

ISOLPHARM_APEX

¹¹¹Ag-PSMA-617 Experiments

RL – Antonietta Donzella

ISOLPHARM: over 10 years of activity

2014 - 2017

Interdisciplinary study group on production of medical radioisotopes at SPES

2018 - 2019

Simulations and feasibility evaluation of Ag as radiopharmaceutical precursor

2020 - 2022

First production of ¹¹¹Ag in reactor and beginning of *in-vitro* and *in-vivo* testing

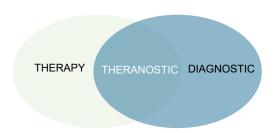
2023 - 2025

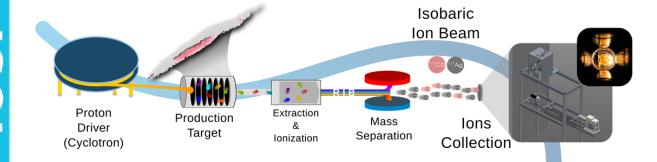
Characterizing the 2D/3D *in-vitro* therapeutic effect of ¹¹¹Ag and its imaging capabilities

2025 - 2027

Technological aspects of radionuclide production (target, ion source, implantation...)

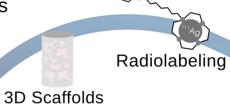
Z Z Z Z


2024 - 2025

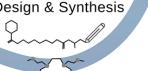

Why ¹¹¹Ag?

¹¹¹Ag properties

- β⁻ emitter (average energy **360 keV**)
- Medium half-life (7.45 days)
- Medium tissue penetration (1.5 mm)
- Medium energy γ rays -> SPECT?



- In the market no radiopharmaceuticals radiolabeled with ¹¹¹Ag.
- ¹¹¹Ag exhibits theranostic properties similar to ¹⁷⁷Lu: the first ¹⁷⁷Lu-based radiopharmaceuticals are being approved by AIFA, EMA and FDA (¹¹¹Ag-PSMA-617)
- ¹¹¹Ag behaves similarly to ¹⁸⁶Re, recently studied in phase I/II clinical trials



Preclinical Trials

In vivo

Radiopharmaceutical Design & Synthesis

Chemical Separation

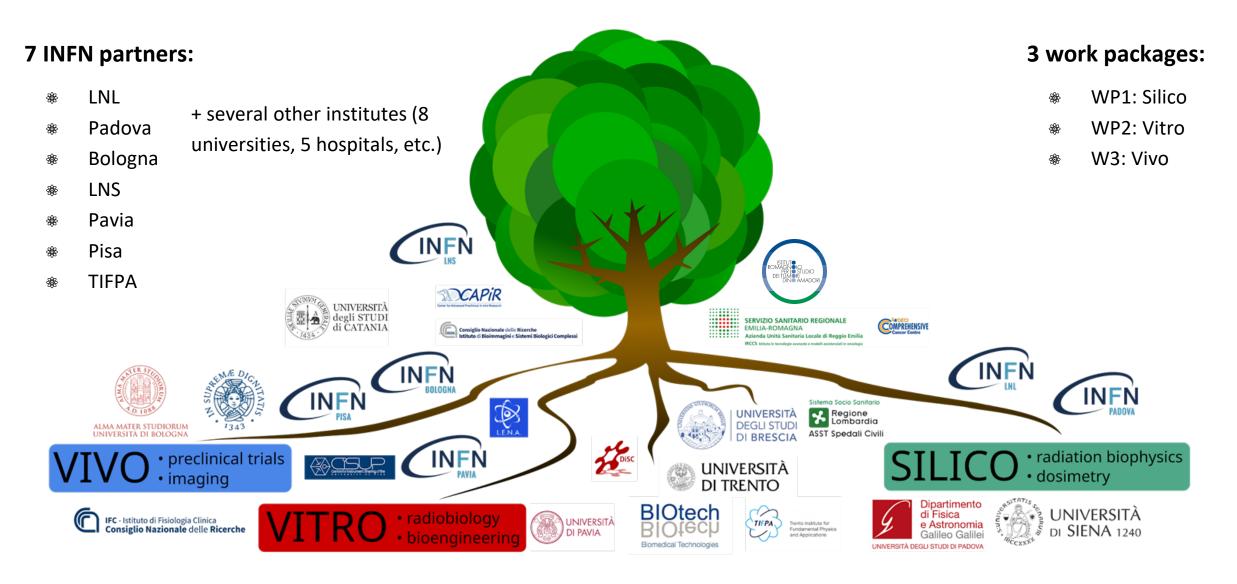
ISOLPHARM method

¹¹¹Ag will be produced @ SPES-LNL with the ISOL method:

