with V. Feuillard, postdoc Cagliari and S. Achyaria, postdoc Bari) → results at performance level

Prospettive per l'analisi in dimuoni

A Large Ion Collider Experiment

- Separation of prompt/non-prompt will be also important for DY/HF
- To be continued with new alignment and DCA_z information

Richieste per il 2026

- 2 nuovi collaboratori
- Richieste totali (tutti i progetti ALICE)
 - 98,5 Missioni
 - 13,5 Consumi
 - 122 Apparati (ITS3 e ALICE3)
 - 26 M&OB (contributo alla manutenzione del tracker)
 - 6 Altre voci (licenze, trasporti)
 - •Richieste impegno officina:
 - 10% M.Arba per DCS Muon Tracking
 - 10% M. Tuveri per interventi su ZDC

Study of Rare Probes of the Quark-Gluon Plasma at SPS Energies – NA60+/DiCE Experiment Proposal

- NA60+/DiCE (Dilepton and Charm Experiment) designed to explore the QCD phase diagram at high baryo-chemical potential (µ_B range ~220 - 500 MeV)
- $\hfill\square$ Unexplored region of phase diagram (ALICE3 focused at $\mu_B=0$) with important goals:
 - Discovery of predicted critical point and first order phase transition
 - \circ High- μ_B QGP
- Vertex and muon spectrometers for high-precision dimuon and charm reconstruction

- **Collaboration:**
 - INFN (Ca, To, Pd), IP2I Lyon (France), Weiszmann Inst. (Israel), Berkeley, Rice Univ., Stony Brook(tbc) (USA), Tsukuba, Tokyo Univ. (Japan), Hefei Univ. (China)

□ Full INFN leadership for physics and advanced silicon sensors for vertex spectrometer:

- o Measurements of thermal dileptons and charm
- Silicon detector: large area monolithic active pixel sensors (synergy with ALICE ITS3)
- **10-12 FTE**

Status of the project

- □ Proposal submitted to SPSC in May: <u>https://cds.cern.ch/record/2932302/</u>
- Presented at the SPSC meeting of 27-28 May
- **Strong support by CERN** (through Physics beyond Colliders):
- o Contribution to proposal of CERN BE, HSE and DT teams for magnets, integration, radio-protection, beam line

Very positive reception of proposal:

 Formal statement for recommendation by SPSC expected by September

SPSC draft minutes

The committee **acknowledges receipt** of a full proposal of the NA60+/DiCE (DiMuon and Charm Experiment)collaboration for a new experiment located on the H8 beam line of EHN1.

The SPSC **recognizes** that the NA60+/DiCE proposal adresses key open questions in heavy ion collisions by measuring rare hard and electro-magnetic probes of the quark gluon plasma at SPS energies. NA60+/DiCE aims at determinining the caloric curve which characterizes the nuclear phase diagram, providing evidence of a phase transition and observing for the first time the restoration of chiral symmetry.

The SPSC **recognizes** that the detector concept is mature and that the technological developments presented in the proposal are solid and feasible within the mentioned schedule.

The SPSC **will continue to review** the proposal to understand in more detail its technological challenges, its physics reach and questions related to meeting the beam requirements of NA60+/DiCE on the H8 beam line.

□ Construction during 2026-2029

- □ Overall cost (including expt. area integration, shielding, powering): 10.5 MCHF
- Cost of vertex detector (main interest of INFN): 2 MCHF (approximately 20% of total cost) divided over next 5 years
- Discussion with French and US groups for contribution to silicon tracker
- Data taking from 2030 during LHC run4 and run5. SPS running also after HL-LHC:
- o Extended physics program possible for very high-statistics and high-precision measurements
- o Very advantageous ratio of scientific outcome from long-period data takings over limited financial investment

The Vertex Spectrometer's Pixel Detector – Precision at the Edge

- □ Primary function of the vertex spectrometer (VS):
 - Measure the kinematic of muons and hadrons before the hadron absorber
 - $\circ~$ Five identical silicon pixel stations positioned at 7 < z < 38~cm
- □ Requirements for silicon sensors:
 - Maximize pixel coverage across angular acceptance
 - $\circ~$ Spatial resolution 5 μm
 - Only Si material budget <0.1% in 2 planes closest to targets
 - o Operation at 150 kHz interaction rate
 - Max radiation hardness: 10¹⁴ 1 MeV n_{eq}/cm² over a decade of operation (first plane, region close to beam)