- with high purity & high production rate
- without isobaric radioactive contaminants

ISOLPHARM_APEX (2026-2028)

¹¹¹Ag-PSMA-617 EXperiments



Radionuclide production at LENA and SPES

Main goals

- Understanding the dosimetry of ¹¹¹Ag-PSMA-617 in living systems such as cells, small animals and human patients.
- 2) Studying this radiopharmaceutical in cancer cell cultures in 2D monolayers and in 3D tissuemimicking scaffolds.
- Observing the biodistribution and the effects of theranostic ¹¹¹Ag-PSMA-617 on small animals.
- 4) Investigating the radiobiological response to low-dose-rate radiation using the first nuclides obtainable at SPES.

Project organization

Activities

WP1 - SILICO

Monte Carlo dosimetry for the assessment of the absorbed dose in cellular geometries and murine phantoms. Divisions involved: PD, LNL, **PV**.

WP2 - VITRO

2D and 3D radiobiology using 111 Ag-PSMA-617, other nuclides for comparison and radiotracers, including also cold studies for the 3D part. β imaging for cell uptake measurements.

Divisions involved: **PV**, TIFPA, LNS, LNL, PD, PI.

WP3 - VIVO

In vivo experiments with 111 Ag-PSMA-617, radiomics and imaging using γ camera prototype, SPECT/CT and ARG. Imaging calibration using phantoms.

Divisions involved: LNS, PI, BO.

Endorsement of hospitals: Santa Maria Nuova (RE); Cannizzaro (CT); IRST D. Amadori (Meldola, FC); IFC-CNR (Pisa); **Spedali Civili (BS)**

International partners: **University of Freiburg** (PSMA-617 synthesis), **BIOEMTECH** (SPECT imaging), **CNEA** (currently studying ¹⁷⁷Lu-DTPA complexes)

Gantt diagram

		Year 1			Year 2			Year 3				Notes				
		М3	М6	М9	M12	M15	M18	M21	M24	M27	M30	M33	M36	Required for	Publications	Divisions
	WP1 – SILICO (leader: S. Bortolussi)					_										
T1	I Image-based Monte Carlo dosimetry for prostate cancer cells	1	•											T2.1-T2.6	A, B	LNL, PD, PV
T1	2 Internal Monte Carlo dosimetry of biodistribution study with healthy mice	\rightarrow												T3.5	С	LNL, PD, PV
T1	Internal Monte Carlo dosimetry of biodistribution study with tumor-bearing mice					→			•					T1.5, T3.6	D	LNL, PD, PV
T1	4 Biophysical model validation with radiobiological data			\rightarrow					•						Α	LNL, PD
T1	5 Dosimetric planning for preclinical studies with tumor-bearing mice							\rightarrow			•			T3.6	E	LNL, PD, PV
T1	6 Validation of DNA damage models using radiobiological data and Geant4-DNA							\rightarrow							F	LNL, PD
T1	7 Preliminary dosimetric predictions for human patients										\rightarrow				E	LNL, PD, PV
	WP2 – VITRO (leader: D. Maniglio)					_										
T2	2D radiobiology of Ag-111-PSMA-617 on prostate cancer cells	\rightarrow												T1.4	Α	PV
T2	2 2D radiobiology of Lu-177-PSMA-617 on prostate cancer cells	\rightarrow												T1.4	Α	LNS
T2	β imaging of 2D cell culture uptake	\rightarrow												T2.1	Α	PD, PI
T2	4 3D radiobiology of Ag-111-PSMA-617 on prostate cancer cells					\rightarrow									В	PV, TIFPA
T2	5 Microscopy and β imaging of 3D cell culture uptake					\rightarrow								T2.4, T2.6	В	TIFPA, PD, PI
T2	6 3D radiobiology of Ag-111-PSMA-617 on prostate cancer cells in bioreactor									\rightarrow					В	PV, TIFPA
T2	7 2D radiobiology of SPES radionuclides							\rightarrow						T1.6	F	LNL
	WP3 – VIVO (leader: F. P. Cammarata)															
T3	1 Authorization request to work with Ag-111 in mice at CAPIR and CISUP	1	•											T3.4-T3.6	-	PI, LNS
T3	γ camera and SPECT imaging of Ag-111 in phantoms	\rightarrow			•									T3.7	G	BO, PI
T3	3 ARG imaging improvement using the γ camera collimator	\rightarrow							•					T3.4-T3.6	G	BO, LNS
T3	γ imaging and <i>ex vivo</i> biodistribution study of Ag-111-PSMA-617 in healthy mice		→		•									T1.2	С	LNS, PI, LNL
T3						\rightarrow								T1.3	D	LNS, PI, LNL
T3	6 Preclinical experiments and γ imaging using Ag-111-PSMA-617 on tumor-bearing mice							\rightarrow						T1.7, T3.7	E	LNS, PI, BO
T3										→			•		н	LNS
-	Activity started															
	Deliverable/milestone reached															

Pavia prospect

Pavia								
Name	WP	FTE	Status					
Antonietta Donzella (PV local resp.)	1, 3	0.6	Computational physicist, technologist at UNIBS					
Giorgio Biasiotto	2	0.2	Biochemist, associate professor at UNIBS					
Roberto Bresciani	2	0.2	Biochemist, associate professor at UNIBS					
Carlo Rodella	1, 2	0.4	Medical physicist at Spedali Civili di Brescia					
Federica Saiani	1, 2	0.4	Medical physicist at Spedali Civili di Brescia					
Andrea Salvini	2, 3	0.3	Radiochemist, technologist at UNIPV-LENA					
Andrea Gandini	2, 3	0.3	Radiochemist, technologist at UNIPV-LENA					
Fabio Zelaschi	2, 3	0.2	Radiochemist, technologist at UNIPV-LENA					
Silva Bortolussi	1, 2	0.2	Experimental physicist, associate professor at UNIP					
Marco Di Luzio	2	0.5	Metrologist, INRiM researcher					
Giancarlo D'Agostino	2	0.5	Metrologist, INRiM researcher					
Laura Cansolino	2	0.3	Biologist, technologist at UNIPV					
Cinzia Ferrari	2	0.4	Biologist, technologist at UNIPV					
Total PV FTE		4.5	T=2.1; R=2.4					

Total APEX FTE 15.3

Pavia										
Туре	Type ID Item		WP	Year 1 [k€]	Year 2 [k€]	Year 3 [k€]	Total			
	23	Chambers and electronics for "hot" bioreactor	2	0	2	0	2			
	24	Radiobiology laboratory material	2	2	2	2	6			
Consumables	25	Enriched Pd-110 targets	2, 3	5	5	0	10			
	26	Laboratory material for LENA	2, 3	2	2	2	6			
	27	Material for activation measurements (INRiM)	2, 3	2	0	0	2			
Services	28	Target irradiation and chemical separation at LENA	2, 3	8	8	8	24			
Shipping	29	Shipping of Ag-111, etc.	2, 3	5	4	5	14			
Travels	30	Travels for research activities	1	2	2	2	6			
		Total PV	26	25	19	70				

Fallout

- With successful preclinical trials using ¹¹¹Ag-PSMA-617 against prostatic tumors, <u>clinical trials</u> could begin
- \circledast Possible <u>commercialization</u> γ and β imaging prototypes, if their goals in terms of resolution and efficiency will be satisfied
- Production of low-dose-rate <u>radiobiological data</u> as benchmark for DNA damage and repair models with SPES_MED nuclides

Infrastrutture