Silicon Pixel Technology – Breaking Area Boundaries

- □ Synergy with ALICE ITS3 project
- □ Basic units designed in reticle:
 - RSU: 21.67x19.56 mm² pixel matrix
 - Pixel pitch 20.5 μm
 - Digital periphery with 8 10.24 Gb/s serializers

- □ NA60+/DiCE sensor stitching plan:
 - MOSAIX segment with 6 RSU
 - o 11 MOSAIX segments replicated vertically

Stitching plan validated by G. Aglieri, W. Snoeys - CERN

E. Scomparin, G. Usai

CSN3 meeting 20 June 2025

Silicon Pixel Technology – Breaking Area Boundaries

Sensors with variable number of segments:
Advantage: increase sensor yield/wafer

Table 1: MOSAIX readout segments by station.

Station	Instrumented segments/sensor	Instrumented segments/station			
0	3	12			
1	4	16			
2	5	20			
3	6	24			
4	7	28			

E. Scomparin, G. Usai

CSN3 meeting 20 Ju

Silicon Pixel Technology – Breaking Area Boundaries

Sensors with variable number of segments:
Advantage: increase sensor yield/wafer

Table 1: MOSAIX readout segments by station.

Station	Instrumented segments/sensor	Instrumented segments/station		
0	3	12		
1	4	16		
2	5	20		
3	6	24		
4	7	28		

E. Scomparin, G. Usai

CSN3 meeting 20 Ju

Cooling&Mechanics – Low Material Budget under Power

- Cooling imposes constraints to the mechanical system:
- 40 mW/cm² power dissipation in pixel matrix (+ 790 mW/cm² in periphery)
- Goal 25 °C over sensor surface

COMSOL/ANSYS simulations:

- Mixed water (18-20 °C)+ air cooling (1-2 m/s)
- 0.4 mm carbon fiber substrate to improve heat dissipation in larger planes

E. Scomparin, G. Usai

- Carbon fiber substrate glued on periphery frame (graphite or aluminum):
 - Machined groove to accommodate a stainless steel pipe for water cooling

□ Simulations calibrated on a test set-up:

 PCBs with resistor arrays mounted on graphite frame to mimic power dissipation

CSN3 meeting 20 June 2025

7

Attività prevista nel 2026

Construction of prototype pixel planes

- 2025: sblocco sub-judice di 170 kEuro per prima produzione sensori (12 wafer)
- □ 2026: richieste 300 kEuro per meccanica e elettronica di readout

Attività 2025/2026:

- Disegno frame piani in alluminio e produzione
- Sviluppo sistema pick/place per incollaggio sensori su piatti di fibra di carbonio
- o Test di incollaggio con sensori dummy (in camera pulita)
- o Disegno e produzione flex (basato su design ITS3 fatto al CERN)
- $\circ~$ Test elettronica readout basata su test system sviluppato al CERN
- \circ Assemblaggio prototipi di piani con sensori (camera pulita) → servizio meccanica+elettronica

- Servizio di meccanica
- Servizio elettronica

Backup

Vertex Spectrometer Readout Electronics

CSN3 meeting 20 June 2025

Sistema di pick and place dei sensori

Il wafer è messo sopra il disco blu (materiale plastico poroso? abbiamo dimenticato di chiedere dettagli)che si vede in foto

Il wafer con i sensori tagliati viene consegnato con la pellicola adesiva che deve essere rimossa

Sotto il disco c'è un sistema di aspirazione per fare aderire il wafer e per riscaldarlo

Quando la temperatura raggiunge circa 70 gradi i chip si staccano dalla pellicola adesiva

Carrello per far scorrere la barra delle ventore

Con questo sistema di ventose controllato da un sistema di vuoto si sollevano e movimentano i chip

Per i sensori con più segmenti verranno fatte due file di ventose